
September 15, 2009 / Vol. 34, No. 18 / OPTICS LETTERS 2835
3D tensor factorization approach to single-frame
model-free blind-image deconvolution
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Zagreb, Croatia (ikopriva@gmail.com)

Received March 31, 2009; revised June 4, 2009; accepted June 4, 2009;
posted July 9, 2009 (Doc. ID 109499); published September 14, 2009

By applying a bank of 2D Gabor filters to a blurred image, single-frame blind-image deconvolution (SF BID)
is formulated as a 3D tensor factorization (TF) problem, with the key contribution that neither origin nor
size of the spatially invariant blurring kernel is required to be known or estimated. Mixing matrix, the origi-
nal image, and its spatial derivatives are identified from the factors in the Tucker3 model of the multi-
channel version of the blurred image. Previous approaches to 2D Gabor-filter-bank-based SF BID relied on
2D representation of the multichannel version of the blurred image and matrix factorization methods such
as nonnegative matrix factorization (NMF) and independent component analysis (ICA). Unlike matrix
factorization-based methods 3D TF preserves local structure in the image. Moreover, 3D TF based on the
PARAFAC model is unique up to permutation and scales under very mild conditions. To achieve this, NMF
and ICA respectively require enforcement of sparseness and statistical independence constraints on the
original image and its spatial derivatives. These constraints are generally not satisfied. The 3D TF-based SF
BID method is demonstrated on an experimental defocused red–green–blue image. © 2009 Optical Society of
America

OCIS codes: 100.1830, 100.3010, 100.3190, 100.6640, 100.6890.
The purpose of blind image deconvolution (BID) is to
reconstruct the original image from an observation
degraded by spatially invariant blurring process and
noise. Neglecting the noise term, the process is mod-
eled as a convolution of a point spread function (PSF)
H�s , t� with an original source image F�i1 , i2� as

G�i1,i2� = �
s=−M

M

�
t=−M

M

H�s,t�F�i1 − s,i2 − t�, �1�

where M denotes the PSF support size and G ,F
�R0+

I1�I2. If PSF is known, a number of algorithms are
available to reconstruct original image F [1]. When
PSF is not available, BID algorithms are important
[2,3]. BID methods can be divided into those that es-
timate the blurring kernel H first and then restore
the original image by some of the nonblind methods
[1], and those that estimate the original image F and
blurring kernel simultaneously. To estimate the blur-
ring kernel a support size has to either be given or
estimated. Also, quite often a priori knowledge about
the nature of the blurring process is assumed to be
available in order to use appropriate parametric
model of the blurring process [2]. That is not always
fulfilled in practice. Multivariate data-analysis meth-
ods such as nonnegative matrix factorization (NMF)
[4] and independent component analysis (ICA) [5–7]
can be used to solve a BID problem as a blind source
separation problem, where an unknown blurring pro-
cess is absorbed into a mixing matrix. To realize a
multichannel version of the blurred image, an ap-
proach based on a bank of 2D Gabor filters was pro-
posed in [8]. It was been the basis of the single frame
(SF) BID algorithms in [4,6]. The key insight in [8]
was that original image F�i1−s , i2− t� can be approxi-
mated by Taylor series expansion around F�i1 , i2�,
giving F�i1−s , i2− t�=F�i1 , i2�−sFi1

�i1 , i2�− tFi2
�i1 , i2�
−. . ., which enables us to rewrite Eq. (1) as
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G�i1,i2� = a1F�i1,i2� + a2Fi1
�i1,i2� + a3Fi2

�i1,i2� + . . . ,

�2�

where a1=�s=−M
M �t=−M

M H�s , t�, a2=−�s=−M
M �t=−M

M sH�s , t�,
and a3=−�s=−M

M �t=−M
M tH�s , t�, and Fi1

and Fi2
are spa-

tial derivatives in the i1 and i2 directions, respec-
tively. When Gabor filters are applied on a blurred
image, a new set of observed images is obtained as

Gi3
�i1,i2� = ai3,1F�i1,i2� + ai3,2Fi1

�i1,i2� + ai3,3Fi2
�i1,i2�

+ . . . , i3 = 2, . . . ,I3, �3�

where ai3,1=�s=−M
M �t=−M

M Hi3
� �s , t�, ai3,2=−�s=−M

M

��t=−M
M sHi3

� �s , t�, ai3,3=−�s=−M
M �t=−M

M tHi3
� �s , t�, where

Hi3
� �s , t� represents convolution of the appropriate

i3th Gabor filter with H�s , t�. In the to-be-reported ex-
periment, I have used a bank of 2D Gabor filters with
two spatial frequencies and four orientations,
whereas real and imaginary parts of the 2D Gabor
filters were used as separate filters. Thus overall a
multichannel version of the blurred image consisted
of I3=17 images. We refer to [4,6] for a more-detailed
description of the 2D Gabor filter bank. In my previ-
ous contributions [4,6] a multichannel version of the
blurred image G was represented in 2D as G�3�
�RI3�I1I2, i.e., G�3�, was a set of I3 images of the size
I1�I2 pixels, where the first image corresponded
with the vectorized blurred image G and the rest of
the I3 images corresponded to vectorized images ob-
tained after filtering the blurred image with 2D Ga-
bor filters. In this Letter I represent a multichannel
version of the blurred image as a three-way array or
a 3D tensor G� �RI1�I2�I3 with elements gi1i2i3

, where
i1=1, . . . ,I1, i2=1, . . . ,I2, and i3=1, . . . ,I3. Each index
is called the way or mode, and the number of levels

on one mode is called the dimension of that mode.
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Two ways of G� are for rows and columns, and one
way is for image index. This is standard notation
adopted for use in multiway analysis [9]. 2D repre-
sentation of the multichannel blurred image has two
disadvantages: (i) the 3D tensor G� has to be mapped
through three-mode flattening, also called unfolding
and matricization, to matrix G�3�, whereas the local
structure of the image is lost; and (ii) matrix factor-
ization G�3�=AF�3� employed by linear mixing models
(2) and (3) suffers from indeterminacies, because
ATT−1F�3�=G�3� for any invertible T. It implies that
infinitely many (A, F�3�) pairs can give rise to G�3�. In
my notation J rows of F�3� represent a vectorized ver-
sion of the original image F and its spatial deriva-
tives, i.e., F�3��RJ�I1I2. J represents an unknown
number of latent variables (the original image and its
spatial derivatives) in the linear mixture models (2)
and (3). Meaningful solution of the factorization of
G�3� is characterized with T=P�, where P is the per-
mutation matrix and � is the diagonal matrix. These
standard blind decomposition indeterminacies are
obtained by imposing sparseness constraints on F�3�
by NMF algorithms [4] and statistical independence
constraints by ICA algorithms [6]. Sparseness con-
straints imply that original image F and its spatial
derivatives Fi1

, Fi2
, etc. do not occupy the same pixel,

and that is generally not true. Statistical indepen-
dence assumption is also not true, as already ob-
served in [4,6,7]. To improve statistical independence
between the original image and its spatial deriva-
tives, I have used in [6] wavelet-packet-based trans-
form to find out the narrow subband where latent
variables are least dependent. Owing to this further
convolution (multiscale filtering), as correctly ob-
served in [7], many more terms in Taylor series ex-
pansion are required to get good reconstruction than
when no filtering is used. When using a 3D TF ap-
proach to BID no such complications arise, because
no constraints on latent variables need to be imposed
in order to achieve unique factorization. For the pur-
pose of blind decomposition of the multichannel im-
age tensor G� we adopt the Tucker3 model [10],

G� � R� �1A�1��2A�2��3A�3�, �4�

where R� �RJ1�J2�J3 is the core tensor, �A�n�

�RIn�Jn�n=1
3 are factors, and �n denotes the n-mode

product of a tensor with a matrix A�n�. The result of
R� �nA�n� is a tensor of the same order as R� but with
the size Jn replaced by In. The PARAFAC model [11],
also called CANDECOMP [12], is a special case of
Tucker3 model when R� is a superdiagonal tensor
with all elements zero, except those for which all in-
dices are the same. Compared to PARAFAC, the
Tucker3 model is more flexible because of the core
tensor, which allows interaction of a factor with any
factor in the other modes [13]. In the PARAFAC
model factors in different modes can interact only
factorwise. However, this restriction enables unique-

ness of tensor factorization based the PARAFAC
model within the permutation and scaling indetermi-
nacies of the factors under very mild conditions
[14,15]. There is no need to impose constraints on
them, such as sparseness or statistical independence.
Assuming that J1=J2=J3=J and J�I3, the unique-
ness condition is reduced to kA�1�+kA�2�+kA�3� �2J+3,
where kA�n� is Kruskal rank of factor A�n� [14,15]. Be-
cause of interaction between the factors there is no
such theoretical guarantee on the uniqueness of ten-
sor factorization based on the Tucker3 model. How-
ever, despite this the Tucker3 model has been used
successfully in hyperspectral image analysis for di-
mensionality reduction, denoising, and target detec-
tion [16,17]. To identify the original image and its
spatial derivatives, we refer to linear mixture model
used in Eqs. (2) and (3),

G�3� � AF�3�, �5�

where columns of A�RI3�J represent the weighting
coefficients of the J images resident in the multi-
channel image G�3�, while rows of F�3��RJ�I1I2 repre-
sent vectorized versions of the original image and its
spatial derivatives. Without constraints there are in-
finitely many decompositions satisfying model in ex-
pression (5). From the Tucker3 model (4) and the lin-
ear mixture model (5) the matrix of weighting
coefficients and the tensor of the source image and its
spatial derivatives F� are identified as

A � A�3�,

F� � R� �1A�1��2A�2� � G� �3�A�3��†, �6�

where F� �RI1�I2�J and † denotes the Moore–Penrose
pseudoinverse. What remains after three-mode
multiplication of the image tensor G� with pseudo-
inverse of array factor A�3� is first part of expression
(6). According to expression (5) this must be F� . The
second part of expression (6) is much less sensitive on
numerical errors, owing to the fact that only one re-
constructed quantity, array factor A�3�, takes places
in the reconstruction of F� . This completes derivation
of the 3D tensor factorization (TF) based SF BID al-
gorithm that is defined without using any a priori in-
formation about the blurring process or source image.
To estimate array factor A�3� from image tensor G�
based on the Tucker3 model [expression (4)] I have
used the TUCKER�ALS function made available as a
part of MATLAB Tensor Toolbox [18]. F� is then recon-
structed through three-mode multiplication of the
image tensor G� and the pseudoinverse of A�3�. The
TUCKER�ALS function relies on mean-squared-error
minimization implemented in alternating least-
square fashion [19]. I demonstrate performance of 3D
TF-based SF BID on an experimental red–green–
blue image shown in Fig. 1 with dimensions of 384
�512 pixels i.e., I1=384 and I2=512. It has been re-
corded by digital camera in manually defocused
mode. This image yields spatially invariant degrada-

tion that complies with fundamental property of the
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convolution equation [Eq. (1)]. Thus it can be used for
the proof-of-principle of the proposed SF BIF algo-
rithm. The same image has been used previously in
[4,6] in gray-scale version. Here, I use a color version
(online) to demonstrate versatility of the 3D TF SF
BID method. The color image is deconvolved by ap-
plying a described algorithm to each spectral image
separately. Figure 2 shows the deconvolution result
obtained by the 3D TF SF BID algorithm. This result
was obtained by setting the number of latent vari-
ables in expression (4) to J=5. However, varying J
between 3 and 16 yielded result of, in principle, the
same quality. Figure 3 shows results obtained by the
wavelet-packets-based subband decomposition ICA
algorithm [6], where restoration errors are in part
due to the image vectorization process and mainly
due to the multiscale filtering necessary to satisfy the
statistical independence constraint imposed on the
latent variables in the linear mixture model [expres-
sion (5)]. Because of space limitation I did not carry
out a comparative performance analysis between the
TF SF BID method and blind Richardson–Lucy and
NMF-based methods. However, based on results re-
ported in [6] it might be concluded that TF-based
method would compare favorably against them.

This work was partially supported through grant
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