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Abstract

An independent component analysis (ICA) approach to image sharpening is presented for incoherent imaging

through weak atmospheric turbulence. Taking account of the turbulence model a novel data representation scheme is

used for the ICA algorithm wherein each selected image frame is treated as a sensor. The proposed concept enables one

diffraction limited object image and several images that correspond to atmospheric turbulence patterns to be extracted

as separate physical sources. By using an image sharpening metric based on the Laplacian operator, it is shown that the

ICA algorithm when applied to experimental data with known ground truth gives better results than obtained by the

frame averaging method.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The classical limit on performance of an imag-

ing system is set by diffraction [1–3]. In accordance

with the Rayleigh resolution criterion, the smallest

linear dimension that can be resolved is given by

dXRES
¼ 1:22

kf
B

; ð1Þ
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where k is the wavelength, f is the focal length of

the lens, and B is the system aperture size. While

resolution beyond the classical diffraction limit

may be possible in certain cases [1,4,5] random

fluctuations of the refractive index in space and

time [14,15] caused by atmospheric turbulence will
generally degrade the performance much beyond

the classical Rayleigh diffraction limit. One way to

sharpen the image is to use the frame averaging

technique described in [14]. In this paper we de-

scribe a new approach to image sharpening for

incoherent imaging by incorporating the physical

turbulence model into the processing algorithm.
ed.
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The image sequence is processed by using the ICA

algorithm [6] and treating each frame of the video

sequence as a sensor. Each turbulence spatial

pattern is treated as one physical source and the

diffraction limited image of the original object as
another source. The physical justification of the

adopted data model is based on propagation of the

incoherent electromagnetic waves through turbid

media, as described in Section 3. After a concise

account of the ICA algorithm based on fourth-

order (FO) statistics in Section 4, the proposed

image processing technique is detailed in Section 5.

The image performance evaluation employs the
Laplacian operator and is carried out for the ori-

ginal frames, the ICA extracted source image of

the object of interest, and for a frame obtained by

averaging selected frames as well as for the average

of all the frames present in the image sequence

[15,16]. The concluding remarks are set forth in

Section 6.
2. Problem formulation

Inspired by the concept presented in [10], we

have formulated a novel way of representing the

image sequence in the ICA framework. The un-

derlying hypothesis is similar to that used in the

analysis of multispectral and/or hyperspectral
data [11,12], where ICA methods are applied to a

multispectral/hyperspectral image cube under the

assumption of hidden sources with different

spectral signatures. In the ICA framework each

spectral component is treated as a sensor, as il-

lustrated in Fig. 1(a). The same image cube con-
Fig. 1. (a) Representation of multispectral/hyperspectral data

for ICA analysis using the concept of an image cube; (b) Using

the same concept image sequence can be represented in the ICA

framework where each frame is treated as a sensor.
cept can be used to represent a temporal image

sequence in the ICA framework where each frame

is treated as a sensor. We do this by replacing the

frequency variable ðxÞ with the time variable (t)
resulting in the temporal sequence in Fig. 1(b). It

is assumed that the image sequence is acquired
with a single camera and that motion effects, if

present, are compensated by employing some

form of image registration technique. The im-

portant novelty of this data representation scheme

is that it uses the temporal information of the

image sequence. The intensity variation of the

(temporally) incoherent objects in time is what

makes the measurements linearly independent.
The underlying assumption is that different sour-

ces will have different (statistically independent)

spatial realizations. This represents the basis for

the image sharpening through the extraction of

the spatial turbulence patterns as separate physi-

cal sources. We presume the standard linear scalar

data model with additive noise

Ii ¼ AI0 þ m; ð2Þ
where Ii 2 RN�T is an N -dimensional data vector

(intensity in the image plane) consisted of

T ¼ p � q samples, where p and q are frame di-
mensions, A 2 RN�N is an unknown mixing matrix,

Io 2 RN�T is an unknown vector of source signals/

images (intensity in the object pane), and m 2 RN�T

represents temporally independent additive sensor

noise assumed to be Gaussian. Individual com-

ponents of the data vector Ii are represented by

Iikðtk; x; yÞ, where tk is video frame index and ðx; yÞ
are pixel coordinates of the related video frame.
On the component level, (2) can be written as

Iikðtk; x; yÞ ¼
XN
n¼1

aknðDtknÞIonðt0; x; yÞ: ð3Þ

The interpretation of (3) is that each measured

data point at spatial coordinate (x; y) is a super-

position of different source signals that exist at the

same spatial coordinate (x; y) at some reference

time t0 . The relative contributions of the individ-

ual turbulence patterns between some time tk and

the reference time t0 are contained in the unknown

mixing matrix coefficients akn. One of the source
components corresponds to our object of interest

while the rest are different spatial realizations of



I. Kopriva et al. / Optics Communications 233 (2004) 7–14 9
turbulence. In the following section we provide a

physical justification for this model.
3. Derivation of the ICA data model

A quasi-monochromatic electromagnetic field

in the object plane is transformed into its image

(Figs. 2 and 3) by the superposition integral (ex-

tended Huygens–Fresnel principle) [1,3,13,14]

Ûiða2Þ ¼
Z

da1Uoða1Þplða2; a1Þ; ð4Þ

where ai ¼ qi=L is the angular coordinate, L is the

atmospheric path length, Ûi represents the elec-

tromagnetic field after the imaging lens, Uo is

electromagnetic filed in the object plane and
Fig. 2. Block diagram of a general atmospheric imaging sys-

tem, taken from [14].

Fig. 3. Line of sight propagation geometry, taken from [14].
plða2; a1Þ is the system point spread function which

may be represented by

plða2; a1Þ ¼ k�2

Z
R2

dq0 exp v q0; a1L
� ��

þ i U q0; a1L
� ��

þ kq0ða2 � a1Þ
��
; ð5Þ

where k ¼ 2p=k is the wave number, k is the

wavelength, vðq0; a1LÞ and Uðq0; a1LÞ are log am-
plitude and phase of the atmospheric turbulence in

the image plan and the integration is carried out

over the pupil R2 in Fig. 3. If pupil in the object

plane lies within a single atmospheric coherence

area, (4) can be replaced by

Ûiða2Þ ¼
Z

da1Uoða1Þplða2 � a1Þ; ð6Þ

while the point spread function (5) simplifies to

[13]

plðaÞ ¼ k�2

Z
R2

dq0 exp v q0; 0
� ��

þ i U q0; 0
� ��

þ kq0a
��
:

ð7Þ
For the incoherent electromagnetic fields, the

optical intensity in the image plane is given by

Îiða2; tÞ ¼ Uiða2; tÞU �
i ða2; tÞ

� �

¼
Z

da1L�2As Uoða1; tÞU �
o ða1; tÞ

� �
plða2j � a1Þj2

¼
Z

da1L�2AsIoða1; tÞ plða2j � a1Þj2; ð8Þ

where As is the source coherence area and Ioða1; tÞ
is optical intensity in the object plane at the an-
gular coordinate a1. If point source is assumed

Ioða1; tÞ ¼ IoðtÞdða� a1Þ; ð9Þ
so that (8) reduces to

Îiða2; tÞ ¼ IoðtÞL�2As plða2Þj j2: ð10Þ
Both the log-amplitude and the phase of the at-
mospheric turbulence can be rewritten as

vðq0; 0; tÞ ¼ Dvðq0; 0; tÞ þ vðq; 0; t0Þ;
Uðq0; 0; tÞ ¼ DUðq0; 0; tÞ þ Uðq; 0; t0Þ;

ð11Þ

where t0 is a reference time, and vðq; 0; t0Þ and

Uðq; 0; t0Þ are reference values of the log amplitude

and phase of the atmospheric turbulence in the

object plane. This is in agreement with the Taylor�s
frozen hypothesis [14] which states that change of
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the refractive index over short time interval t > t0
remains fixed except for translation with the uni-

form velocity with components vx; and vy . We then

have

nmðx; y; tÞ ¼ nm½x� vxðt � t0Þ; y � vyðt � t0Þ; t0�;
ð12Þ

where index m corresponds with the particular
source of turbulence. Based on (11), (7) can be

written as a function of time as

plða; tÞ ¼ exp Dvðq0; 0; tÞ
�

þ iDUðq0; 0; tÞ
�
plða; t0Þ;

ð13Þ
which gives

plða; tÞj j2 ¼ exp 2Dvðq0; 0; tÞ
� �

plða; t0Þj j2: ð14Þ

The interpretation of (11) and (12) is that the

sources of turbulence can be placed at some ref-

erence temporal location ðq; t0Þ so that the relative

atmospheric turbulence contribution in both log-

amplitude and phase for some time t > t0 is taken
into account by (11). Under this assumption, we

can rewrite (10) for the case when at detector lo-

cation a2, in addition to the source signal that
comes from the object itself, several other source

signals, corresponding to different atmospheric

turbulence patterns along the atmospheric path,

arrive. The optical intensity

Iiða2; tÞ ¼
XN
n¼1

Ionðt0ÞL�2Asn

� exp 2Dvðq0
n; 0; tÞ

� �
plða2; t0Þj j2 ð15Þ

can be identified with Iikða; tkÞ in the adopted ICA

data model (2) and (3)

Iikða; tkÞ ¼
XN
n¼1

aknIonða; t0Þ þ mkða; tkÞ; ð16Þ

where we have used the angular coordinates and

assumed that the additive noise term mkða; tkÞ is

Gaussian. The source vector components and
mixing matrix components are identified from (15)

and (16) as

akn ¼ L�2Asn exp 2Dvðq0
n; 0; tkÞ

� �
;

Ionða; t0Þ ¼ Ionðt0Þ plða; t0Þj j2:
ð17Þ
Evidently the reconstructed image Îonða; t0Þ is af-

fected by the point spread function. However, if

uniform weighting is assumed, i.e.,

jplða1; t0Þj2 ffi jplða2; t0Þj2, the reconstructed image

will be a scaled version of the original object im-

age, which amounts to standard indeterminacy

inherent in ICA algorithms [6].
4. The fourth-order statistics-based ICA algorithm

Strategy of ICA algorithms is to find a linear

transformation W

Îo ¼ WIi ¼ WAIo þWm ¼ QIo þWm; ð18Þ
such that the components of the vector Îo are as

statistically independent as possible. Based on the

assumption that the source signals Ion are mutually

statistically independent and non-Gaussian (except

maybe one), the vector Îo will represent the source

signals Io within a permutation and a scale factor.

Here, we are going to use the FO cumulant-based

ICA algorithm JADE (joint approximate diago-
nalization of the eigen-matrices) [6], wherein sta-

tistical independence is achieved through the

minimization of the squares of the FO cross-

cumulants among the components of Îo

W ¼ argmin
X
m

X
l

X
k

X
j

off WTĈðIij; Iik; Iil; IimÞW
	 


;

ð19Þ
where the operation off(A) on a matrix A is rep-
resented by

offðAÞ ¼
X

16 i6¼j6N

aij
�� ��2 ð20Þ

and the ĈðIij; Iik; Iil; IimÞ are sample estimates of the

fourth-order cross-cumulants [7,8] defined by

ĈðIij; Iik ; Iil; IimÞ ¼ E IijIikIilIim
� �

� E IijIik
� �

E IilIim½ �
� E IijIil

� �
E IikIim½ � � E IijIim

� �
E IikIil½ �;

ð21Þ
where E½ � denotes mathematical expectation. The

additional advantage of using a FO cumulant-

based ICA algorithm is its capability to suppress

additive Gaussian noise since FO cumulants are

blind with respect to Gaussian noise [7]. Based on



Fig. 4. (a) Three data frames randomly selected from the 50

frames that form the image sequence; (b) Extracted source

images using JADE ICA algorithm [6].
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the multilinearity property of cumulants [7,8], we

can write any of the FO cross-cumulants as

follows:

CðIij; Iik; Iil; IimÞ ¼
XN
n¼1

qjnqknqlnqmnC4ðIonÞ

þ
XN
n¼1

wjnwknwlnwmnC4ðmnÞ: ð22Þ

For Gaussian noise, the last term vanishes identi-

cally so that (22) simplifies to

CðIij; Iik; Iil; IimÞ ffi
XN
n¼1

qjnqknqlnqmnC4ðIonÞ: ð23Þ

A critical factor in ICA applications is the level

of (non)-singularity of the mixing matrix A. Al-

though the mixing matrix is unknown, we must

assume it to be invertible. In the proposed image

sharpening application it is affected by the se-

lection of time displacement Dt between the vi-

deo frames used as sensors in the ICA data

model (2) and (3). The video frames incorpo-
rated into the ICA data model must be suffi-

ciently different so that the measurements are

linearly independent. It seemed natural to use

the Kullback–Leibler divergence to measure the

mutual information between the images p and q
[9]

D p; qð Þ ¼ Lðp; qÞ þ Lðq; pÞ; ð24Þ

Lðp; qÞ ¼
XT
k¼1

pk
pk
qk

; Lðq; pÞ ¼
XT
k¼1

qk
qk
pk

; ð25Þ

where pk and qk are pixel intensities at the spatial

coordinate k ffi ðx; yÞ . Because the Kullback dis-

tance is not symmetrical both distances Lðp; qÞ and
Lðq; pÞ are used in (24). When two images are the
same the Kullback distance Dðp; qÞ will be zero,

i.e., the mutual information will be maximum,

implying that the mutual information is inversely

proportional to the Kullback distance. When a

predefined number of frames is randomly selected

from the set of frames that correspond to the im-

age sequence, the mutual information between

them is measured in order to ensure that selected
frames represent linearly independent measure-

ments.
5. Experimental results

In order to verify the proposed image sharp-

ening technique we have used an image sequence

of the Washington monument. The image se-
quence contained 50 frames. Fig. 4 illustrates for

three randomly selected frames how the ICA al-

gorithm extracts one diffraction limited source

image that corresponds to the original object and

the two extracted source images that correspond to

the spatial turbulence patterns. Fig. 4(a) shows

three frames randomly selected from the 50

frames. In the ICA context these frames are called
data frames. Fig. 4(b) shows the extracted source

images using the JADE algorithm [6]. As expected,

one source image corresponds to the original ob-

ject and other two source images correspond to

turbulence realizations. As discussed in [14,15] the



Fig. 6. From left to right: images obtained as an average of 2,

3, and 50 frames.
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image distortion caused by turbulence can also be

reduced by a frame averaging method. However, it

is known that the frame averaging approach suf-

fers from a loss of details. This is not the case with

the proposed algorithm. Fig. 6 shows, from left to

right, images obtained by averaging two and three
randomly selected frames as well as by averaging

all 50 frames contained in the image sequence. In

order to quantify the performance of the proposed

image sharpening approach we have used a metric

based on the Laplacian operator [17]. The Lapla-

cian operator approximates the linear second de-

rivative of intensity Iik in direction x and y

Sðx; yÞ ¼ r2Iikðx; yÞ �
o2Iikðx; yÞ

ox2
þ o2Iikðx; yÞ

oy2
;

ð26Þ
and the image sharpening metric is defined by
Fig. 5. (a) Edges extracted by the Canny�s method for three

data frames shown in Fig. 4(a). (b) Edges extracted by the

Canny�s method for three source images shown in Fig. 4(b).
S4 ¼
1

qp

X
x

X
y

S x; yð Þj j; ð27Þ

where q and p represent image dimensions in x and
y directions, respectively. The proposed metric is

equivalent to the image sharpening metric in

[17,14] defined by

S�
4 ¼

1

qp

Z Z
o4Iikðx; yÞ
ox2 oy2

����
����dxdy: ð28Þ

What makes (27) suitable as a performance

measure is that the Laplacian operator is inher-

ently a spatial high-pass filter, so that it yields a

larger response to a line than to a step, and also

to a point than to a line [17]. An image that

contains turbulence is typically comprised of

points varying in brightness, and the Laplacian

operator will emphasize the points. In that sense
the extracted source image that corresponds to

the original object should have the smallest value

of the metric S4 compared with both the original

data images and the extracted source images that

correspond to the turbulence patterns. Table 1

gives values of the metric (27) for the three im-

ages shown in Fig. 6. They were obtained by

averaging two and three randomly selected
frames as well as by averaging all 50 frames.

Results shown in Table 1 are in agreement with

the known fact that the noise variance is de-

creased when number of observations (i.e.,

frames) is increased. This confirms the consis-

tency of the adopted image sharpening metric

(27). As expected, the smallest value of metric

(27) is obtained for averaging all 50 frames. Table



Table 1

Image enhancement metric (27) obtained for the four images

obtained as an average of two, three, four randomly selected

frames as well as an average of all 50 frames

Number of the averaged

frames

2 3 50

The sharpening metric S4 8.6698 8.5572 8.2468
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2 gives results for the metric S4 for both data and

source images for two randomly selected frames.

As expected, the source image Îo1 that corre-

sponds to the original object has the smallest

value of the metric S4 when compared with both

data images Ii1 and Ii2 as well as with the aver-

aged image (the first image on the left in Fig. 6)
whose metric is given in the second column of

Table 1. We also want to comment that the

metric S4 associated with the source image Îo1 is

smaller than values obtained from the averaged

images given in Table 1. The same conclusion

applies in the case of the three randomly selected

sources illustrated in Fig. 4 for which the value of

metric S4 is given in Table 3. This suggests that
by using the proposed approach better image

sharpening results can be obtained by randomly

selecting a small number of frames (two or three)

than by averaging a large number of frames (50

in this case). This result is also important due to

the fact that the frame averaging approach to

image sharpening has as a side effect the tendency

to produce images with loss of details, which is
Table 2

Image enhancement metric (27) obtained for two randomly

selected frames as well as for the corresponding two source

images extracted by JADE ICA algorithm [6]

Image Ii1 Ii2 Îo1 Îo2

The sharpening

metric S4
9.177 8.9569 8.1743 11.9205

Table 3

Image enhancement metric (27) obtained for three randomly selecte

extracted by JADE ICA algorithm [6]

Image Ii1 Ii2 Ii3

The sharpening metric S4 9.1051 9.0119 9.3
not the case with the approach proposed here. As

expected, metric S4 obtained for the source im-

ages associated with the turbulence patterns has

the greatest value by comparison with both the

original data images as well as with images ob-
tained by the frame averaging method. To further

illustrate the performance of the proposed image

sharpening algorithm we have shown in Fig. 5(a)

edges extracted by the Canny�s method for the

three randomly selected frames as shown in

Fig. 4(a), and in Fig. 5(b) edges for the three

extracted source images as shown in Fig. 4(b). As

could be seen from the leftmost image in
Fig. 5(b), details like windows, the boundary line

between the vertical flat and inclined pyramidal

face as well as the top of the monument are re-

constructed. That is not the case with the raw

data images shown in Fig. 4(a) the edges of which

are shown in Fig. 5(a), where on some data im-

ages the top of monument is not reconstructed,

the boundary line is missed on all of them or
turbulence artifacts are present on the vertical flat

face of the monument. To further characterize

turbulence we have estimated scintillation index

calculated as the normalized variance of the ir-

radiance fluctuations [13]

b2 ¼
I2ik
� �

� Iikh i2

Iikh i2
: ð29Þ

The results are given in Table 4 for the three data

images shown in Fig. 4(a). The value of the scin-

tillation index is approximately 0.02. Accordingly
the atmospheric turbulence present in the image

sequence presented herein can be classified as a

weak.
d frames as well as for the corresponding three source images

Îo1 Îo2 Îo3

600 8.0625 14.3057 13.564

Table 4

Scintillation index for the three data images shown in Fig. 4(a)

Image Ii1 Ii2 Ii3

Scintillation index 0.0192 0.0199 0.0197
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6. Conclusion

A novel approach to the image sharpening in

the presence of atmospheric turbulence is pro-

posed in this paper which is based on the appli-
cation of the ICA algorithm to randomly selected

frames from the image sequence. The mutual in-

formation between the selected image frames was

measured in order to ensure linearly independent

measurements. In the ICA framework, the selected

frames were used as sensors implying that the

underlying sources are spatially independent. We

have demonstrated the capability of the proposed
concept to extract blurring effects contributed by

atmospheric turbulence as separate physical sour-

ces. A metric based on the Laplacian operator is

employed to quantify the performance. Compari-

son is made among the original data images, image

obtained by the frame averaging method and dif-

fraction limited object source images extracted by

the ICA algorithm for the case of two and three
selected frames. The best results were always ob-

tained for the ICA extracted object image when

compared to both the original data images and

images obtained by the frame averaging method.

Unlike the frame averaging method, the proposed

ICA approach does not suffer from loss of detail.

Based on the value of the estimated scintillation

index, the turbulence present in the experimental
data is classified as weak.
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