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Taylor expansion of nonlinear blind source separation problem 

The underdetermined nonlinear nonnegative blind source separation (uNNBSS) problem with 

dependent sources is described as: 

 

   1,...,t t t T x f s        (1) 

 

where 1
0
N

t

x   stands for nonnegative measurement vector comprised of intensities acquired at 

some of T mass-to-charge (m/z) channels, 1
0
M

t

s   stands for unknown vector comprised of 

intensities of M nonnegative sources. 0 0: M N
 f    is an unknown multivariate mapping such 

that      1 ...
T

t t N tf f   f s s s  and  0 0 1
:

NM
n n

f   
  . We need to expand vector valued 

function with vector argument (1) into Taylor series around some reference point s0. Thereby, 

expansion goes up to arbitrary order K. Without loss of generality we assume s0=0M1 and 

f(s0)=0N1. 0M1 and 0N1 stand for column vectors of dimensions M and N with all entries equal 

to zero. To simplify notation in derivations related to Taylor expansion of (1) we shall drop a 

column index t. For example, instead of xt and st we shall respectively use x and s. In the 

literature one mostly finds Taylor expansion based on first- (Jacobian) and second (Hessian) 

order derivatives of vector valued function with vector argument and first derivative of matrix 

function with matrix argument. It is argued in [S1] that very occasionally one might need third- 

and higher-order derivatives of vector- or matrix-valued functions with vector or matrix 

arguments. The main reason for that is notational complexity. It is argued in [S2] and [S3], in 

chapters 9 and 10, to use procedure based on differentials when calculating first and second 
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derivatives of discussed functions. For higher order terms no recommendation is given. In what 

follows we present an approach to derivation of the Taylor expansion of vector valued function 

with vector argument up to arbitrary order K by using tensorial notation, [S4]. That is legitimate 

given the fact that kth term, k=1,...,K, in Taylor expansion of vector valued function with vector 

argument is a tensor of order k+1. To this end, higher-order arrays (tensors) will be denoted with 

underlined uppercase bold letters. For example 1 2 3
0
I I I 
X   refers to a third order nonnegative 

tensor with dimensions I1, I2 and I3. Uppercase bold letters denote matrices, lowercase bold 

letters denote vectors and italic lowercase letters denote scalars. Having in mind (1) we can write 

the kth order derivative as a tensor of order 1+k:1 

 

                            ...
0

k times

k N M M  
G


                                                                           (2) 

 

We now introduce mode-r product of an Rth order tensor 
1 2 ... RI I I  T  and matrix 1 2J JW   

that is defined when number of columns of matrix is equal to the dimension of the tensor in 

mode r, that is J2=Ir. It yields a new tensor r Y T W , such that 1 1 2 1... ...r r RI I J I I      Y   , [S5].2  

We can now express contribution of the kth order term in Taylor expansion as: 

 

                                                            
1 Element of the derivative tensor indexed by (n, m1, ... , mk), where n=1, ... , N,  m1=1,..., M, ... , mk=1,..., M  is given 

as: 
 

1
1

... ...k
k

k
nk

nm m
m m

f

s s


     

s
G . 

2 For example, mode-2 product of a 3-way tensor 1 2 3I I I T   and a matrix 2D IW   is a 3-way tensor 

1 3
2

I D I   Y T W  , calculated element-wise as: 
2

1 3 1 2 3 2

2

, , , , ,
1

I

i d i i i i d i
i

y t w


  .  
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   2 1

1
...

!
k k T T

kk   x G s s      (3) 

 

where T denotes transpose operation and (4) is known as Tucker tensor model [S5, S6]. Thereby, 

1

!
k

k
G stands for a core tensor and sT for factors. Since sT  is 1M  row vector mode-2 to mode-

(k+1) multiplications of derivative tensor kG  with row vectors sT  contracts higher order 

dimensions yielding as final result an N1 column vector. It is also possible to use mode-1 

unfolding of 2 1...k T T
k G s s  that yields:3 

 

  (1)
1

1
...

!
k k

k timesk 

 
   

 
x G s s       (4) 

 

where 
( )

(1) 0

kN Mk 

G  denotes a matrix obtained by mode-1 unfolding of tensor kG ,  denotes 

Kronecker product and 
1

...
k times

 s s  yields M(k)1 vector, whereas ( ) 1k M k
M

k

  
  
 

.4 Hence we 

can formally write a Kth order Taylor expansion of vector valued function with vector argument 

as: 

 

                                                            

3 The mode-r unfolding of tensor T  produces matrix ,

( )

r k
k k r

I I

r



T 

 
which consists of mode-r vectors stacked in 

the matrix as columns. There are various possibilities for ordering of mode-r vectors into columns of ( )rT , but 

particular ordering is not important, as long it is consistent through all computations, [S5]. 

4 Kronecker product 
1

...
k times

 s s  yields  Mk1 vector. However, monomials such as sis j and sjsi stand for the same 

monomial. That is why  Mk  has to be substituted by ( ) 1k M k
M

k

  
  
 

. 
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  2 1 (1)
1 1 1

1 1
... ...

! !

K K
k T T k

k
k k k timesk k
  

 
      

 
 x G s s G s s    (5) 

 

Elements of the column vector 
1

...
k times

 s s  are monomials of the order k, that is: 

 

     1

1
1

;

1
,..., 1; 1 11

... ... . . ,..., 0,1,...,p

p
p

pM kqq
m m p i

m m p ik times

s s s t q q p and q k
  

       
s s   (6) 

 

Eq. (6) confirms that nonlinear mappings induce higher order (nonlinear) terms. In case of linear 

mapping, k=1, (6) becomes argument (source) vector s. Thus, Taylor expansion (5) can be 

written as: 

 

   x Gs        (7) 

 

where 
( )

1
0

K k
k

N M




G  stands for block matrix written as: 

 

    1 2
(1) (1) (1)

1 1
...

2 !
K

K

 
 
 
G G G ,     (8) 

 

where "|" stands for the separation between the blocks. 
( ) 11

0

kK Mk  

s  is column vector of the form: 
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   
1

... ...

T

k times

 
    
 

s s s s s s      (9) 

 

Equation (7) represents uLNBSS problem that is equivalent to uNNBSS problem (1). The 

equivalent uLNBSS problem (7) is comprised of new source vector 
( ) 11

0

kK Mk  

s  that further is 

comprised of M original sources and ( )
2

K
k

k M higher order monomials. These are new sources 

correlated with the original ones. Thus, original uNNBSS problem (1) characterized by N 

mixtures and M>N dependent sources is equivalent to uLNBSS problem (7) characterized by the 

same number of N mixtures but with ( )
1

K
k

k M  dependent sources. Since underdetermined BSS 

problem with M dependent sources is hard to solve, [S7], underdetermined problem with 

( )
1

K
k

k M dependent sources is basically intractable. It means that without further constraints 

uNNBSS problem (1) is also intractable.5  
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Table S-1. Numerical study for nonlinear blind source separation problem comprised of N=3 

mixtures, M=8 sources, L=3 overlapped sources and T=1000 observations. Comparative 

performance analysis of NMU, NMF_L0, EKM-NMU, EKM-NMF_L0, PTs-EKM-NMU and 

PTs-EKM-NMF_L0 algorithms. Sources are generated according to mixed state sparse 

probabilistic model with probability of zero state was m=0.5 m=1,...,25 and mean value of the 

exponential distribution of the amplitudes m=1.510-3 m=1,...,25. Four metrics used in 

comparative performance analysis were: number of assigned components with normalized 

correlation coefficient greater than or equal to 0.6, mean value of correlation coefficient over all 

correctly assigned components, minimal value of correlation coefficient and number of  pure 

components assigned incorrectly (that occurs due to poor separation). Mean values and variance 

are reported and estimated over 10 Monte Carlo runs. The best result in each metric is in bold. 

The first three metrics are calculated only for correctly assigned components. That is why NMU 

and NMF_L0 seem to have comparable performance. 

 

 NMU NMF_L0 EKM-
NMU 

EKM-
NMF_L0 

PTs_EKM-
NMU 

PTs-EKM-
NMF_L0 

correlation 
G.E. 0.6 

2.7±0.67 2.6±1.35 3.3±0.48 3.3±0.48 3.5±0.53 3.8±0.63 

mean 
correlation 

0.67±0.02 0.61±0.1 0.67±0.03 0.62±0.03 0.67±0.02 0.68±0.03 

minimal 
correlation 

0.52±0.03 0.42±0.06 0.5±0.03 0.42±0.03 0.5±.03 0.46±0.03 

incorrect 
assignments 

3.2±0.63 3.0±0.47 2.8±0.42 2.00±0.47 2.6±0.52 1.7±0.67 
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Table S-2. Normalized cross-correlation coefficients between 25 pure components (s1 to s25) 

generated in nonlinear chemical reaction of peptide synthesis. Thereby, pairs of pure components 

are identified with normalized correlation coefficient above 0.1.Their mass spectra are shown in 

Figure S-4. 

 s2 s6 s7 s9 s10 s12 

s1 0.9839    0.1416    0.1218    0.1796    0.1072    0.3343    

 s6 s7 s9 s10 s12   

s2 0.1418    0.1268    0.1797    0.1075    0.3305     

 s16 s17 s18    

s3 0.3575    0.3103    0.1716       

 s6 s19 s21    

s4 0.3077    0.3947    0.4005       

 s7      

s5 0.7824      

 s9      

s7 0.3297         

 s13      

s8 0.1293         

 s12 s22     

s11 0.2666    0.1622        

 s17      

s14 0.1024         

 s22      

s15 0.1349      

 s17      

s16 0.9783      

 s18      

s17 0.1186      

 s21      

s19 0.9962      

 s24 s25     

s23 0.4409 0.4339     

 s25      
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s24 0.3008      

 

 

Figure S-1.  
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Figure S-2.  
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Figure S-3. 

 

 

 

 



 
 

22 
 

 

 



 
 

23 
 

 

 



 
 

24 
 

 



 
 

25 
 



 
 

26 
 

 



 
 

27 
 

 



 
 

28 
 



 
 

29 
 

 



 
 

30 
 



 
 

31 
 



 
 

32 
 



 
 

33 
 



 
 

34 
 

 



 
 

35 
 

 

Figure S-4. 

 

 

Figure S-5. 
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Figure S-6. 

 

 

Figure S-7. 



 
 

37 
 

 

 



 
 

38 
 

 

 



 
 

39 
 

 

 

 



 
 

40 
 

 

 



 
 

41 
 

 

 



 
 

42 
 

 

 



 
 

43 
 

 

 



 
 

44 
 

 

 



 
 

45 
 

 

 



 
 

46 
 

 

 



 
 

47 
 

 

 



 
 

48 
 

 

 



 
 

49 
 

 

 

Figure S-8. 
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Figure S-9. 

 

  


