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a b s t r a c t

Polynomial rooting direction finding (DF) algorithms are a computationally efficient

alternative to search-based DF algorithms and are particularly suitable for uniform

linear arrays (ULA) of physically identical elements provided mutual interaction among

the array elements can be either neglected or compensated for. A popular polynomial

rooting algorithm is Root-MUSIC (RM) wherein, for an N-element array, the estimation

of the directions of arrivals (DOA) requires the computation of the roots of a 2N�2-order

polynomial for a second order (SO) statistics- and a 4N�4-order polynomial for a fourth

order (FO) statistics-based approach, wherein the DOA are estimated from L pairs of

roots closest to the unit circle, when L signals are incident on the array. We derive SO-

and FO statistics reduced polynomial rooting (RPR) algorithms capable to estimate L

DOA from L roots only. We demonstrate numerically that the RPR algorithms are at least

as accurate as the RM algorithms. Simplified algebraic structure of RPR algorithms leads

to better performance than afforded by RM algorithms in saturated array environment,

especially in the case of FO methods when number of incident signals exceeds number

of elements and under low SNR and/or small sample size conditions.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Super-resolution direction finding (DF) algorithms for
linear arrays fall into two broad categories: search-based
algorithms, as exemplified by MUSIC [1,2] and root-based
algorithms such as Root-MUSIC (RM) [3,4], ESPRIT [2].
Search algorithms make no assumptions about the
algebraic structure of the array steering vectors but
require that they be known to great accuracy, especially
if a high degree of angular resolution is called for. In that
case they can also be computationally quite demanding. In
practice the determination of the array steering vector
amounts to an accurate measurement of the magnitude

and phase of the array element patterns, sometimes
referred to as array manifold calibration. Normal accura-
cies attained in such measurements are a few tenths of a
dB in amplitude and about 11 in phase, which generally is
insufficient for the design of high-resolution DF systems.
Admittedly an alternative technique would be to rely on
numerical computer simulations (either computing the
element patterns directly or inferring them from the array
geometry and the computed impedance or scattering
matrix). However our experience with comparisons of
numerical simulations using the latest commercially
available software with experimental data indicates that
presently this is not yet a fruitful approach [5].

Root-based algorithms on the other hand require no
array calibration and afford substantial computational
efficiency over search algorithms. They require that the
elements be uniformly spaced and physically identical,
which a search algorithm such as MUSIC does not. The
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more significant restriction, however, is that the array
steering vector must have the form of an array factor of a
linear array of uniformly spaced elements. Unfortunately
due to inter-element mutual coupling this idealized form
of the steering vector is practically unattainable without
compensation. Indeed, when root-based DF algorithms are
applied to a real array without some form of compensa-
tion, significant angle estimation errors can result [6].
Compensation for the effects of mutual coupling can be
realized by employing extra ‘‘dummy’’ elements to
equalize the active element radiation patterns [7,8]. Under
the assumption that the element radiation patterns are
sufficiently equalized, the nonnegative pseudo-spectrum
function becomes a polynomial and the DF problem is
reduced to a polynomial rooting problem [3,4], ESPRIT [2].
In case of a covariance-based RM algorithm, for an N-
element array, the degree of the polynomial equals 2N�2,
so that 2N�2 roots have to be calculated. In case of a
fourth order (FO) statistics-based RM algorithm, the
degree of the polynomial equals 4N�4 and, consequently,
4N�4 roots have to be calculated. For L incident signals,
the directions of arrivals (DOA) are calculated from the L

roots closest to the unit circle. This selection process can
introduce serious errors in saturated1 array environments,
especially under low SNR and/or small sample size
conditions because the signal roots then do not stay close
to the unit circle. Unlike RM algorithms, reduced poly-
nomial rooting (RPR) algorithms do not generate extra-
neous roots,2 i.e., all polynomial roots correspond to the
actual DOA. As is demonstrated in Section 4, this feature is
of particular advantage in saturated array environments,
especially in the case of FO methods when number of
incident signals L exceeds number of elements N and low
SNR and/or small sample size conditions and results in
enhanced performance of RPR algorithms over RM algo-
rithms.

The formulation of the RPR algorithms relies on the
solution of an over-determined system of linear equations
that yields the coefficients of an L degree polynomial.
Depending on the required accuracy, this system can be
solved either by using the Moore–Penrose pseudo-inverse
or by using a more accurate total-least-square (TLS)
approach [13]. Our numerical studies have shown that in
not too demanding scenarios, where the separation
between adjacent signals in the angular domain was not
very close, the two approaches gave results of comparable
accuracy. As will be demonstrated in Section 4, this
computationally lighter version of the RPR algorithms is
not inferior to RM algorithms. The RPR algorithms
themselves are derived in Sections 2 and 3. Results of

comparative performance evaluations are presented in
Section 4. The conclusions are given in Section 5.

2. Linear antenna array model

Polynomial rooting-based super-resolution DF algo-
rithms such as RM [3] offer computational efficiency in
relation to the search-based DF methods [1] when the
special geometry of the uniform linear arrays (ULA) is
employed. In this case the problem of estimating the DOA
of L signals incident on N-element array is described by

zðtÞ ¼ AsðtÞ þ mðtÞ (1)

where z(t) is a complex column vector comprised of N

signals at the output of the array; A is N� L steering
matrix of the linear array comprised of the L column
vectors aðOlÞ corresponding with the DOA of the l-th
source signal; s(t) is a column vector comprised of the L

source signals incident on the array and v(t) represents
additive noise. If mutual coupling among the array
elements is compensated [9] the steering vector for a
ULA simplifies to

aðOlÞ ¼ f̂ ðOlÞ½1 ejk0dxl ejk02dxl . . . ejk0ðN�1Þdxl �T (2)

where Ol ¼ ðyl;jlÞ, xl ¼ sinðylÞ cosðjlÞ, yl and jl represent
elevation and azimuth of the l-th source DOA, k0 ¼ 2p=l is
a free space wave number evaluated at the receiver local
oscillator frequency, l is a wavelength, d is an inter-
element spacing and f̂ ðOlÞ represents the element radia-
tion pattern. In the formulation of the SO MUSIC
algorithm [1] one estimates Ev, the matrix of eigenvectors
that span the noise subspace and forms the nonnegative
function

LðOÞ ¼ aðOÞHEvEH
v aðOÞ (3)

called pseudo-spectrum and employs the locations of its
zeros to estimate the DOA’s. For sufficiently large sample
sizes the Ev can be well approximated by the eigenvectors
of the sample data covariance matrix

R̂zz ¼ ð1=TÞ
XT

t¼1

zðtÞzðtÞH

where ‘H’ denotes Hermitian operation. For the ULA in (2)
the LðOÞ can be written in polynomial form [2] as follows:

LðzÞ ¼ z�ðN�1ÞP2N�2ðzÞ (4)

where z ¼ ejk0dx and P2N�2ðzÞ is the 2N�2 degree poly-
nomial in z. From (4) DOA are found from the L pairs of
complex roots of the polynomial P2N�2ðzÞ that are closest
to the unit circle. The corresponding direction cosines are

xl ¼ angleðzlÞ=k0=d; l ¼ 1;2; . . . ; L (5)

In view of (4), RM requires the calculation of 2N�2 roots.
For large arrays this leads to high-computational loads
and becomes a source of the numerical errors alluded to
previously.

By analogy with the SO MUSIC pseudo-spectrum, the
quadricovariance version is formulated as follows [10,11]:

LðOÞ ¼ ðaðOÞ � a�ðOÞÞHEnEH
n ðaðOÞ � a�ðOÞÞ (6)

ARTICLE IN PRESS

1 By a saturated array we refer to a scenario wherein the number of

emitters L is close to either the number of real sensors N, in a case of the

SO methods, or to the number of virtual sensors 2N�1, in a case of the FO

methods.
2 We comment that RPR algorithms presented herein should not be

confused with the algorithms we have recently derived in [16]. The latter

algorithms rely on different subspace decomposition principles and

require the solution of polynomials of order 2L instead of L and are, in

that sense, computationally more demanding.
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where � denotes tensorial or Kronecker’s product, the ‘*’
denotes the complex conjugate operation and Ev repre-
sents the matrix of eigenvectors that correspond to the
noise subspace. They can be formally obtained from the
eigenvalue decomposition of the N2

�N2 sample data
quadricovariance matrix Qzz with the entries

Qzzðr; qÞ ¼ cumðziðtÞ; z
�
kðtÞ; z

�
l ðtÞ; zmðtÞÞ

¼ g4;sðOÞ expðjðo� pÞk0dxÞ (7)

where o ¼ i+m, p ¼ k+l and g4;s represents FO cumulant of
the incident signal s(t) and the coordinates (r, q) are
obtained from the mapping C4-C2 in accordance with the
scheme r ¼ N(i�1)+k, q ¼ N(l�1)+m where CD denotes the
field of complex numbers of dimension D. This mapping is
necessary because quadricovariance is originally defined
as a four-dimensional tensor [10]. However, the quad-
ricovariance-based formulation of DF algorithms is com-
putationally very demanding, requiring the estimation of
N4 FO cross-cumulants. At the same time, it is also
redundant because the virtual array of 2N�1 elements can
be characterized by an (2N�1)� (2N�1) sample data
covariance matrix instead of one of size N2

�N2. There-
fore, instead of using a quadricovariance-based formula-
tion of the FO statistics-based DF algorithms, we shall
exploit the minimum redundancy cumulant array (MRCA)
concept [12] and formulate the covariance matrix of the
virtual array of 2N�1 elements using the identity

RvvðvnðtÞ;v
�
mðtÞÞ ¼

s2
s

g4;s

cumðziðtÞ; z
�
j ðtÞ; z

�
kðtÞ; zlðtÞÞ (8)

with n,m ¼ 1,y,2N�1 and i,j,k,l ¼ 1,y,N. Because the
constant ðs2

s =g4;sÞ does not play a role in DF algorithms,
we shall further simplify (8) to read

RvvðvnðtÞ;v
�
mðtÞÞ 3 cumðziðtÞ; z

�
j ðtÞ; z

�
kðtÞ; zlðtÞÞ (9)

Exploiting (9), the formulation of the FO statistics-based
version of either RM or RPR algorithm is straightforward,
i.e., the SO statistics-based formulation of each algorithm
is immediately applicable to FO statistics. Thus the FO
pseudo-spectrum (6) can be written as follows:

LðOÞ ¼ aH
v ðOÞEnEH

n avðOÞ (10)

where avðOÞ represents the steering vector of the virtual
array and Ev represents the matrix of eigenvectors that
correspond to the noise subspace. These can be obtained
from the eigenvalue decomposition of the (2N�1)�
(2N�1) sample data covariance matrix of the virtual array
(9). This implies that approximately N2/4 times fewer FO
cross-cumulants have to be calculated when FO statistics-
based DF algorithms are formulated using the equivalent
covariance matrix of the virtual array instead of the
quadricovariance matrix of the real array. Indeed, in view
of the virtual array interpretation the FO pseudo-spec-
trum (10) reduces to

LðzÞ ¼ z�2ðN�1ÞP4N�4ðzÞ (11)

where z ¼ ejk0dx and P4N�4ðzÞ is the 4N�4 degree poly-
nomial in z. From (11) the DOA are found from the L pairs
of complex roots of the polynomial P4N�4ðzÞ that are
closest to the unit circle, as in (5). Evidently the FO RM

requires the calculation of 4N�4 roots. Just as for SO RM,
large arrays lead to high-computational loads creating
potential sources of numerical error. The benefits of
employing a FO over a SO-based formulation are in the
extended aperture of the ULA and in the suppression of
the additive Gaussian noise [12]. It is worth noting that
the MRCA approach to FO statistics-based DOA estimation
is structurally equivalent to the diagonal slice and
contracted quadricovariance approaches introduced in
[15], i.e., all three approaches avoid the estimation of the
N4 FO statistics. Asymptotic performance analysis of the
FO methods has been presented in [15] for the MUSIC-like
DOA estimation algorithm. As commented in more details
in Section 4, numerically estimated DOA errors for SO and
FO methods are consistent with the results of the
asymptotic performance analysis presented in [15].

3. SO statistics-based RPR algorithm

From (1) and (2) the output signal zn(t) of the ULA is

znðtÞ ¼
XL

l¼1

ejnqxl slðtÞ þ vnðtÞ; n ¼ 1; . . . ;N (12)

where q ¼ k0d. The data covariance matrix elements
Rzzðn;mÞ satisfy

Rzzðn;mÞ ¼ hznðtÞz
�
mðtÞi ¼

XL

l¼1

XL

k¼1

ejðnxl�mxkÞqslk þ s2dnm

(13)

where slk ¼ hslðtÞs
�
kðtÞi, s

2 represents the noise power and
dnm is the Kronecker delta, i.e., it is assumed that additive
noise is spatially white. Subtracting the noise constituent
from the data covariance matrix in (13) we get

Rzzðn;mÞ � s2dnm ¼
XL

l¼1

XL

k¼1

ejðnxl�mxkÞqslk � wnm (14)

Now consider an L+1-dimensional column vector c

c ¼ ½c1 c2 � � � cLþ1�
T (15)

and construct the following product with the right side
of (14):

XLþ1

p¼1

wnpcp ¼
XL

l¼1

XL

k¼1

ejnqxl hsls
�
kie
�jqxk

XLþ1

p¼1

e�jðp�1Þqxk cp

n ¼ 1;2; . . . ;N (16)

We now seek a solution to the homogeneous system

XLþ1

p¼1

wnpcp ¼ 0 (17)

Since the matrix with elements hsls
�
ki is positive definite

(assuming linearly independent signals) (17) will possess
nontrivial solutions if and only if

XLþ1

p¼1

e�jðp�1Þqxk cp ¼ 0 (18)

ARTICLE IN PRESS
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Evidently this corresponds to the zeros of the L-th order
polynomial

PLðzÞ ¼
XLþ1

p¼1

cpzp�1 ¼
XL

r¼0

crþ1zr (19)

at z ¼ e�jqxk . Thus the L DOA can be calculated from the
roots of the polynomial PL(z) in a manner analogous to (5).
Since c1 in (18) can be chosen arbitrarily we may set
c1 ¼ �1 so that (18) becomes

XLþ1

p¼2

wnpcp ¼ wn1; n ¼ 1;2; . . . ;N (20)

Eq. (20) can be written in matrix form

Wcp ¼ w1 (21)

where w1 is first column vector of the N�N matrix
defined by the double sum in (14) and W is comprised of
columns 2 . . . Lþ 1, i.e.,

W ¼ ½w2 . . . wLþ1� (22)

where w2,y,wL+1 are column vectors and cp is a column
vector defined as

cp ¼ ½c2 . . . cLþ1�
T (23)

Eq. (21) represents an over-determined system of linear
equations. Note that the matrix elements wnm are
ensemble averages that in practice cannot be determined
exactly. Instead they must be replaced by estimates ŵnp

obtained from the eigenanalysis of the sample covariance
matrix R̂zz. To make this notationally explicit we replace

(20) by the approximate form

XLþ1

p¼2

ŵnpcp 	 ŵn1; n ¼ 1;2; . . . ;N (24)

Eq. (24) is best solved in the LMS sense using either TLS
[13] or the LMS formulation using the singular value
decomposition (Moore–Penrose pseudo-inverse). The
DOA are then estimated from the roots of the polynomial
(19) with the coefficients defined by the vector

c ¼ ½�1 cT
p�

T (25)

The derivation of the FO statistics version of RPR
algorithm is straightforward: the same algorithm is
simply applied on the sample data covariance matrix of
the virtual array Rvv given by (9).

At this point we would like to comment on the relation
between the SO RPR algorithm and the iterative quadratic
maximum-likelihood (IQML) algorithm of [14], as well as
on the relation between the FO RPR algorithm and the FO
statistics-based minimum variance algorithm described in
[11]. Both SO RPR and IQML algorithms estimate DOAs
from the L roots of the L-th order polynomial. However, in
our algorithm the polynomial coefficients are determined
by solving the over-determined system of linear equations
(21) by means of either Moore–Penrose pseudo-inverse or
TLS. In the IQML method the coefficients are found via an
iterative procedure that involves the solution of a
quadratic minimization problem at each iteration step.
Similarly, in case of the FO statistics-based minimum
variance algorithm [11] the DOAs are found as solutions of
a nonlinear optimization problem with accuracy slightly
better than obtained by MUSIC-like FO methods [11].
Here, we have shown that thanks to the MRCA concept,

ARTICLE IN PRESS

Fig. 1. DOA estimated by SO RM algorithm (left) and RPR algorithm (right) for one source impinging from 701 on 30-element ULA.
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the FO RPR algorithm retains the same algebraic simpli-
city as the SO RPR algorithm and is computationally
much simpler than FO minimum variance method
proposed in [11].

4. Numerical results

In this section we systematically evaluate numerically
the performance of the SO and FO RPR and RM algorithms.

All results produced by RPR algorithms are obtained by
using the Moore–Penrose pseudo-inverse so that the RPR
algorithm retains its simple computational structure. We
mention that we have also employed the TLS-based
versions in all the examples reported herein and the
results were not significantly different from the Moor-
e–Penrose pseudo-inverse approach.

In Fig. 1 we compare the performance of the SO RM and
SO RPR algorithms for a single signal incident at 701 on a

ARTICLE IN PRESS

Fig. 3. RMSE error vs. SNR value for three sources impinging from directions of 301, 501 and 701 on four-element ULA. Data record length was 1000

samples. SO RM algorithm ‘*’ and SO RPR algorithm ‘r’.

Fig. 2. RMSE error vs. SNR value for one source impinging from 701 on four-element ULA. Data record length was 1000 samples. SO RM algorithm ‘*’ and

SO RPR algorithm ‘r’.

W. Wasylkiwskyj, I. Kopriva / Signal Processing 89 (2009) 1050–10601054
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30-element ULA with an inter-element spacing of l/2. The
sample size was 10 000 and SNR ¼ 25 dB. The root locus
diagram associated with the estimated DOA positions for
RM is shown on the left of side of Fig. 1 and for the RPR
algorithm on right. The DOA estimation error for both
algorithms was less than 0.011. However, while RM
algorithm required calculation of 2N�2 ¼ 58 roots, only
one root had to be calculated by the RPR algorithm. In

Figs. 2 and 3 we compare the accuracy of the SO RPR and
SO RM algorithms in terms of the root mean square error
(RMSE) as a function of the SNR for one and three signals
incident on a four-element ULA from directions of 701 and
(701, 501, 301), respectively. The sample size was 1000.
While RM algorithm shows better performance for one
source, the RPR algorithm shows better performance for
three sources. Equivalent conclusions can be drawn from

ARTICLE IN PRESS

Fig. 5. RMSE error vs. sample size value for three sources impinging from directions of 301, 501 and 701 on four-element ULA: SNR value was 10 dB. SO RM

algorithm ‘*’ and SO RPR algorithm ‘r’.

Fig. 4. RMSE error vs. sample size value for one source impinging from 701 on four-element ULA. SNR value was 10 dB. SO RM algorithm ‘*’ and SO RPR

algorithm ‘r’.
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an examination of Figs. 4 and 5, which show the RMSE as a
function of the sample size for both algorithms for
one and three sources, respectively and an SNR of 10 dB.
In all examples the RMSE was derived using 100 runs.
Figs. 3 and 5 corroborate our statement that extraneous
roots, characteristic of the RM algorithm, cause errors in
the scenarios that involve either low SNR or a saturated
array.

In Figs. 6–9 we illustrate the performance of FO RPR
and FO RM algorithms. In Fig. 6 one signal is impinging
from 701 on a 10-element ULA with an inter-element
spacing of l/2. The sample size was 10 000 and SNR ¼ 25
dB. The root locus diagram for the FO statistics-based RM
algorithm is shown on the left side of Fig. 6 and for the FO
statistics-based RPR algorithm on the right side. The DOA
error for both algorithms was less than 0.011. However,

ARTICLE IN PRESS

Fig. 7. RMSE error vs. SNR value for one source impinging from 701 on four-element ULA. Data record length was 1000 samples. FO RM algorithm ‘*’ and

FO RPR algorithm ‘r’.

Fig. 6. DOA estimated by FO RM algorithm (left) and FO RPR algorithm (right) for one source impinging from 701 on 10-element ULA.
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while RM algorithm required calculation of 4N�4 ¼ 36
roots, only one root had to be calculated by the RPR
algorithm. Figs. 7–9 show the RMSE as a function of the
SNR for one, three and six signals impinging on a four-
element ULA from directions of 701, (701,501,301) and
(1301, 1101, 901, 701, 501, 301), respectively. The sample

size was again 1000. Similarly to SO RPR, RM exhibited
slightly better performance for one source, but the RPR
exhibited significantly better performance for six sources.
For three sources RM performed better under low-SNR
conditions. The seemingly illogical results shown in Fig. 9,
where the RMSE error of the FO RM algorithm is

ARTICLE IN PRESS

Fig. 9. RMSE error vs. SNR value for six sources impinging from directions of 1301, 1101, 901, 701, 501 and 301 on four-element ULA. Data record length was

1000 samples. FO RM algorithm ‘*’ and FO RPR algorithm ‘r’.

Fig. 8. RMSE error vs. SNR value for three sources impinging from directions of 301, 501 and 701 on four-element ULA. Data record length was 1000

samples. FO RM algorithm ‘*’ and SO RPR algorithm ‘r’.
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increasing with the increasing SNR, is explained by the
presence of extraneous roots characteristic of the RM.
When array is over-saturated, i.e., when the number of
emitters is greater than number of real sensors, the roots
corresponding to the real emitters do not stay close to the
unit circle and it can be difficult to distinguish them from
the extraneous roots. This is especially true when the SNR
becomes low. To support this statement we show in Fig. 13
seven pairs of roots generated by the FO RM algorithm for

six incident signals with SNR ¼ 0 dB. Evidently extraneous
roots close to 1501 are closer to the unit circle than the
roots corresponding to the real signal at 1301. A conclusion
equivalent to the one that may be drawn from the plots in
Figs. 7–9 can also be drawn from an examination of
Figs. 10–12, which show the RMSE as a function of the
sample size for both algorithms for the case of one, three
and six sources, respectively (see Fig. 13). The SNR was
10 dB. These numerical results are consistent with

ARTICLE IN PRESS

Fig. 11. RMSE error vs. sample size value for three sources impinging from directions of 301, 501 and 701 on four-element ULA. SNR value was 10 dB. FO RM

algorithm ‘*’ and FO RPR algorithm ‘r’.

Fig. 10. RMSE error vs. sample size value for one source impinging from 701 on four-element ULA. SNR value was 10 dB. FO RM algorithm ‘*’ and FO RPR

algorithm ‘r’.
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asymptotic performance analysis of the SO and FO MUSIC
algorithm, [15], i.e., SO and FO method exhibit similar
performance for high SNR. However, at low SNR, the
variance of the DOA estimate grows as the fourth power of
the inverse of the SNR for FO methods and with the power
of two for SO methods. This, for example, explains results
shown in Figs. 3 and 8.

5. Conclusions

The number of roots that must be calculated for SO and
FO statistics-based RM algorithms is, respectively 2N�2
and 4N�4. In addition to increasing the computational

load, the extraneous roots necessarily present in RM type
algorithms lead to poor performance in saturated array
environments and under low SNR and/or small sample
size conditions. For the novel SO and FO statistics-based
RPR algorithms presented in this paper, the number of
roots that needs to be calculated equals precisely to the
number of incident signals. Consequently, for large arrays,
RPR algorithms can lead to a significant reduction of the
computational load and, as shown in this paper, indirectly,
to a reduction of numerical errors in DOA estimation. It is
demonstrated through numerical simulations that in
saturated array environments, especially in the case of
FO methods when number of incident signals L exceeds
number of elements N and low SNR and/or small sample
size conditions the RPR algorithms significantly outper-
form the RM algorithms.
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