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Abstract 

Nonlinear underdetermined blind separation of nonnegative dependent sources consists 

in decomposing set of observed nonlinearly mixed signals into greater number of 

original nonnegative and dependent component (source) signals. That hard problem is 

practically relevant for contemporary metabolic profiling of biological samples, where 
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sources (a.k.a. pure components or analytes) are aimed to be extracted from mass 

spectra of nonlinear multicomponent mixtures. This paper presents method for 

nonlinear underdetermined blind separation of nonnegative dependent sources that 

comply with sparse probabilistic model, i.e. sources are constrained to be sparse in 

support and amplitude. That model is validated on experimental pure components mass 

spectra. Under sparse prior nonlinear problem is converted into equivalent linear one 

comprised of original sources and their higher-, mostly second, order monomials. 

Influence of these monomials, that stand for error terms, is reduced by preprocessing 

matrix of mixtures by means of robust principal component analysis, hard-, soft- and 

trimmed thresholding. Preprocessed data matrices are mapped in high-dimensional 

reproducible kernel Hilbert space (RKHS) of functions by means of empirical kernel 

map. Sparseness constrained nonnegative matrix factorizations (NMF) in RKHS yield 

sets of separated components. They are assigned to pure components from the library 

using maximal correlation criterion. The methodology is exemplified on demanding 

numerical and experimental examples related respectively to extraction of 8 dependent 

components from 3 nonlinear mixtures and to extraction of 25 dependent analytes from 

9 nonlinear mixtures mass spectra recorded in nonlinear chemical reaction of peptide 

synthesis.  

 

Key words: Nonlinear underdetermined blind source separation, Robust principal 

component analysis, Thresholding, Empirical kernel maps, Nonnegative matrix 

factorization.  
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1. INTRODUCTION 

Identification of pure components present in the mixture is a traditional problem in 

spectroscopy (nuclear magnetic resonance-, infrared, Raman) and mass spectrometry [1-

4]. Identification proceeds often by matching separated components spectra with a 

library of reference compounds [5-7], whereas degree of correlation depends on how 

well pure components are separated from each other. Thereby, of interest are blind 

source separation (BSS) methods that use only the matrix with recorded mixtures 

spectra as input information [8-11]. In majority of scenarios, separation of pure 

components is performed by assuming that mixture spectra are linear combinations of 

pure components [1-4]. While linear mixture model is adequate for many scenarios, 

nonlinear model offers more accurate description of processes and interactions 

occurring in biological systems. Living organisms are best examples of complex 

nonlinear systems that function far from equilibrium. Internal and external stimuli 

(disease, drug treatment, environmental changes) cause perturbations in the system as a 

result of highly synchronized molecular interactions [12]. As opposed to many BSS 

methods developed for linear problems, the number of methods that address nonlinear 

BSS problem is considerably smaller, see for example chapter 14 in [11]. That number 

is reduced further when related nonlinear BSS problem is underdetermined, that is when 

number of pure components is greater than number of mixtures. That is why metabolic 

profiling, that aims to identify and quantify small-molecule analytes (a.k.a. pure 

components or sources) present in biological samples (typically urine, serum or 

biological tissue extract) is seen as one of the most challenging tasks in systems biology 

[13]. Therefore, underdetermined problem is of practical relevance.  
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 The aim of the paper is to present method for blind separation of pure 

components from smaller number of multicomponent nonlinear mixtures mass spectra. 

Therefore, it is assumed that components are nonnegative and sparse. To this end, we 

address underdetermined nonlinear nonnegative BSS (uNNBSS) problem with sparse 

and dependent sources. As it has been discussed at great length in [4], even linear 

underdetermined BSS problem comprised of dependent sources is challenging with only 

few algorithms addressing it. There is basically no method proposed for uNNBSS 

problem. Herein, we propose method for uNNBSS problem that can be considered as 

generalization of the method developed in [4] for underdetermined linear nonnegative 

BSS (uLNBSS) problem comprised of dependent sources. Proposed method constrains 

sources to be nonnegative and comply with sparse probabilistic model [14, 15], that is 

sources are assumed to be sparse in support and amplitude. The model is validated on 

experimental mass spectrometry data and is therefore practically relevant, see section 

3.2. This represents first original contribution of the paper. Under this sparse prior, 

nonlinear problem is approximated by a linear one comprised of original sources and 

their second order monomials. This follows from analytical derivations based on Taylor 

expansion of nonlinear mixture model (that is the vector function with vector argument) 

up to an arbitrary order. Analytical derivation of Taylor expansion based on Tucker 

model of tensor derivatives represents, arguably, second original contribution of the 

paper. The key contribution of the paper is reduction of influence of higher order 

monomials that stand for error terms. That is achieved by preprocessing matrix of 

mixtures by means of robust principal component analysis (RPCA) [16, 17], hard- (HT), 

soft- (ST) [18] and trimmed thresholding (TT) [19]. Preprocessed data matrices are 

mapped observation-wise in high-dimensional RKHS by means of empirical kernel map 
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(EKM). Thus, one uNNBSS problem is converted into four nonnegative BSS problems 

in RKHS with the same number of observations but increased number of mixtures. 

Sparseness constrained NMF is performed in RKHS to solve these nonnegative BSS 

problems. Thereby, components separated by NMF are assigned to pure components 

from the library using maximal correlation criterion.  

 The rest of the paper is organized as follows. Section 2 gives overview of 

nonlinear BSS methods and presents theory upon which proposed uNNBSS is built. 

Section 3 describes experiments performed on computational and experimental data. 

Section 4 presents and discusses results of comparative performance analysis between 

proposed uNNBSS and some state-of-the-art NMF algorithms. Concluding remarks are 

given in Section 5. 

 

2. THEORY AND ALGORITHM  

Aimed application of proposed uNNBSS method is extraction of analytes from 

multicomponent nonlinear mixtures of mass spectra. As emphasized in [4] mass 

spectrometry is chosen due to its increasing importance in clinical chemistry, safety and 

quality control as well as biomarker discovery and validation. As in [4, 5], we assume 

that library of reference mass spectra is available to evaluate quality of components 

extracted by the proposed method.1 For an example the NIST and Wiley-Interscience 

universal spectral library [7], contains more than 800 000 mass spectra (corresponding 

                                                            
1 Please note that any BSS algorithm when applied to experimental data requires some kind of expert 
knowledge to evaluate the separation results. Herein the library of pure components is such an "expert". 
The same concept is used in hyperspectral image analysis where identification of minerals proceeds by 
comparison of estimated endmembers with spectral profiles stored in the library, see for an example the 
ASTER spectral library at [20].  
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to more than 680 000 compounds). As opposed to [4], where linear mixture model is 

assumed, nonlinear model is assumed herein. Thereby, linear model is implicitly 

included as a special case. 

 From the viewpoint of uNNBSS problem with dependent sources existing 

algorithms for nonlinear BSS problem have at least one of the several deficiencies: (i) 

they assume that number of mixtures is equal to or greater than the unknown number of 

sources [21-29]; (ii) they do not take into account nonnegativity constraint that is 

present when sources are pure components mass spectra [21-32]; (iii) they assume that 

source signals are statistically independent [22-24, 27, 28-32] and, sometimes, 

individually correlated [28, 30, 31]. None of these assumptions holds true for the 

uNNBSS problem considered herein. Algorithm described in [33] is developed for 

uNNBSS problem composed of nonnegative sources. However, the assumption made 

by the algorithm is that set of observation indexes exist such that each source is present 

alone in at least one of these observations. That assumption seems too strong for the 

considered uNNBSS problem where mass spectra of structurally similar pure 

components are expected to overlap. That is especially the case if the resolution of the 

mass spectrometer is low. Algorithms [34-36] execute nonlinear nonnegative BSS by 

means of nonnegative matrix factorization (NMF) in reproducible kernel Hilbert space 

(RKHS). Nevertheless, unlike the uNNBSS method proposed herein, they do not: (i) 

enforce sparseness constraint that is shown herein to be enabling condition for solving 

otherwise intractable uNNBSS problem; (ii) reduce influence of higher order 

monomials of the original sources (error terms) induced by nonlinear mixing process 

and that is shown herein to be crucial for obtaining reasonably accurate solution of the 

uNNBSS problem. As it is seen in section 2.2, uNNBSS problem is converted into 
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equivalent uLNBSS problem with large number of sources: the original ones and their 

higher order monomials induced by nonlinear mixing process. Without activation of 

sparse probabilistic prior equivalent uLNBSS problem is intractable. 

 As it is seen in sections 3.1 and 3.2, proposed methodology significantly 

improves accuracy relative to the case when the NMF algorithm is performed on EKM-

mapped matrix of mixtures data without suppression of higher order monomials. It has 

already been discussed in [37, 4] that performance of many NMF algorithms depends 

on optimal usage of parameters required to be known a priori, such as balance 

parameter that regulates influence of sparseness constraint [38], or number of 

overlapping components that exist in mixtures [39]. Often, these parameters are difficult 

to select optimally in practice. That is why the nonnegative matrix underapproximation 

(NMU) algorithm [40] is proposed to solve nonnegative BSS problems in RKHS. That 

is, it does not require a priori information from the user. Thus, we propose herein to 

combine RPCA, HT, ST and TT preprocessing transforms, EKM based nonlinear 

mapping with the NMU algorithm in mapping induced high-dimensional RKHS. Hence, 

the PTs-EKM-NMU algorithm. The PTs-EKM-NMU is exemplified on numerical and 

experimental problems. Nevertheless, proposed preprocessing transforms can also be 

used in combination with other sparseness constrained NMF algorithms. Provided that 

number of overlapping components can be inferred reasonably accurate, an NMF 

algorithm with 0 -constraints (NMF_L0) [39] is a good choice. 

 

2.1 Underdetermined nonlinear nonnegative blind source separation with 

dependent sources 
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The uNNBSS problem with dependent sources is described as: 

   1,...,t t t T x f s        (1) 

where 1
0
N

t R 
x  stands for nonnegative measurement vector comprised of intensities 

acquired at some of T mass-to-charge (m/z) channels, 1
0
M

t R 
s  stands for unknown 

vector comprised of intensities of M nonnegative sources. 0 0: M NR R f  is an unknown 

multivariate mapping such that      1 ...
T

t t N tf f   f s s s  and  0 0 1
:

NM
n n

f R R  
 . 

Problem (1) can be casted in the matrix framework: 

 

   X f S         (2) 

 

such that 0
N TR 
X , 0

M TR 
S , where   1

T

t t
x  and   1

T

t t
s  are column vectors of matrices 

X and S respectively and  f S  implies that nonlinear mapping is performed column 

wise such as in (1). It is further assumed that:  0 1

T

t t
L


s where 

0ts stands for 0  

quasi-norm that counts number of non-zero coefficients of ts  and 
01,...,

max t
t T

L


 s . 

Evidently, it applies: L≤M, where L denotes maximal number of sources that can be 

present at any coordinate t. The uNNBSS problem implies that components mass 

spectra,  1
0 1

MT
m m

R 
 

s , ought to be inferred from mixture data matrix X only. In this 

paper the following assumptions are made on nonlinear mixture model (1)/(2): 

 A1) 0xnt1  n=1,...,N and t=1,...,T , 
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 A2) 0smt1  m=1,...,M and t=1,...,T , 

 A3) M > N, 

 A4) Amplitude smt obeys exponential distribution on (0, 1] interval and discrete 

 distribution at zero, see also eq.(3), 

 A5) Components of the vector valued function f(s):   1
0 0: M

nf R R
 s  , 

 n=1,...,N  are differentiable up to unknown order K, 

 A6) M<<T. 

 

To avoid confusion between column and row vectors they will be indexed by lowercase 

letters that correspond with uppercase letters related to dimensions of the corresponding 

matrix. As an example st refers to the column- and sm to the row vector of matrix 

0
M TR 
S . Evidently, uppercase bold letters denote matrices, lowercase bold letters 

denote vectors and italic lowercase letters denote scalars. In order to be useful solution 

of the uNNBSS problem is expected to be essentially unique, that is estimated matrix of 

pure components (sources) Ŝ  and the true matrix of pure components S have to be 

related through ˆ  S P S , where P and  stand respectively for MM permutation and 

diagonal matrices. As discussed at great length in [4] even linear underdetermined BSS 

problem requires constraints to be imposed on sources in order to ensure essentially 

unique solution. Nonlinear BSS problem is more difficult. Herein, we assume that pure 

components   1

M

m m
s  comply with sparse probabilistic model imposed by A4. It implies 

that each component will be zero at great part of its support (number of m/z channels T) 
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as well as that non-zero intensity will be distributed according to exponential 

distribution with small expected value. These two constraints are expected to ensure 

that, in probability, compared to N and M the maximal number of analytes L present at 

the particular m/z coordinate is small enough. However, N stands for number of 

biological samples available and it is expected to be small. Thus, it can virtually be 

impossible to satisfy above requirement. That is why, as in [4], in order to increase the 

number of measurements (samples) the original uNNBSS problem (1) has to be mapped 

into RKHS by using EKM. Before that, we need to approximate uNNBSS problem 

(1)/(2) by an equivalent uLNBSS problem.  

 

2.2 Sparse probabilistic model of source signals 

Taylor expansion of the nonlinear model (1) up to an arbitrary order K is derived in 

Supporting Information. It is shown that uNNBSS problem (1) can be represented by an 

equivalent uLNBSS problem, eq. (7) in Supporting Information, comprised of M 

original sources and ( )
2

K
k

k M higher order monomials, where ( ) 1k M k
M

k

  
  
 

. Thus, 

without further constraints uNNBSS problem (1) is computationally intractable. That is 

why, according to A4, we assume that sources s comply with sparse probabilistic model 

comprised of mixed state distribution [14, 15, 4]:  

 

        *( ) 1 1,..., 1,...,mt m mt m mt mtp s s s f s m M t T           (3) 
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where (smt) is an indicator function and *(smt)=1-(smt) is its complementary function, 

  
1

0
T

m mt t
P


 s . Hence,   

1
0 1

T

mt m t
P s 


   . The nonzero state of smt is 

distributed according to f(smt). We have chosen exponential 

distribution:      1 expmt mtm mf s s    to model sparse distribution of the nonzero 

states,  in which case the most probable outcomes are equal to m. It has been verified in 

[4] that model (3) describes well mass spectra of the pure components. Herein, by using 

mass spectra of 25 pure components we have estimated  ˆ 0.27,0.74m   and 

 ˆ 0.0012,0.0014m  , see section 3.2 and Figure 4 for more details.2 Under exponential 

prior, probability that amplitude smt  [, m], for 0<<<1, is 0.632. Thus, in 36.8% of 

the cases random realization of smt will have amplitudes greater than most probable 

value m. For a given m and given probability p(<smts) the value of s is obtained as: 

s-mln(1-p). Thus, for p=0.99 and m=1.510-3 it follows s=710-3. Hence, we may 

approximate equivalent uLNBSS model, eq. (7) in Supporting Information, by retaining 

second order terms only: 

 

                   

 
1 2

1 2

2
1

1 2 2
(1) (1)

, 1

...
1

2
....

M

M

m m m m

HOT



 
 
 
 

   
 
 
 
  

s

X G S G s

s s

                                                      (4) 

                                                            
2  Even though the exponential distribution has support on the [0,) interval, by setting =0.01 
realizations will be contained in [0, 1] interval with a probability that is close to 1 with an error of 

3.7210-44.  Thus, this justifies a choice of exponential distribution to model sparse distribution of 
amplitudes smt on interval [0, 1]. 
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where 1
(1)G , respectively 2

(1)G , stand for unfolded versions of the tensor of first, 

respectively second, order derivatives and HOT stands for higher-order terms. 

Contribution of third order terms in (4) is of the order (7x10-3)3=3.4310-7. In order to 

reduce HOT entry-wise thresholding of X can be performed. By neglecting fourth- and 

higher-order terms we have empirically arrived at the threshold value of: [10-6, 10-4].3  

 

2.3 Suppression of higher order (error) terms  

Mass spectra of 25 pure components recorded in nonlinear chemical reaction of peptide 

bond formation, see section 3.2 and Figures 3 and S-4 in Supporting Information, 

illustrate diversity of morphologies. Some have few very dominant (large) peaks (see 

spectra of pure components 1, 2, 8, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25), some 

have intensities distributed on several m/z values, whereas intensities can be small (see 

spectra of pure components 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 and 15). It is thus hard to 

propose one preprocessing (thresholding) transform for suppression of higher order 

terms induced by nonlinear mixing process. We, therefore, propose the combination of 

methods for this purpose. 

 

                                                            
3 These threshold values can be justified by the following analysis. Due to A1 and A2 elements of G in 
(7) in Supporting Information are less than 1. In pursuing worst case analysis of third-order effects we 
assume that third-order derivatives coefficients in G are less than some value g3. Thus, contribution of 
third-order terms is limited by above by x(3)=M(3)g3s. If mixture value xnt is greater than x(3) then it is 
probably due to first and second-order terms. The threshold value evidently depends on values of  M(3), g3 

and s. For example, assuming M=100 (M(3)=171700), g3=0.1 and s=3.410-7 we get x(3)=5.810-3.  
However, that is overly pessimistic given the fact that most of the third-order cross-products will, due to 
sparseness, vanish. Thus, optimal threshold value is somewhere in the interval [10-6, 10-4].  
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2.3.1 Robust principal component analysis 

RPCA has been proposed in [16, 17] to decompose data matrix X into sum of two 

matrices: X=A+E. Provided that A is low rank matrix and E is sparse matrix 

decomposition is unique and it is obtained as a solution of the optimization problem:  

 

 minimize 
* 1

A E  subject to: A + E = X.   (5) 

 

Thereby, 
*

1

I N

i
i






 A denotes nuclear norm (sum of singular values) and IN is a rank 

of matrix A; 
1

1 1

N T

nt
n t

e
 

E denotes 1 -norm of E and 1 T   is a regularization 

constant. In term of equivalent uLNBSS problem (4) A is associated with first and 

second order terms and E is associated with HOT. A is actually represented by linear 

mixture model composed of 2M + M(M-1)/2 sources and N mixtures. Since both N and 

2M+M(M-1)/2 are small compared to T rank of A equals min(N, 2M + M(M-1)/2)=N . 

Thus, it is low. E is comprised of monomials (products of the original source 

components) of the order three- or higher. Since by assumption A4 source components 

are sparse in support and amplitude their three- and higher-order products are either 

zero or very small. Thus, E is sparse. Therefore, it is justified to use RPCA 

decomposition of X in (4) to suppress higher-order terms induced by nonlinear mixing 

process. That yields approximation of X, that is A , with suppressed higher-order terms. 

In the experiments reported in Section 3 we have used accelerated proximal gradient 

algorithm [41] , available with a MATLAB code at [42], to solve (5).  
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2.3.2 Hard thresholding 

Hard thresholding (HT) operator, [18], can be applied entry-wise to X in (4) according 

to:   1

10
nt nt

nt nt
nt

x if x
b HT x

if x





   
, n=1,...,N , t=1,...,T and 1  [10-6, 10-4] stands for 

a threshold. HT preprocessing transform of X yields matrix B that is expected to have 

the same structure as A in (5). 

 

2.3.3 Soft thresholding 

Soft thresholding (ST) operator, [18], can be applied entry-wise to X in (4) according to 

   2max 0,nt nt ntc ST x x    , n=1,...,N , t=1,...,T and 2  [10-6, 10-4]. ST 

preprocessing transform of X yields matrix C that, as B obtained by HT, is also 

expected to have the same structure as A in (5). 

 

2.3.4 Trimmed thresholding 

Trimmed thresholding (TT) operator, [19], is applied entry-wise to X in (4) according 

to:  
3

3

30

nt
nt nt

nt nt nt

nt

x
x if x

d TT x x

if x

 



 



 
  

 

, n=1,...,N , t=1,...,T and 3  [10-6, 10-4].   

is a trade-off parameter between hard and soft thresholding. When =1, TT equals ST. 

When  TT is equivalent to HT. Herein, we set =3.5 because this value yields TT 

to operate between ST and HT [19]. TT preprocessing transform of X yields matrix D 
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that, as B obtained by HT and C obtained by ST, is also expected to have the same 

structure as A in (5). 

 

2.4 Empirical kernel map based nonlinear mapping of preprocessed mixture 

matrix   

So far we have substituted uNNBSS problem (1)/(2) by four uLNBSS problems in a 

form of (4). While original uNNBSS problem is characterized by nonlinear multivariate 

mapping f and triplet (N, M, L) the uLNBSS problems are characterized by (N, P, Q) 

where P2M+ M(M-1)/2 stands for number of dependent sources in (4) and  Q2L+L(L-

1)/2 stands for maximal number of sources at particular m/z coordinate. Since by 

assumption A3 M>N it follows that P>>N. Thus, even with activation of sparseness 

constraints imposed by A4 it will be virtually impossible to ensure essentially unique 

solution of these uLNBSS problems. To this end, as in [4], we apply the EKM-based 

nonlinear mapping of uLNBSS problems represented by preprocessed mixture matrices 

A, B, C and D to RKHS in order to increase number of samples/mixtures from N to 

D>>N. Theory and discussion related to it has been presented in great details in section 

2.2 in [4]. We therefore present it in a concise form herein. EKM  of column vectors 

  1

T

t t
a  in (4) with respect to a basis   1

D

d d
v  is : N DR R  , such that: 

       
1

1, , ,..., , 1,...,D
d d

T

t t t D t t T  


    v
a a v a v a  . Thereby,  ,d t v a  is a 

positive definite symmetric function. The basis   1

D

d d
v  has to span the empirical set of 

patterns   1

T

t t
a  such that    1 1

D T

d td t
span span

 
v a . In this case 

     
1 1

D T

d td t
span span 

 
v a , where   0 1

T
N

t t t
R  

a a , i.e. 
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  0 1

D
N

d d d
R  

v v , is in principle infinite dimensional nonlinear mapping. If 

   ,t t a a , respectively    ,d d v v , projection of   
1

T

t t



a onto 

  
1

D

d d



v  yields in matrix form: 

 

  
   

   

1 1 1

1

, ... ,

... ... ...

, ... ,

T

D T D

 

 

 
    
  

a v a v

A

a v a v

    (6) 

 

Herein, as in [4], we choose    2 2, exp /t d t d   a v a v . When assumption A1 

holds we can set 21. We analogously obtain EKM-mappings of matrices B, C and D 

and that respectively yields DT matrices (B), (C) and (D). Likewise, as in [4], we 

use k-means data clustering algorithm to estimate basis V by clustering   1

T

t t
a  in D 

clusters. Thereby, by setting D=T clustering is unnecessary because each empirical 

pattern is a basis vector. That, however, comes at increased computing cost. By using 

sparseness assumption A4 it is shown in [4] that: 

 

   1 T HOT 
    

 

0
A Z G

S
     (7) 
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where Z is a bias term and does not play a role in parts based decomposition that 

follow, 01T  is row vector of zeros and 0
P TR 
S  is matrix with  P2M+ M(M-1)/2 rows 

that contain original source components and their second order monomials. G  is a 

matrix of appropriate dimensions. EKM-mapped matrices (B), (C) and (D) follow 

the same approximation as (A) in (7). It is important to emphasize that in (4) higher 

order (error) terms are induced by nonlinear mixing process f(X) while in (7) they are 

induced by nonlinear character of the EKM. That is, increase of number of mixtures 

from N to D in (A), (B), (C) and (D) comes at the cost of errors induced by the 

EKM. However, as in [4] and (4), we can again apply preprocessing transforms to 

suppress HOT. Since matrices B, C and D were obtained by respectively applying HT, 

ST and TT operators on X in (4) we apply these operators in the same order on (B), 

(C) and (D). In order to keep level of notational complexity as low as possible we 

keep the same notation for thresholded versions of matrices (B), (C) and (D). We 

do not apply RPCA decomposition on (A) because rank of it is dictated by Z and is 

equal to min(D,T)=D and that is not low. The final effect of EKM-based mappings is to 

ensure that sparseness constrained factorization of (A), (B), (C) and (D) yields, 

with greater probability, more accurate solution compared to decomposition by the 

same method of A, B, C and D. That will be the case when the following condition 

holds:  

 

  (D/N) >>(P/M) and  (D/N) >>(Q/L).      (8)  
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Because P2M+M(M-1)/2 and Q2L+L(L-1)/2 condition (8) becomes: (D/N) >>(M/2-

3/2) and (D/N) >>(L/2-3/2). Numerical problem studied in section 3 is characterized by 

N=3, M=8, L=3 and D=T=1000. Evidently, above condition is fulfilled. 

 

2.5 Sparseness constrained factorization 

To increase accuracy of the pure components extraction we apply sparseness 

constrained NMF (sNMF) in RKHS to matrices (A), (B), (C) and (D).4 That 

yields four sets of separated components: 

 

      
1

P

m m
sNMF


 As A        (9) 

      
1

P

m m
sNMF


 Bs B        (10) 

      
1

P

m m
sNMF


 Cs C         (11) 

      
1

P

m m
sNMF


 Ds D        (12) 

 

When it comes to implementation of the sNMF algorithms we use, as in [4], the NMU 

algorithm [40] with a MATLAB code available at [44] and the NMF_L0 algorithm [39] 

with a MATLAB code available at [45]. The NMF_L0 algorithm was run with the 

                                                            
4To ensure essentially unique decomposition sparseness constrained NMF algorithms have been 
formulated such as [38, 39, 40]. However, only very recently it is proved in [43], see Theorem 4 and 
Corollary 2, that uniqueness of some asymmetric NMF S=WH implies that each column of W (row of H) 
contains at least M-1 zeros, where M is nonnegative rank of S.        
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following parameter setup: reverse sparse nonnegative least square sparse coder and 

alternating nonnnegative least square for dictionary update stage. A main reason for 

preferring the NMU algorithm over other sparseness constrained NMF algorithms is that 

there are no regularization constants that require a tuning procedure. When performing 

NMU-based factorizations in (9) to (12) the unknown number of pure components P 

needs to be given to the algorithm as an input. As in [4] we set: P D T  . That is, in 

order not to lose some component we prefer to extract all T rank-one factors.5 These 

four sets of separated components are compared with the pure components stored in the 

library using normalized correlation coefficient. Each pure component is associated 

with the separated component by which it has the highest correlation. As a reference in 

the benchmark numerical study we have used solution obtained by applying the 

NMF_L0 algorithm to the (9) to (12). Afterwards, maximal correlation criterion has 

been used to assign separated components to pure components in the library. NMF_L0 

is based on natural sparseness measure, the 0 -pseudo-norm of the component matrix 

S , and that is known from compressed sensing theory, [47], to yield the best results 

when sparseness of S  decreases. The NMF_L0 when applied in (9) to (12) requires a 

priori information on the number of components P and number of overlapping 

components Q and they are related to M and L through: P2M + M(M-1)/2 and  

Q2L+L(L-1)/2. In numerical scenario both M and L are known while in experimental 

                                                            
5 The factorization problems (9) to (12) are related to the determination of nonnegative rank of 
nonnegative matrix and that is defined as the smallest number of rank one matrices into which original 

matrix can be decomposed [46]. For some matrix 0
D TR 
Ψ  with DT  nonnegative rank equals the 

smallest positive integer P for which there exists nonnegative column vectors  
1

P

p p
g such that each 

column vector of  can be represented as linear combination with nonnegative coefficients of the column 

vectors  
1

P

p p
g . 
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scenario selection of optimal (true) value of L is hard. We summarize the PTs-EKM-

NMU/NMF_L0 algorithm in the Algorithm 1. 

 

3.0 EXPERIMENTS 

Studies on numerical and experimental data reported below were executed on personal 

computer running under Windows 64-bit operating  system with 64GB of RAM using 

Intel Core i7-3930K processor and operating  with a clock speed of 3.2 GHz. MATLAB 

2012b environment has been used for  programming. 

 

3.1 Numerical study 

In numerical study we simulate uNNBSS problem (2) with N=3, M=8, L=3 and 

T=1000. Source signals were generated according to mixed state probabilistic model (3) 

with exponential prior. Thereby, m=1.510-3 m=1,...,M. We have generated two 

scenarios with m=0.5 and m=0.8 m=1,...,M. Values for m and m  are equivalent to 

those obtained by fitting probabilistic model (3) to experimental mass spectra of 25 pure 

components, see section 3.2 and Figure 4 for details. The uNNBSS problem (2) has 

been simulated using nonlinear mixtures: 

 

3 2 1 2 3 3
1 1 2 3 4 5 6 7 8( ) tan ( ) tanh( ) sin( )f s s s s s s s s       s  

3 3 1 2 2
2 1 2 3 4 5 6 7 8( ) tanh( ) tan ( ) tanh( ) sin( )f s s s s s s s s       s  
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1 2 3 3 1
3 1 2 3 4 5 6 7 8( ) sin( ) tan ( ) tanh( ) sin( ) tan ( )f s s s s s s s s        s  

 

Nonlinear mixtures are chosen arbitrary to demonstrate capability of proposed algorithm 

to solve uNNBSS problem comprised of unknown nonlinear mixtures. HT, ST and TT 

operators used in steps 2, 3, 4 and 6 in Algorithm 1 were implemented with =10-5 and 

=3.5 has been used for TT operator. Gaussian kernel based EKM has been used with 

2=1 and D=T=1000. Table 1 shows results of comparative analysis, for the case of 

m=0.8, obtained by NMU and NMF_L0 applied to uNNBSS (1)/(2); NMU and 

NMF_L0 applied in (9) to (12) without suppression of higher order monomials (EKM-

NMU and EKM-NMF_L0); and NMU and NMF_L0 applied in (9) to (12) after RPCA, 

HT, ST and TT preprocessing transforms (PTs-EKM-NMU and PTs-EKM-NMF_L0). 

Due to sparse prior imposed on sources it was reasonable to expect that useful results 

can be obtained by direct factorization of uNNBSS problem (2). Results for m=0.5 are 

shown in Table S-1 in Supporting Information, while results for m=0.8 and m=0.5 as a 

function of Monte Carlo index are shown in Figure 1. For the value of normalized 

correlation coefficient between pure component and assigned separated component we 

evaluate performance in term of four metrics described in caption of Table 1. They are 

defined with respect to predefined labeling of the pure components stored in the library. 

The first three metrics are calculated for correctly assigned components only. That is 

why NMU and NMF_L0 appear to have comparable performance in term of mean and 

minimal correlation metrics. But they are inferior in number of separated components 

correlated with pure components with correlation greater than or equal to 0.6 as well as 

in number of (in)correctly assigned separated components (due to poor separation). 

Page 21 of 48

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Thereby, incorrect assignment implies that two or more pure components are assigned 

to the same separated component. We also can see that preprocessing transforms 

improve performance compared with factorizations of mixtures data without 

preprocessing related to suppression of higher order monomials. 

 

3.2 Experimental data on chemical reaction comprising peptide synthesis 

3.2.1 Chemicals 

Chemical reaction has been performed according to the following procedure: L-Leucine 

(200 mg, 1.52 mmol) was dissolved in 5 mL of dry dimethylformamide (DMF) and 

solution was cooled to 0 °C. N-methylmorpholine (NMM, 3.05 mmol, 337 μL) and 

isobutylchloroformate (IBCF, 3.34 mmol, 458 μL) were added. Aliquots of the reaction 

mixture (100μL) were withdrawn every 30 minutes (t0-t8), solvent was evaporated and 

the residue dissolved in 1mL of 0.1 % formic acid (FA) in 50 % MeOH. Aliquots (100 

μL) were diluted with 400 μL of 0.1 % FA in 50 % MeOH and 10 μL were injected 

through autosampler on a column (Zorbax XDB C18, 3.5 m, 4.7 mm) at the flow rate 

of 0.5 mL/min. Mobile phase was 0.1 % FA in water (solvent A) and 0.1 % FA in 

MeOH (solvent B). Gradient was applied as follows: 0 min 40 % B; 0-15 min 90 %B; 

12-15min 90% B; 17.1 min 40% B; 17.1-20 min 40 %B. Figure S-2 in Supporting 

Information shows 9 chromatograms corresponding to reaction mixture recorded at 9 

time instants (t0-t8) during the reaction. Mass spectra of 9 mixtures (x1 to x9), obtained 

by full integration of chromatograms, and mass spectra of 25 pure components (s1 to 

s25) arising during the reaction are respectively shown in Figure S-3 and Figure S-4 in 
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Supporting Information. Mass spectra of pure components 1, 4, 8 and 11 are also shown 

in Figure 3. 

 

3.2.2. Mass spectroscopy measurements  

Electrospray ionization-mass spectrometry (ESI-MS) measurements operating in a 

positive ion mode were performed on a HPLC-MS triple quadrupole instrument 

equipped with an autosampler (Agilent Technologies, Palo Alto, CA, USA). The 

desolvation gas temperature was 3000C with flow rate of 8.0 L/min. The fragmentor 

voltage was 135 V and capillary voltage was 4.0 kV. Mass spectra were recorded in m/z 

segment of 10-2000. All data acquisition and processing was performed using Agilent 

MassHunter software. Acquired mass spectra are composed of intensities at T=9901 m/z 

coordinates. 

 

3.2.3. Setting up an experiment 

Peptides and proteins are compounds involved in numerous biological processes of key 

importance, like cell-cell communication, immune response, cell growth and 

proliferation, hormonal and enzymatic activity. They are, therefore of ever-increasing 

interest as tools in studies of biological systems and modulators of biological functions. 

Chemical synthesis of peptides involves condensation of two suitably protected parts 

(amino acids or peptides) in order to obtain single, desirable product. However, for the 

purpose of this work, a different approach was undertaken. Non-protected amino acid, 

L-leucin, was allowed to react under basic conditions (NMM) in the presence of IBCF 
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giving various products: di-, tri-, tetrapeptides as well as corresponding intermediates. 

Nonlinearity of the described reaction was assured based on the following: (i) 

concentration of individual components does not change linearly with time and (ii) as 

reaction proceeds, new components appear that were not present at the beginning of the 

reaction. Figure 2 schematically describes possible components present in the reaction 

mixture. It is important to note, that aim of this experiment was not to determine 

structure of all components, but to provide reliable experimental data on nonlinear 

reaction. Library of compounds required for the validation of algorithm was built by 

integration of each peak in the chromatogram corresponding to the mixture x9 and 

subsequent extraction of mass spectrum. During the library generation, no 

discrimination based on the intensity of peaks was made. Therefore, all peaks were 

treated as pure components.   

    

4. RESULTS AND DISCUSSION 

Inspection of pure components mass spectra shown in Figures S-4 in Supporting 

Information shows significant overlapping, resulting from the similarity of chemical 

structure of components. Pure components 1 and 2, 16 and 17 as well as 19 and 21 have 

normalized correlation coefficient above 0.97 and, consequently, they are impossible to 

be distinguished. In addition to that, pure components 5 and 7 have normalized 

correlation coefficient above 0.78. Thus, they are also expected to be very hard to 

discriminate. However, we expect from proposed PTs-EKM_NMU method to be able to 

discriminate the rest of the components. That is not trivial given the fact that normalized 

correlation coefficients for 26 combinations of pure components vary between 0.1 and 
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0.44. That makes the uNNBSS problem comprised of correlated pure components very 

hard. Correlation matrix of the pure components mass spectra, where pairs of pure 

components are identified with normalized correlation coefficient above 0.1, is shown 

in Table S-2 in the Supporting Information. As emphasized previously, it is sparseness 

of the pure components mass spectra in support and amplitude that is expected to enable 

solution of related uNNBSS. To this end, mixed state probabilistic model (3) with 

exponential prior on continuous distribution of the non-zero amplitude has been fitted to 

experimental pure components mass spectra (they are shown in Figure S-4 in 

Supporting Information as well as in Figure 3 for pure components 1, 4, 8 and 11). Even 

though these pure components are correlated with others and some (4 and 11) have 

small intensity they are uniquely assigned to the true pure components from the library. 

Figure 4 (left), also Figure S-5 in Supporting Information, shows estimated probability 

that value of the pure component mass spectra is zero. As can be seen 22 out of 25 pure 

components have zero amplitudes at 40% to 75% of their support. Figure 4 (right), also 

Figure S-6 in Supporting Information, shows most expected values (mean) of 

exponential distribution estimated by fitting exponential distribution to amplitude 

histograms. They were estimated for 25 pure components in the range (0, 1] within 

intervals of the 0.01 width. It can be seen that  ˆ 0.0012,0.0014m   for m=1,...,25. 

Figure S-7 shows probability that amplitude of the pure components mass spectra 

occurs in interval [0, A], such that 0.01A1. That is an average estimate over 25 pure 

components. It is seen that 0.01A0.08 occurs with probability 0.97. Reported results 

confirm that sparse probabilistic model (3) is experimentally well grounded. That is 

further confirmed by Figure S-8 in Supporting Information that shows estimated 

histograms (stars) and exponential probability density functions (squares) calculated 
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with the mean values from Figure 4-right. It is seen that approximation is very good. 

Estimated histograms vs. exponential probability density functions for pure components 

1, 4, 8 and 11 are also shown in Figure 5. 

 Table 2 presents results of comparative performance analysis using the four 

metrics as in section 3.1 for NMU, EKM-NMU, PTs-EKM-NMU for D=T=9901 and 

PTs-EKM-NMU for D=4000. Thus, in the last case k-means clustering has been used to 

find a basis  4000

1d d
v  in the input space of patterns  9901

1t t
x . Provided that it retains 

accuracy, the subspace approximation is very important from computational reasons. 

That is because when four preprocessing transforms are combined, sparseness 

constrained NMF in (9) to (12) has to be performed four times. That can be done in 

parallel. Nevertheless, one factorization of the 99019901 matrix by NMU algorithm 

takes approximately 79 hours on above specified machine, while factorization of the 

40009901 matrix by the same algorithm takes approximately 13.7 hours. For NMF_L0 

number of overlapping components, L, has to be reported to the algorithm as input 

information. For Pts_EKM-NMF_L0 algorithm optimal value of L can be inferred by 

running NMF_L0 algorithm multiple times on problem such (9). That, however, would 

result in high computational costs. That is why NMF_L0 has not been used in RKHS on 

problems (9) to (12).  It is seen from Table 2 that linear sparseness constrained matrix 

factorization yields poor quality of separation compared to linear factorization in the 

RKHS. That is especially the case with number of incorrectly assigned components and 

that is direct consequence of the low purity of separated components. That, indirectly, 

also confirms nonlinear character of the mixtures mass spectra of the desired chemical 

reaction. It is also seen that combination of four preprocessing transforms for 
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suppression of higher order monomials and sparseness constrained factorization in 

RKHS significantly improves quality of separation. In this regard, Figure S-9 in 

Supporting Information shows mass spectra of 25 separated components assigned to 

pure components according to maximal correlation criterion. Separated pure 

components 1, 4, 8 and 11 are also shown in Figure 3. Thereby, value of normalized 

correlation coefficient and preprocessing transform (RPCA, HT, ST or TT) that yielded 

best result are also reported. Due to the diversity of morphologies of mass spectra all 

four preprocessing transforms yielded best results at some cases. It is also important to 

notice that subspace approximation of proposed method with D=4000 yields results 

very comparable to those obtained by D=9901 but with much shorter computation time. 

Thus, proposed approach to pure components extraction can, when implemented on 

state-of-the-art multiprocessor (grid) platform, be executed in even shorter time which 

makes it practically relevant.    

 

5.0 CONCLUSION 

Blind source separation approach to pure components extraction is most often based on 

linear mixture model. That is, mixtures spectra are assumed to be the unknown 

weighted linear combination of pure components spectra. Herein, we have addressed 

problem related to extraction of pure components from nonlinear mixtures of mass 

spectra. Thereby, number of mixtures is assumed to be (significantly) less than number 

of pure components. We propose an approach that combines four preprocessing 

methods for suppression of higher order monomials induced by nonlinear mixing 

process and sparseness constrained nonnegative matrix factorization in RKHS induced 

Page 27 of 48

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

by EKM. Two practically important properties of the proposed approach are that no 

information about character of the nonlinear mixing process is required and that linear 

mixing problem is contained implicitly as a special case. It is believed that these 

properties make the proposed approach practically relevant for contemporary metabolic 

profiling of biological samples, that is pure components extraction in biomarker 

identification studies. Proposed approach is demonstrated on demanding numerical and 

experimental scenarios. In the last case, related to chemical reaction of synthesis of 

peptides, components separated from 9 nonlinear mixtures mass spectra are assigned 

uniquely to 25 the pure components from the library. On the same problem separation 

by linear NMF algorithms yielded 15 (NMU) and 7 (NMF_L0) incorrectly assigned 

components. 
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Figure Captions 

Figure 1 (color online). Numerical study. Normalized correlation coefficient vs. Monte 

Carlo run index between true and extracted sources by algorithms: NMF_L0 (crosses), 

NMU (circles) and PTs-EKM-NMU (pluses) and PTs-EKM-NMF_L0 (stars).  Mean 

value (first row), minimal value (second row), number of values greater than or equal to 

0.6 (third row), number of incorrect pairs (fourth row).  Probability of state zero equal 

to 0.5 (left column) and 0.8 (right column). 
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Fig. 1, Kopriva, Jerić, Filipović & Brkljačić 
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Figure 2.  Structures of possible components present in the reaction mixture. 

 

Fig. 2, Kopriva, Jerić, Filipović & Brkljačić 

 

 

Figure 3. Two top rows: mass spectra of pure components s1, s4, s8 and s11. Two bottom 

rows: estimated mass spectra of pure components s1, s4, s8 and s11 by proposed PTs-

EKM-NMU algorithm. Information on value of highest normalized correlation 

coefficient and associated error reduction method (RPCA, HT, ST and TT) are also 

displayed. 
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Fig. 3, Kopriva, Jerić, Filipović & Brkljačić 
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Figure 4. Experimental study. Left: estimated probability that value of the pure component mass 

spectra is zero, that is estimate of m, m=1,...,25. Right: estimates of most expected values 

(means) of exponential distribution obtained by fitting exponential distribution to amplitude 

histograms. They were estimated for 25 pure components in the range (0, 1] within intervals of 

the 0.01 width. 

 

Fig. 4, Kopriva, Jerić, Filipović & Brkljačić 
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Figure 5. (color online). Experimental study for pure components 1, 4, 8 and 11. Estimated 

histograms (stars) vs. exponential probability density functions (squares), calculated with the 

estimates of mean values shown in Figure 4 -right, fitted to amplitude histograms.  

 

Fig. 5, Kopriva, Jerić, Filipović & Brkljačić 
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Table Captions 

 Algorithm 1. The PTs-EKM-NMF (preferably NMU) algorithm. 

Required: 

0
N TR 
X . If A1) is not satisfied perform scaling 

 1 1
arg max

T

t tt 
X X x or   ,

, 1
arg max

N T

nt n t
nt


X X X . 

1. Perform RPCA (5) on X in (2)/(4) with 1 T  . It yields 
approximation A in (4). 

2. Perform HT on X in (2)/(4) with 1[10-6,10-4]. It yields approximation 
B. 

3. Perform ST on X in (2)/(4) with 2[10-6,10-4]. It yields approximation 
C. 

4. Perform TT on X in (2)/(4) with 3[10-6,10-4] and =3.5. It yields 
approximation D. 

5. Perform EKM mappings A(A), B(B), C(C) and D(D) 
according to (6). Use Gaussian kernel with 2=1. 

6. Perform HT, ST and TT respectively of matrices (B), (C) and (D).   
7. Perform sparseness constrained factorization, preferably by NMU 

algorithm, of matrices (A), (B), (C) and (D) to obtain separated 
components AS , BS , CS  and DS . 

8. Assign to pure components from the library those separated components 
AS , BS , CS  and DS  with highest normalized correlation coefficient. 
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Table 1. Comparative performance analysis of NMU, NMF_L0, EKM-NMU, EKM-

NMF_L0, PTs-EKM-NMU and PTs-EKM-NMF_L0 algorithms. Probability of zero 

state was m=0.8. Four metrics used in comparative performance analysis were: number 

of associated components with normalized correlation coefficient greater than or equal 

to 0.6, mean value of correlation coefficient over all associated components, minimal 

value of correlation coefficient and number of  pure components assigned incorrectly 

(that occurs due to poor separation). All four metrics were calculated with respect to 

predefined labeling of the pure components stored in the library. Incorrect assignment 

implies that, based on maximal correlation criterion, two or more pure components are 

assigned to the same separated component. Mean values and variance are reported and 

estimated over 10 Monte Carlo runs. The best result in each metric is in bold. The first 

three metrics are calculated only for correctly assigned components. That is why NMU 

and NMF_L0 appear to have comparable performance. 

 NMU NMF_L0 EKM-
NMU 

EKM-
NMF_L0

PTs_EKM-
NMU 

PTs-
EKM-

NMF_L0

correlation 
G.E. 0.6 

2.8±0.92 2.3±1.34 3.7±0.48 3.2±0.63 3.8±0.42 3.7±0.48 

mean 
correllation 

0.70±0.03 0.61±0.11 0.69±0.02 0.64±0.03 0.70±0.03 0.69±0.04

minimal 
correlation 

0.53±0.04 0.42±0.08 0.51±0.03 0.45±0.04 0.52±.04 0.49±0.06

inccorect 
assignments 

3.4±0.70 3.1±0.57 2.4±0.97 2.2±0.63 2.0±0.88 1.5±1.43 

 

 

Page 41 of 48

http://mc.manuscriptcentral.com/cem

Journal of Chemometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Table 2. Comparative performance analysis of NMU, NMF_L0, EKM-NMU, PTs-

EKM-NMU (D=T=9901) and PTs-EKM-NMU (D=4000) algorithms of 9 experimental 

nonlinear mixtures mass spectra related to peptide synthesis. Number of pure 

components equals 25. Four metrics used in comparative performance analysis were: 

number of associated components with normalized correlation coefficient greater than 

or equal to 0.6, mean value of correlation coefficient over all associated components, 

minimal value of correlation coefficient and number of  pure components assigned 

incorrectly (that occurs due to poor separation). The best result in each metric is in bold. 

The first three metrics are calculated only for correctly assigned components.  

 NMU NMF_L0 EKM-
NMU 

PTs_EKM-NMU 

D=T=9901 

PTs-EKM-NMU 

D=4000 

correlation 
G.E. 0.6 

8 14 16 18 18 

mean 
correlation 

0.342 0.518 0.673 0.702 0.708 

minimal 
correlation 

0.038 0.039 0.267 0.419 0.283 

inccorect 
assignments 

15 7 0 0 1 

CPU time 1.3s 40 s  78.78h 478h 413.7h 
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Empirical Kernel Map Approach to Nonlinear Underdetermined Blind Separation 

of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 

Nonlinear Mixtures Mass Spectra  

 

Ivica Kopriva1* , Ivanka Jerić2, Marko Filipović1 and Lidija Brkljačić2  

Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia 

1Division of Laser and Atomic Research and Development 

phone: +385-1-4571-286, fax:+385-1-4680-104 

e-mail: ikopriva@irb.hr, Marko.Filipovic@irb.hr 

2Division of Organic Chemistry and Biochemistry 

e-mail: ijeric@irb.hr, Lidija.Brkljacic@irb.hr 

 

Summary abstract. A method for underdetermined nonlinear blind separation of nonnegative 

sparse dependent sources is proposed. It combines robust principal component analysis, hard-, 

soft- and trimmed thresholding to suppress higher order monomials induced by nonlinear 

mixing with empirical kernel map based nonlinear mapping of preprocessed mixtures data and 

sparseness constrained nonnegative matrix factorization (NMF) in high-dimensional mapped 

space. The method is aimed to extract analytes from mass spectra of nonlinear multicomponent 

mixtures of biological samples. 
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(color online). Numerical study. Normalized correlation coefficient vs. Monte Carlo run index between true 
and extracted sources by algorithms: NMF_L0 (crosses), NMU (circles) and PTs-EKM-NMU (pluses) and PTs-
EKM-NMF_L0 (stars).  Mean value (first row), minimal value (second row), number of values greater than or 

equal to 0.6 (third row), number of incorrect pairs (fourth row).  Probability of state zero equal to 0.5 (left 
column) and 0.8 (right column).  
205x241mm (300 x 300 DPI)  
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Structures of possible components present in the reaction mixture.  

76x32mm (300 x 300 DPI)  
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Two top rows: mass spectra of pure components s1, s4, s8 and s11. Two bottom rows: estimated mass 
spectra of pure components s1, s4, s8 and s11 by proposed PTs-EKM-NMU algorithm. Information on value 
of highest normalized correlation coefficient and associated error reduction method (RPCA, HT, ST and TT) 

are also displayed.  
256x323mm (300 x 300 DPI)  
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Experimental study. Left: estimated probability that value of the pure component mass spectra is zero, that 
is estimate of ρm, m=1,...,25. Right: estimates of most expected values (means) of exponential distribution 

obtained by fitting exponential distribution to amplitude histograms. They were estimated for 25 pure 

components in the range (0, 1] within intervals of the 0.01 width.  
59x17mm (300 x 300 DPI)  
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(color online). Experimental study for pure components 1, 4, 8 and 11. Estimated histograms (stars) vs. 
exponential probability density functions (squares), calculated with the estimates of mean values shown in 

Figure 4 -right, fitted to amplitude histograms.  
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