
"ERROR ANALYSIS OF LOW-RANK THREE-WAY TENSOR FACTORIZATION APPROACH TO BLIND SOURCE SEPARATION," 

2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 7, 2014.

ERROR ANALYSIS OF LOW-RANK THREE-WAY 
TENSOR FACTORIZATION APPROACH TO BLIND 

SOURCE SEPARATION

Ivica Kopriva1*, Jean-Philipe Royer2, Nadege Thirion-Moreau2, Pierre
Comon4Comon

1Ruñer Bošković Institute, Zagreb, Croatia
2 Aix-Marseille Université, CNR, ENSAM, LSIS, UMR 7296, 13397 Marseille and 

Université de Toulon, CNRS, LSIS, UMR 7296, 83957, La Garde, France
3 GIPSA-Lab, CNRS UMR5216, Grenoble Campus, BP.46 F-38402 St Martin 

d'Heres Cedex, France

e-mail: ikopriva@irb.hr, jph.royer@gmail.com ,thirion@univ-tln.fr, 
pierre.comon@gipsa-lab.grenoble-inp.fr

* Work of I. Kopriva has been partially supported through the FP7-REGPOT-2012-2013-1,Grant Agreement Number 316289 –
InnoMol and partially through the Grant 9.01/232 funded by Croatian Science Foundation.



"ERROR ANALYSIS OF LOW-RANK THREE-WAY TENSOR FACTORIZATION APPROACH TO BLIND SOURCE SEPARATION," 

2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 7, 2014.

Talk outline

�Blind separation of multidimensional sources

�Tensor notation, unfolding, norm, products, rank,…

� CPD and TuckerN tensor models:

� uniqueness, properties, …

�Error analysis with demonstration:

� multispectral image decomposition
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Blind source separation

Recovery of signals from their multichannel linear superposition using minimum 
of a priori information i.e. multichannel measurements only [1-3].

Problem:

X=AS X∈RNxT, A∈RNxM, S∈RMxT

Goal: find A and S based on X only.

1.  A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
2.  A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.
3.  P. Comon, C. Jutten, editors, “Handbook of Blind Source Separation,” Elsevier, 2010.

N - number of sensors/mixtures;
M - unknown number of sources
T - number of samples/observations
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Blind Source Separation
X=AS and X=(AT)(T-1S) are equivalent for any square invertible matrix T.
There are infinitely many pairs (AT, T-1S) satisfying linear mixture model 
X=AS.

Solutions unique up to permutation and scaling indeterminacies, T=PΛ,
are meaningful. Constraints must be imposed on A and/or S in order to are meaningful. Constraints must be imposed on A and/or S in order to 
obtain solution of the BSS problem that is characterized with T=PΛΛΛΛ.

ICA solves BSS problem imposing statistical independence and non-
Gaussianity constraints on source signals sm, m=1,…,M.

DCA improves accuracy of the ICA when sources sm, m=1,…,M, are not 
statistically independent.

SCA / NMF solves BSS problem imposing nonnegativity, sparseness, 
smoothness or some other constraints on source signals sm, m=1,…,M.
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Nth order tensor (also called N-way array) is N-dimensional array of, not
necessary real, numbers:

Each index is called  way or mode and number of levels of a mode represents 

1 2 NI ×I ×...×I∈X ℝ

Multidimensional (tensorial) sources

4. H. A. L. Kiers, "Towards a standardized notation and terminology in multiway analysis," J. Chemometrics, 14, 
no. 3, pp. 105-122, 2000.
5. A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonegative Matrix and Tensor Factorizations, John Wiley & 
Sons, 2009.
6. E. Acar, and B. Yener, "Unsupervised Multiway Data Analysis: A Literature Survey," IEEE Trans. Knowl. Data 
Eng. 21, 6 (2009).
7. T.G. Kolda, and B.W. Bader, “Tensor Decompositions and Applications,” SIAM Review 51, 453 (2009).

Each index is called  way or mode and number of levels of a mode represents 
dimension of that mode, [4-7]. Eg., dimension of mode-1 is I1.

Scalars, vectors and matrices are respectively tensors of order 0, 1 and 2. 
Sometimes tensors of order 3 are called hypermatrices.                              
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A number of data sets is not naturally represented in 2D space but in N-D, N≥3, 
space. Few examples include: multispectral/hyperspectral image, video signal, 
EEG data, fluorescence spectroscopy data, magnetic resonance image, multi-
phase CT image, etc.

Multispectral-hyperspectral image (3D tensor)
I I I× ×∈X ℝ

Multidimensional (tensorial) sources

1 2 3
0
I I I× ×

+∈X ℝ

I3 spectral images of the size I1×I2 pixels

RGB image contains I3=3 spectral channels. 
xi1i2i3 represents brightness intensity at spatial location

indexed by (i1,i2 ) and spectral location indexed by i3.

Multispectral magnetic resonance image (3D tensor)

I3=3 (PD,T1 and T2) images of the size I1×I2 pixels



"ERROR ANALYSIS OF LOW-RANK THREE-WAY TENSOR FACTORIZATION APPROACH TO BLIND SOURCE SEPARATION," 

2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 7, 2014.

Tensor factorization
Very often for the purpose of exploratory data analysis, that includes the BSS 
methods such as ICA, DCA, SCA or NMF, 3D data are mapped to 2D data that 
is known as matricization, unfolding or flattening.

1 2 3 2 1 3

2
I I I I I I× × ×

+ +∈ → ∈X Xℝ ℝ

1 2 3 1 2 3

1

0 (1) 0
I I I I I I× × ×

+ +∈ → ∈X Xℝ ℝ

1 2 3 3 1 2

3

0 (3) 0
I I I I I I× × ×

+ +∈ → ∈X Xℝ ℝ
Problems:
• local structure of 3D data is lost (not exploited)
• matrix factorization assumed by linear mixing model X=AS suffers from 
indeterminacies because ATT-1S=X for any invertible T, i.e. infinitely many 
(A,S) pairs can give rise to X.

• Meaningful solutions of the BSS problems are characterized by T=PΛΛΛΛ. To 
obtain them, matrix factorization methods such as ICA and/or NMF must 
respectively impose statistical independence and sparseness constraints on S.

1 2 3 2 1 3
0 (2) 0+ +∈ → ∈X Xℝ ℝ
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Tensor products
The n-mode product of a tensor      and a matrix A is written as:

Let      be of size I1 × I2 × I3 and let A be of size J1 × J2.

The n-mode product multiplies vectors in mode n of      with row vectors in A. 

X

X

n×X A
X

The n-mode product multiplies vectors in mode n of      with row vectors in A. 
Therefore, n-mode multiplication requires that In=J2. 

The result of the              is a tensor with the same order (number of modes) as      
but with the size In replaced by J1. After n-mode unfolding it follows:

As an example, classical matrix product AB can be seen as a special case of n-
mode product:

T
2 1= × = ×AB A B B A

X
n×X A

X

( ) ( )n n=Y AX
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Tensor models
Two most widely used tensor models are TuckerN model, [11], and Canonic 
Polyadic Decomposition (CPD)/PARAlel FACtor (PARAFAC) analysis 
/CANonical DECOMPosition (CANDECOMP) model, [12,13]. The Tucker3 
model for 3D tensor is defined as: 

31 2

1 2 3 1 2 31 2 3

RR R

j j j j j jg≈ × × × = ∑ ∑ ∑X G A B C a b c� �

where                     is a core tensor and                              are factors. 

11. L. R. Tucker, "Some mathematical notes on three-mode factor analysis," Psychometrika 31, 279 (1966).
12. J. D. Carrol, and J. J. Chang, "Analysis of individual differences in multidimensional scaling via N-way 
generalization of Eckart-Young decomposition," Psychometrika 35, 283 (1970).
13. R. A. Harshman, "Foundations of the PARAFAC procedure: models and conditions for an exploratory multi-
mode factor analysis," UCLA Working Papers in Phonetics 16, 1 (1970).

1 2 3 1 2 3

1 2 3

31 2

1 2 3 1 2 3

1 2 3

1 2 3
1 1 1

1 1 1

j j j j j j
j j j

RR R

pqr j j j p j qj rj
j j j

g

x g a b a

= = =

= = =

≈ × × × =

≈

∑ ∑ ∑

∑ ∑ ∑

X G A B C a b c� �

1 2 3R R R× ×∈G ℝ { }3

1
, , n nI R

n

×

=
∈A B C ℝ
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Tensor models

Tucker model has good generalization capability due to the fact that the core
tensor allows interaction between a factor with any factor in other modes. 

However, essential uniqueness of the factorization (up to permutation and 
scaling) is not guaranteed. That is because of:

( ) ( ) ( )
1 2 3

1 1 1
1 1 2 2 3 3 1 1 2 2 3 3

− − −

≈ × × ×

= × × × × × ×

X G A B C

G T T T AT BT CT

where .

Some constraints have to be imposed on array factors and/or core tensor in 
order to ensure uniqueness of the factorization.

{ }3

1

n nR R
n n

×

=
∈T ℝ
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The CPD tensor model
The CPD model is a special case of the Tucker model when core tensor is 
diagonal i.e.           . CPD factorizes a tensor into a sum of rank-one tensors:

[ ]
1

,
R

i i i i
i

λ
=

≈ =∑X λ A,B,C a b c� �

=G Λ

1i =

where .31 2, , , I RI R I RR ×× ×∈ ∈ ∈ ∈λ A B Cℝ ℝ ℝ ℝ

The mode-3 matricized version of the tensor is given as:

where                      and       denotes the Khatri-Rao product.

[ ](3)

T=X CΛ B A⊙

( )diag=Λ λ ⊙
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Assuming that R≤min(I1,I2,I3) uniqueness condition for CPD model is [14, 15]:

where  k(A), k(B) and k(C) are Kruskal’s ranks of factor A, B and C.

( )( ) ( ) 2 3k k k R+ + ≥ +A B C

The CPD tensor model

14. J. B. Kruskal, "Three-way arrays: Rank and uniqueness of trilinear decompositions," Linear Algebra Appl. 18, 
95 (1977).
15. N. D. Sidiropoulos, and R. Bro, "On the uniqueness of multilinear decomposition of N-way arrays," J. of 
Chemometrics 14, 229 (2000).

For a matrix                     standard rank r(A):=rank(A)=R if A contains collection 
of R linearly independent columns (rows), and this fails for R+1 columns (rows). 

k(A) =R if every R columns are linearly independent, and this fails for at least 
one set of R+1 columns:

k(A)≤r (A)≤min(I,J) ∀ A.

I J×∈A ℝ



"ERROR ANALYSIS OF LOW-RANK THREE-WAY TENSOR FACTORIZATION APPROACH TO BLIND SOURCE SEPARATION," 

2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 7, 2014.

Tensor factorization
Tensor based vs. matrix based mixture models.
•2D linear mixture model for 2D source signals:

23 1 2 3 1
(3) (3) 0 0 0,

R I II I I I R ×× ×
+ + += ∈ ∈ ∈X AS X A Sℝ ℝ ℝ

In a case of MSI (or MRI) I1 and I2 represent image dimensions and I3
represents number of spectral bands. In a case of video I3 represents number 
of frames. R represents the unknown number of sources. Low-rank constraint
implies: R≤I3.

•3D linear mixtures model with 2D sources signals:

1 2 3≈ × × ×X G A B C

{ }1 2 3
3

0 0 0 1
, , , , nI I I I RR R R

n

× × ×× ×
+ + + =

∈ ∈ ∈X G A B Cℝ ℝ ℝ
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Tensor factorization

Dimensionality analysis yields [16, 17]:

≈A C

[ ]T

(3) (3)≈ ⊗X CG B A

3-mode unfolding of       yields:X

( ) 1 2
†

1 2 3 0
I I R× ×

+≈ × × ≈ × ∈S G A B X C S ℝ

16. I. Kopriva, A. Cichocki, "Blind Multi-spectral Image Decomposition by 3D Nonnegative Tensor Factorization,"
Optics Letters vol. 34, No. 14, pp 2210-2212, 2009.
17. I. Kopriva, "3D Tensor Factorization Approach to Single-frame Model-free Blind Image Deconvolution," Optics
Letters, Vol. 34, No.14, pp. 2210-2212, 2009.

where '†' denotes Moore-Penrose pseudo-inverse and it is assumed R≤I3.

Thus, for MSI/MRI decomposition tensor factorization yields tensor of 
spatial distributions of materials/tissue substances present in the 
MSI/MRI.
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Tensor factorization
Tensor factorization yields two formulas for calculating source signal tensor:

1 2
dir ≈ × ×S G A B

( )†inv ≈ ×S X C( )3
inv ≈ ×S X C

How to choose between these two formulas?  

Which formula is more robust again perturbations of model factors [                  ] 
and/or data tensor     ?  

,G A,B,C
X
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Perturbations of model factors

First order perturbation analysis of direct and inverse formulas for source tensor 
yields:

1 2 1 2 1 2
dirδ δ δ δ≈ × × + × × + × ×S G A B G A B G A B

( )† † † †T T †δ δ + −C CC C C C I CC( )
( )

3

† † † †T T †

3 † T †T †

Iinv

R

δ δ
δ

δ

 + −
 ≈ − ×
 + − 

C CC C C C I CC
S X

I C C C C C

Where In denotes n×n identity matrix. For square invertible matrix C expression 
for inverse formula becomes [18]: 

1 1
3

invδ δ− − ≈ − ×  S X C CC

18. A. Hjørungnes. and D. Gesbert, "Complex-Valued Matrix Differentiation: Techniques and Key Results," IEEE Transactions on
Signal Processing, vol. 55, pp. 2740-2746, 2007.
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Perturbations of model factors

,G A,B,C

This type of perturbation relates to rounding errors and/or conversion to local 
minima.

Model factors                    were perturbed by i.i.d. nonnegative uniformly 
distributed noise in the amounts of 0.1%, 1% and 10% of the Frobenius norms distributed noise in the amounts of 0.1%, 1% and 10% of the Frobenius norms 
of the true values of loading factors. 

Data tensor: 856×1144×3. Rank of factor matrices was R=3. The 3×3 C matrix 
has been generated with controlled condition number between 2 and 20 in
steps of 1.

The crucial point is conditioning of C matrix. When C matrix is sufficiently well 
condtioned the inverse formula will be more accurate.
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Perturbations of model factors

Log10 of the ratio of the Frobenius
norms of error tensors:

.( )10log dir invδ δS S

The inverse formula yields smaller error when condition number is less than 16.
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Unsupervised Decomposition of Multispectral Image

True hyperspectral/multispectral image is a 3D tensor. Hence, blind image 
decomposition can be performed through 3D NTF, [16].

It is related to the unsupervised decomposition of fluorescent RGB image of a 
skin tumor (basal cell carcinoma) by means of the α-NTF algorithm (α=0.1 was 
chosen in this case), [19]. Here, α-divergence is just a choice and other cost 

19. Y. D. Kim, A. Cichocki, and S. Choi, "Nonnegative Tucker Decomposition with Alpha-Divergence," in 
Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, 
NV, USA, March 30-April 4, 2008, pp. 1829-1832.

chosen in this case), [19]. Here, α-divergence is just a choice and other cost 
functions could be used as well.

The ground truth is simple and visible on the RGB image itself. The image
contains fluorescent tumor component in red color and background component
(composed of surrounding healthy skin and the ruler) in green and black colors,
that is the C matrix is 3×2 matrix.
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Top row: experimental RGB fluorescent image of a
skin tumor that stands for measurement tensor of
dimensions 856×1144×3. Mid row: intensity maps of
tumor component. Left direct formula; right: inverse
formula. Bottom row: intensity maps of background
component. Left: direct formula; right: inverse
formula. Intensity maps are scaled to [0,1] interval

Unsupervised Decomposition of Multispectral Image

formula. Intensity maps are scaled to [0,1] interval
and shown in pseudo-color such that dark red
indicates that component is present with probability
1, while dark blue indicates that component is
present with probability 0.

Although result obtained by inverse formula is better,
it is seen that direct formula also yields result that is
meaningful. Thus, if the conditioning of the C matrix
happens to be poor (it could be due to the existence
of spectrally similar objects) direct formula can be
useful.
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Perturbations of measurement/data tensor

Data tensor     has been perturbed. Corresponding  perturbations of factor 
matrices A, B and C as well as diagonal core tensor     were calculated.

This type of analysis makes sense only when decomposition is unique. Thus, 
CPD model is analyzed and Tucker3 model is discarded in this perturbation 
analysis. 

X
Λ

analysis. 

It is necessary to obtain expressions for δA, δB, δC and δ as a function of δ . 
For this purpose we consider first order perturbation of the CPD model of     
[20]: 

where denotes Khatri-Rao product and ΛΛΛΛ is R×R diagonal matrix if R
denotes rank of .

Λ

X

[ ] [ ] [ ] [ ]T T T T

(3)δ δ δ δ δ≈ + + +X CΛ B A C Λ B A CΛ B A CΛ B A⊙ ⊙ ⊙ ⊙

⊙

20. C. R. Rao, Linear Statistical Inference and its Applications, ser. Probability and Statistics. Wiley, 1965.

X

X
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Perturbations of measurement/data tensor

The expansion is based on the mode-3 unfolding of     :

Perturbation is a linear system and can be written in more convenient form by 

X

[ ]T

(3) =X CΛ B A⊙

Perturbation is a linear system and can be written in more convenient form by 
defining the following vectors:

{ }
{ }
{ }

{ }

{ }(3)and 

vec

vec
vec

vec

vecd

δ
δ

δ δ δ
δ

δ

 
 
 
 
 
 
 

A

B
z x X

C

Λ

≜ ≜
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Perturbations of measurement/data tensor

vec{.} and vecd {.} respectively mean :

{ }
1

...vec

δ
δ

δ

 
 
 
  

a

A

a

≜ { }
1

...vec

δ
δ

δ

 
 
 
  

b

B

b

≜ { }
1

...vec

δ
δ

δ

 
 
 
  

c

C

c

≜ { }
11

...vecd

δλ
δ

δλ

 
 
 
  

Λ ≜

Thus, we have to solve for the linear system δx= Mδz . Thereby, M is the 4-
block matrix:

Rδ  a Rδ  b Rδ  c RRδλ  

( ) ( ) ( ) ( )

( ) ( )
1 2 1 2 1 2 1 2

3

, , I II I R I I I I R

I

D D ⊗ ⊗
 
 ⊗  

K CΛ I B K CΛ I A
M

B A Λ I B A C
≜

⊙ ⊙ ⊙
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Perturbations of measurement/data tensor

( ) { }
2 21,...,I I RD Diag= ⊗ ⊗A I a I a ( ) { }

1 11 ,...,I R ID Diag= ⊗ ⊗B b I b I

are diagonal matrices of size I1I2R× I2R and I1I2R× I1R .

Here:

1 2 2 1 2 1

is square permutation matrix of dimensions I1I2R× I1I2R:

ei is unit vector in and er is unit vector in .

1 2,I I RK

( ) ( )1 2

1 2 1 2

1 2 ,
1 1

I I R
I I R R I I

I I R ir ri
i r

× ×

= =
∑∑K E E≜

( )1 2I I R T
ir i r

×E e e≜

1 2I I
ℝ

R
ℝ
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Perturbations of measurement/data tensor

The matrix M is of size  I1I2I3× (I1 + I2  + I3  + 1)R.  

Due to low-rank constraint , R ≤ I3, and because I3 is small (it stands for number 
of channels  that in case of RGB or image is I3 =3 ) matrix M has less columns 
than rows. Thus, there are more equations than unknowns.

In computer simulation data tensor was of size 50×50×3. For each 
realization entries of loading matrices A, B and C were drawn from nonnegative 
uniform distribution with number of columns R=3. The core tensor     was 
generated with nonnegative uniformly distributed values on diagonal. 

The 3×3 C matrix has been generated with controlled conditioned number 
between 2 and 20 in steps of 1. Entries of perturbation tensor δ were drawn 
independently according to nonnegative uniform distribution. Froebenius norm 
of δ has been determined from predefined signal-to-noise-ratio: 

X

Λ

X

( )1020 logSNR δ= X X

X
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Perturbations of measurement/data tensor
Log10 of the ratio of the Frobenius
norms of error tensors:

The inverse formula yields smaller 
error when condition number of C
matrix is less than 8. The fact that

( )10log dir invδ δS S

matrix is less than 8. The fact that
inverse formula is more sensitive to 
measurement noise than noise in
loading factors is expected since it 
amplifies noise via C†.

Presented results supplement the one related to CRLB in [21]. While CRLB 
predicts error bounds on parameter of the CPD model under a white Gaussian 
noise assumption, the error analysis presented herein can be performed for 
arbitrary distribution of the additive noise. 
21. X. Q. Liu, and N. D. Sidiropoulos, "Cramer-Rao lower bounds for low-rank decomposition of multidimensional 
arrays," IEEE Transactions on Signal Processing, vol. 49, pp. 2074-2086, 2001.
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SUMMARY

In factorization of (three-way) tensors direct and inverse formulas for calculating 
source tensor emerge. 

If errors are due to perturbations in loading matrices inverse formula is better 
when condition number of the mode-3 loading matrix is smaller than or equal to 
16. 

In case of measurement noise, inverse formula is better when condition number 
of mode-3 loading matrix is smaller than or equal to 8. 

Topic for future analysis is related to probabilistic formulation that complies with 
some predefined (sparseness and/or nonnegativity) constraints on factors of 
the model. That can lead to interesting results regarding essential uniqueness 
of the Tucker3(N) tensor model?!


