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Summary Photodynamic detection (PDD) of skin tumours is based on the visualization of
a fluorophores, with the ability to accumulate in tumour tissue, by the use of fluorescence
imaging. Of particular importance is the application of �-5-aminolaevulinic acid (ALA) that,
through the process of biosynthesis causes formation of the protoporphyrin IX (PpIX). The PpIX
has the ability of selective fluorescence after basal cell carcinoma (BCC) has been treated with
ALA. Higher concentration of PpIX in tumour tissue compared to surrounding normal skin is
the basis for PDD. Our contribution in this preliminary study is application of the independent
component analysis (ICA) to extract the BCC spatial map, by processing fluorescent RGB image
acquired under excitation with 405 nm light. Comparative performance analysis with other two
widely used image processing methods: ratio imaging and optimal threshold based imaging,
reveals that ICA produces BCC spatial map that is most consistent in term of diagnostic quality by
both visual assessment and calculation of the BCC demarcation line. We believe this represents a
solid basis for the design of a compact and low-cost multi-spectral fluorescence imaging system,
capable for real time calculation of the skin tumour demarcation.
© 2007 Elsevier B.V. All rights reserved.

Introduction

Basal cell carcinoma (BCC) is steadily increasing year by
year in most countries and accounts for about 80% of all
non-melanoma skin cancers [1]. A non-invasive diagnostic
technique for skin tumour demarcation, with the poten-
tial to move to clinical use, is therefore of great interest.
Fluorescence imaging is such a technique; it is based on
digital registration of the fluorescence obtained from flu-
orophores present in the tissue [1—6]. A photo sensitizer
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widely used in clinical applications is: 5-aminolevulinic acid
(ALA) induced protoporphyrin IX (PpIX) [1—6]. ALA is a non-
fluorescent precursor of fluorescent PpIX, with a degree of
selective accumulation shown in a variety of malignancies
[7]. Thus, by using low intensity excitation light, the PpIX
can be located in the tissue by virtue of its fluorescence.
Visualization of the PpIX represents the basis of the photo-
dynamic detection (PDD) of the skin tumours and has been
exploited in the design of the fluorescence imaging systems
[1—6,8].

Fluorescence ratio imaging is a method widely used for
the optical diagnosis of the BCC after administration of ALA
induced PpIX [1,2,5]. It is based on calculating the ratio
between red intensity (600—700 nm) over the blue/green
intensity (450—550 nm). Owing to the fact that auto fluores-
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cence intensity from normal tissue is higher in a tumour, in
the range 450—550 nm, but lower in the range 600—700 nm,
the contrast between tumour and adjacent normal tissue
is enhanced significantly. Preliminary results reported in
[1] confirmed good agreement with the histopathological
extent of the tumour, implying that the technique can be
applied as a useful tool for indicating tumour boundary of
aggressive BCCs. This result will represent the basis for the
later statement, regarding the quality of the BCC spatial
maps, extracted by the independent component analysis
(ICA) algorithm in a visual assessment of the demarcation
of the BCC. It has been also reported in [1] that ratio imag-
ing technique works well on plane skin surfaces, where it can
be used as a preoperative screening tool but, is unsuitable
on areas with extreme curvature, e.g. on the alar regions of
the nose or, on external ear, where the technique is not reli-
able. This is due to the co-registration problem between the
red and the blue/green intensity images. Another concern
has been reported in [8] regarding the variation between
different sets of images and absolute measurements of
the fluorescence level. Because ratio-imaging methods are
based on a division between the red intensity and green
intensity, dynamic range of the ratio image is large. There-
fore, additional post processing is necessary for the purpose
of contrast enhancement. One way of doing it is to classify
as a tumour every location of the ratio image that exceeds
the predefined threshold value, which effectively produces
the binary image of the tumour spatial map. The optimal
threshold value however, depends on the intensity of the
acquired fluorescence image. This is where the ratio imag-
ing method can introduce errors in the estimation of the
spatial tumour maps, as will be illustrated later in Fig. 6A
and B.

An alternative to ratio imaging in the optical diagnosis of
the BCC is threshold based imaging [4]. It classifies as BCC
everything that is above cIa, where Ia represents average
intensity of the region with healthy skin, and c represents
the factor that has been empirically found to be c ≈ 1.4 for
3—4 h of ALA application.

To some extent, heuristic based threshold definition;
together with the variation of absolute measurement levels
of ratio imaging motivates consideration of an alterna-
tive method for the optical diagnosis of the BCC. ICA is
a relatively novel theory derived for unsupervised analy-
sis of the multivariate data sets [9,10]. Over the last 10
years it has found a numerous applications in a variety
of scientific and engineering disciplines. Of the interest
for the optical diagnosis of the BCC is the capability of
the ICA algorithms for unsupervised segmentation of multi-
spectral and hyper spectral images [11,12]. Unsupervised
segmentation by ICA is based on the assumption of statis-
tical independence between different classes resident in
the multi-spectral image, where for example one class is
a BCC and another class is a healthy surrounding skin tis-
sue. Because statistical independence is a scale invariant
feature, it is expected that ICA will be insensitive to the
variation between the set of images of the absolute level
of the measured fluorescence. Another principal reason for
using ICA in optical diagnosis of the skin tumour is that it
is applied on the co-registered band images and should not
be sensitive on the type of problems that arise from the
miss-registration.

Figure 1 The apparatus developed for acquiring fluorescence
image.

Materials and methods

Fluorescence imaging

Fig. 1 shows the apparatus developed for acquisition of the
fluorescence image. It consists of 405 nm excitation light
source and an RGB camera for the acquisition of the flu-
orescence image of the ALA treated BCC. The excitation
light source has a spectral distribution centred at 405 nm,
which matches the absorption spectrum of PpIX. The fluo-
rescence emission spectrum of PpIX has a dominant peak at
635 nm. A base cream containing 20% of ALA was applied
on the lesion and approximately 0.5 cm of the surround-
ing skin. The cream was applied for 4 h to obtain optimal
PpIX contrast between tumour and normal skin [1,4]. After
the 4 h period before imaging any residual ALA has been
removed. The RGB image has been acquired in 1—2 s by a
commercial digital camera. Although an RGB image is not
a multi-spectral image in the true sense, it is suitable for
the application of the multivariate data analysis methods
such as, principal component analysis (PCA) and ICA in order
to achieve unsupervised extraction of the BCC spatial map.
This holds true as long as the image scene consists of three
or less classes with a simple structure. By simple structure
we assume that BCC and healthy skin are spectrally different
in a coarse spectral resolution of an RGB image.

Multi-spectral imaging

Multi-spectral and hyper spectral imaging is a new research
area that is already widely used in remote sensing [11—14]
but also in fluorescence imaging [8] for object detection,
classification and identification. A 3D image cube contains
co-registered images for the same scene. In a number of real
applications, in remote sensing image classification, it may
be very difficult or even impossible to get prior information
about class spectral signatures. Therefore, unsupervised
methods have to be applied. Linear spectral un-mixing anal-
ysis is a popular approach used in decomposition problem.
This procedure assumes the reflectance of a pixel is a linear
mixture of all the different materials found in that pixel
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[11—14]. Let L be the number of spectral bands and r a
column pixel vector with dimension L in a multi-spectral
image. An element ri in the r is the reflectance collected
in the ith wavelength band. Let M denote a matrix contain-
ing p independent material spectral signatures (referred to
as end members in linear mixture model), i.e. M = [m1, m2,
. . ., mp]. Let � be the unknown abundance column vector
of size p × 1 associated with M, which is to be estimated.
The ith item ˛i in � represents the abundance fraction of
mi in pixel r. In order to relate the linear mixture model
Eq. (1) to the BCC localization problem we mention that the
column vector mi represents spectral signature of the BCC
or healthy skin and {˛i} represent their respective spatial
maps. Accordingly, the linear mixture model is:

r = M� + n (1)

where n is the noise term. When M is known the estima-
tion of � can be accomplished by a least squares approach.
This is referred to as a supervised classification. In this case,
it is assumed that spectral library with the stored spectral
signatures mi exists. But when M is also unknown, i.e., in
unsupervised analysis, the task is much more challenging,
because both M and � need to be estimated.

Independent component analysis

ICA is a powerful tool for unsupervised classification, which
has been successfully applied to blind source separation
[9,10]. The basic idea is to decompose a set of multi-
variate signals into a basis of statistically independent
sources, with the minimal loss of information content
so as to achieve detection and classification. The stan-
dard linear ICA-based data model with additive noise
is:

x = As + n (2)

where x is an L dimensional data vector, A an unknown mix-
ing matrix, and s is an unknown source signal vector. Thus,
the model (2) is structurally equivalent to the linear mix-
ture model (1). Three assumptions are made on the unknown
source signal vector s: (1) each source signal is an inde-
pendent identically distributed (i.i.d.) stationary random
process; (2) the source signals are statistically independent
at any time; and (3) at the most one among the source signals
has Gaussian distribution. The mixing matrix A, although
unknown, is also assumed to be non-singular. Then the solu-
tion to the blind source separation problem, is obtained with
the scale and permutation indeterminacy, i.e., Q = WA =
P�, where W represents the un-mixing matrix, P a general-
ized permutation matrix and � is a diagonal matrix. These
requirements ensure the existence and uniqueness of the
solution, to the blind source separation problem up to the
ordering, sign and scale [9,10]. Thus, ICA algorithms possess
the scale invariance property that makes them attractive
for use in optical diagnosis of the BCC, from the RGB fluo-
rescence image, with the absolute fluorescence level that
may vary from measurement to measurement. For our pur-
pose the following applies: L = 3 and p = 1. This implies that
we are interested in the one class only: the BCC. Another
class, the healthy tissue, is of no particular interest to us.
Consequently, the sequential ICA algorithms are of special

interest. They are capable of extracting the classes of inter-
est in a sequential mode, i.e. one by one. The well-known
fast ICA algorithm belongs to this class of algorithms [9,15].
In the extreme case it is desirable to be able to extract only
one class of interest. In this particular case, in addition to
statistical independence and non Gaussian distribution of
data, there ought to be available some additional a pri-
ori information about the signal of interest. In the case
of BCC this additional information is related to the fact
that tumour, especially in the early phase of development,
occupies relatively small portion of the overall area of the
image. Such image after 2D to 1D mapping behaves as a ran-
dom process, characterized by sparse distribution law. Thus,
the measure for signal sparseness, that simultaneously mea-
sures the distance of signal distribution from the Gaussian
or normal distribution, represents a good candidate for a
cost function to be used in formulation of the algorithm for
the BCC localization. Such measure is called kurtosis and
for centred random variable x it is defined as the ratio of
the fourth order moment and square of the second order
moment:

�(x) = m4(x)

(m2(x))2 − 3 (3)

Assuming that tumour is a sparsest class contained in
acquired fluorescent RGB image extraction of the BCC
spatial map is transformed into mathematical kurtosis max-
imization problem:

y = (w∗)Tx (4)

where

w∗ = arg max
w

�
(
wTx

)
(5)

and ‘T’ denotes the transpose operation. The well-known
fast ICA algorithm [9,15] is reduced to this kurtosis maxi-
mization problem when the cubic function is selected as a
choice for non-linearity.

Results

In this section, we present preliminary comparative results,
in the extraction of the BCC spatial map from an RGB fluores-
cence image, by means of the kurtosis maximization based
ICA algorithm, ratio-imaging method and optimal thresh-
old based imaging method. For the purpose of illustration,
Figs. 2 and 3 show images of the BCC tumour acquired
without and with excitation with the 405 nm light sources.
We base our comparative analysis mainly on how well the
extracted BSS spatial maps match the visual impression
of Fig. 3. To make the comparative performance analy-
sis more fair and objective and not to rely only on the
pure visual assessment, we have converted extracted spa-
tial tumour maps into binary images. The edge detection
algorithm has then been applied to binary images to calcu-
late tumour demarcation line. Conversion of the extracted
tumour maps into binary images has been done with the
same threshold value for ICA and optimal threshold based
image processing methods. In a case of the ratio imaging
method, rather than using the contrast enhancement based
post-processing, we have converted the ratio image directly
into binary map, with some predefined threshold value as
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Figure 2 Natural image of the BCC without excitation by the light source.

described in the introduction. Fig. 4A shows the BCC spa-
tial map in a false pseudo-colour obtained by the kurtosis
maximization ICA algorithm, while Fig. 4B shows correspond-
ing binary map. We have normalized intensity of the BCC
spatial map to the [0, 1] interval. In that way the proba-
bility can be assigned to the extracted tumour map. The
same was done for a tumour map extracted by the opti-
mal threshold based method. Tumour demarcation line that
is calculated by Canny’s edge extraction algorithm from
Fig. 4B, is shown in Fig. 5. Fig. 6A and B shows the binary
BCC spatial maps in a false pseudo-colour obtained by the
ratio-imaging algorithm, for a threshold value set to 5 and
10, respectively. These figures illustrate how the size of the
spatial tumour map varies significantly with the change of

the threshold value. The optimal value of the threshold is
highly dependent on the intensity of the acquired fluores-
cence image and that is where the ratio imaging method
can introduce errors in the estimation of the spatial map of
the tumour. Tumour demarcation lines calculated by Canny’s
edge extraction algorithm, from Fig. 6A and B, are shown
in Fig. 7A and B, respectively. Fig. 8A shows the BCC spa-
tial map in a false pseudo-colour obtained by the optimal
threshold based imaging method, while Fig. 8B shows corre-
sponding binary image. Tumour demarcation line calculated
by Canny’s edge extraction algorithm, from Fig. 8B is shown
in Fig. 9. Figs. 8 and 9 illustrate sensitivity of the optimal
threshold based method on the value of the threshold coef-
ficient taken from [4] that cannot be considered as optimal

Figure 3 Image of the BCC acquired after excitation by the 405 nm light source.
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Figure 4 (A) False colored image of the BCC spatial map extracted by the kurtosis maximization ICA algorithm. (B) Binary map
of the BCC spatial map extracted by the ICA algorithm.

Figure 5 BCC demarcation line extracted from the binary ICA
based tumor map shown in Fig. 4B.

for our image. It is very important to note that again the
ICA algorithm as an unsupervised segmentation method does
not depend on such arbitrarily defined threshold parame-
ters, as it is the case with the ratio imaging and optimal
threshold imaging methods. Due to this fact and due to
the fact that ICA is scale invariant, it should exhibit robust
performance under a variety of illuminating conditions and
variation of the absolute fluorescence level. This includes
illumination variation within an image resulting from skin
curvature. Thus, ICA based image processing may repre-
sent a good solution for a portable optical detection system,
which does not require calibration and can be operated eas-
ily.

Discussion

During the last few years, new methods for demarcation
of BCC using 5-ALA PDT have been suggested [1,2,4—6,8].
A multi-spectral fluorescence imaging system for real time
creation of high contrast image has been described in [8].
In particular, the ratio imaging method in combination with

Figure 6 (A) Binary map of the BCC spatial map extracted by the ratio imaging method with a threshold value set to 5. (B) The
same as part (A) except the threshold value set to 10.
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Figure 7 (A) BCC demarcation line extracted from the ratio imaging based tumour map shown in Fig. 6A. (B) BCC demarcation
line extracted from the ratio imaging based tumour map with shown in Fig. 6B.

Figure 8 (A) False colored image of the BCC spatial map extracted by the optimal threshold based imaging method. (B) Binary
map of the BCC spatial map extracted by the optimal threshold method.

bispectral fluorescence imaging has been proven in [1] to
yield an image that is in good agreement with the actual
tumour boundary found by histopathological mapping. We
are aware, that the key issue when testing new diagnos-

Figure 9 BCC demarcation line extracted from the binary
optimal threshold imaging based tumour map shown in Fig. 8B.

tic method is to correlate the derived tumour boundary
with the actual extent of the tumour. Therefore, due to the
lack of histological data we have compared ICA generated
tumour map with the ratio imaging generated tumour map.
Tumour demarcation line obtained from the ICA generated
tumour map, when compared to the tumour demarcation
line obtained from the ratio imaging generated tumour map,
is the basis to assume that ICA may represent a useful
and robust method for the indication of the tumour bound-
ary of aggressive BCC. The robustness is with respect to
the variation of the illuminating conditions and variation
of the absolute fluorescence level. This stems from the
scale invariance property of the ICA. Therefore, we con-
jecture that ICA in combination with multi-spectral imaging
systems may represent a good solution for a portable opti-
cal detection system, which does not require calibration
and can be operated easily. In this regard our future work
will include comparative performance analysis between ICA
and ratio imaging results in relation to the agreement with
the histopathological mapping. We also plan in the near
future to extend our analysis on more difficult cases, where
intensity of the fluorescent image is rather low and impor-
tant diagnostic information cannot be readily perceived by
eye.



Author's personal copy

196 I. Kopriva et al.

Acknowledgement

The work has been supported through the projects TP-
05/0098-47 and 098-0982903-2558 funded by the Ministry
of Science, Education and Sport of the Republic of Croatia.

References

[1] Stenquist B, Ericsson MB, Strandeberg C, et al. Bispectral fluo-
rescence imaging of aggressive basal cell carcinoma, combined
with histopathological mapping: a preliminary study indicating
a possible adjunct to Mohs micrographic surgery. Br J Dermatol
2006;154:305—9.

[2] Scott MA, Hopper C, Sahota A, et al. Fluorescence photo diag-
nostics and photo bleaching studies of cancerous lesions, using
ratio imaging and spectroscopic techniques. Lasers Med Sci
2000;15:63—72.
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