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Abstract

Due to the simplicity and low cost, since only a few detectors are used, reticle trackers are still in use and are subject

of further research. However, the major disadvantage of the reticle trackers has been proven to be sensitivity on the

man-made clutters such as flares or jammers. To resolve this problem a beam splitter based modification of the optical

trackers has been used successfully for tracking and discrimination of the several moving incoherent (heat) optical

sources in the mathematical framework called independent component analyses (ICA). Here we further explore the

theoretical basis of the coherent and partially coherent illumination by laser for the possibility of blind source de-

mixing. An application of the partial coherence theory and Huygens–Fresnel principle is utilized to formulate the

problem. When incoherence is assumed a linear ICA model is obtained while in the most general case of either partially

or totally coherent optical radiation the resulting signal model is inherently nonlinear. It can be transformed into linear

one under very special condition that assumes no relative motion between the radiating sources. In the most general

case of partially coherent radiation, tracking of the several moving optical sources by using the beam splitter based

reticle trackers is possible either by using ICA algorithms developed for undercomplete representation or by intro-

duction of one additional sensor. The three conditions necessary for the ICA theory to work (statistical independence

and non-Gaussianity of the source signals and nonsingularity of the mixing matrix) are shown to be fulfilled in principle

for any kind of the reticle geometry. In relation to some IR counter–countermeasures algorithms which are based on the

heuristic and sometimes unrealistic assumptions (target performs no maneuvering) the approach exposed here has been

proven to be theoretically consistent without any special constraints imposed on the optical sources. � 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Reticle trackers are considered to be the classical
approach for estimating the position of a target in a
considered field of view (FOV) and are widely used
in IR seekers [3–14]. Their advantage is simplicity
and low cost [10,11]. However, the major drawback
of the reticle trackers has been proven to be sensi-
tivity on the man-made clutters such as flares and
jammers [8,10]. Such limitation of the reticle sys-
tems in the real world applications was very often
due to the use of the single detector element [10].
Several attempts to neutralize such a problem are
based on the introduction of the segmented focal
plane arrays (FPA) behind the reticle [10,14].
Since the advantage of the reticle seekers is

simplicity and low cost the segmented FPA must
be comprised of a small number of detectors so as
not to become as complex and expensive as an
imaging system with a full strength FPA. The
problem still exists when the two sources are in the
space region acquired by the same detector ele-
ment. An appropriate space resolution should be
ensured by using more detector elements. A new
approach proposed in [3,7] was extended in [4–6]
and will be completed in this paper. It is based on
the independent component analysis (ICA) theory
and an appropriate modification of the optical
tracker design. We present in Section 2 a brief
description of the optical modulation theory while
more details can be found in [8–13]. In Section 3 a
rigorous derivation of the signal model of the
modified optical tracker output signals is given.
Motivated by the advent of the Laser Radar, LI-
DAR, we explore the general case of the blind
discrimination capability of the moving coherent
and partially coherent laser sources or the inco-
herent heat sources. An application of the statis-
tical optics principles, the partial coherence theory
and the Huygens–Fresnel principle [1,2], is utilized
to formulate the problem. Although, the linear
ICA is obtained as a special solution for the in-
coherent sources this case is of practical interest.
Therefore, we address in Section 4 the problem of
the characterization of the linear part of the signal
model derived in Section 3. By using blind identi-
fication approach [21], we show that the convolu-
tive mixing model could be non-minimum phased.

We propose an adaptive frequency domain algo-
rithm for separating experimental data obtained
from the modified optical tracking device [24]. In
Section 5 the experimental results are presented for
the incoherent heat sources while conclusions are
given in Section 6.

2. Optical modulation theory

The reticle system provides directional infor-
mation for tracking and also suppresses unwanted
background signals [8,9], by performing modula-
tion of the incident light flux. According to the
type of the reticle and the relative motion pro-
duced by the scan pattern, the encoding method of
the reticle may be classified into AM, FM and
pulse code modulation. In addition, according to
how the relative motion between the reticle and the
optical spot is obtained we may classify reticle
systems into fixed or moving reticle. When reticle
is fixed the relative motion can be obtained by
using rotating mirror which causes the light beam
and hence the spot to either nutate or rotate in
relation to the fixed reticle. In the opposite case
spot forming optics is fixed while reticle performs
either nutation [3,8,9] or spinning, [12,13]. The
general case of the moving reticle system is illus-
trated with Fig. 1. The moving reticle is placed in
the focal plane of the collecting optics, while field
optics collects modulated light and focuses it on
the detector. The selective amplifier center fre-
quency is usually the number of spoke pairs times
the nutation or spinning frequency. The rising-sun
reticle that is very often used in the nutating FM
reticle trackers [3,8,9] is shown in Fig. 2. In a case
of either nutation or spinning the detector output
voltage is proportional to the light irradiance be-
hind the reticle according to [12,13]

IðtÞ¼ IP
Z R

0

Z p

�p
sðr;uÞd½r� r0;h�ðXt�u0Þ�r dudr;

ð1Þ

where sðr;uÞ is the reticle transmission function
(rtf) and r and u are spatial variables of the rtf
ranging from 0 to R and �p to p, respectively.
Also let the reticle nutation or spinning rate be X
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in rads�1 and let r0 and h0 be the spatial coordi-
nates of a point source that is imaged onto the
reticle. IP in (1) is the peak irradiance of the point
source through the rtf. Since the convolution of
any function with delta function is the function
located at the delta function coordinates Eq. (1)
becomes

IðtÞ ¼ IPsðr0;Xt � u0Þ: ð2Þ

We shall derive Eq. (2) in Section 3 as a limiting
case of the multi-source scenario by using more
general approach based on the statistical optics
principles, the partial coherence theory and the
Huygens–Fresnel principle of the propagation of
electromagnetic waves [1,2]. In a case of the optical
trackers that generate FM signal by means of the
rising-sun reticle, Fig. 2, and nutation the rtf are of
the form [9,11]

sðr;u; tÞ ¼ IP cos½mXt � mðr=aÞ sinðuÞ�: ð3Þ

The optical spot performs circular motion, with
radius a, around the center with coordinates ðr;uÞ
relative to the center of the reticle. Necessary
condition for Eq. (3) to hold is ðr=aÞ2 � 1. m in
Eq. (3) is the number of spoke pairs of the reticle.
Eq. (3) represents canonical form of the FM signal
where frequency deviation from the carrier fre-
quency is directly proportional with the spot r
coordinate. So by using nutating rising-sun reticle,
both directional information distance and azimuth
are encoded in the reticle transmission function.
Instead of using nutation the relative motion be-
tween the spot and the reticle can be obtained by
simple rotation or spinning.
That happens when according to Eq. (3) r ¼ 0

while a represents spot radial coordinate. It is
obvious from Eq. (3) that reticle transmission
function is reduced on the pure cosine being in-
variant of the spot coordinates. It means that the
rising-sun reticle cannot be used for encoding the
optical spot position in the spinning case, never-
theless, whether FM or AM modulation is used. A
lot of other spoke geometries is proposed for that
purpose [12,13]. It has been shown in [12] that rtf
of the spinning FM reticle can be written in gen-
eral form as

sðr; hÞ ¼ 1

2
þ 1

2
cos mðrÞ

Z hþqðrÞ

0

f ðaÞda
� �

: ð4Þ

The 1/2 dc term in Eq. (4) allows an average reticle
transmission of 1/2 rather than zero (i.e. no light
passing the reticle). The spinning FM reticles can
be completely described by these three parameters:

Fig. 1. The moving reticle based optical tracker.

Fig. 2. The rising-sun reticle.
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frequency vs. angle f ðhÞ, frequency vs. radius mðrÞ
and phase or spoke function qðrÞ. To use a spin-
ning reticle for finding a target in both the radial
and azimuth direction at least nonconstant f ðhÞ
and mðrÞ parameters must be imposed on the ret-
icle. Such reticle is shown in Fig. 3. The spatial
transmission function of this reticle is

sðr; hÞ ¼ 1

2
þ 1

2
cos m

r
R
½h

n
þ 0:4 sinðhÞ�

o
: ð5Þ

Because an FM signal is known to be superior to
an AM signal with regard to signal quality, that is
it suffers less noise interference, the FM reticles are
generally of greater interest. Nevertheless, the AM
reticles are used in IR missile seekers especially in
the surface-to-air and air-to-air environments. It
has been shown in [13] that it is possible to de-
scribe spinning AM reticles using three amplitude
parameters (similarly to the previously described
FM parameters): amplitude vs. angle f ðhÞ, am-
plitude vs. radius gðrÞ, and phase qðrÞ. The general
AM equation is given by [13]

SðhÞ ¼ 1

2
þ V ½1þ mf ðhÞ� cosðkhÞ; ð6Þ

where SðhÞ is the modulated signal, V is the con-
stant, m is the modulation index, f ðhÞ is the low
frequency modulation signal and k is the carrier
frequency that corresponds with the number of
spoke pairs. Like in the FM reticle case the 1/2 dc
term in Eq. (6) allows an average reticle trans-
mission of 1/2 rather than zero (i.e., no light
passing the reticle). Reticle that encodes both the
target radial and angular position shown in Fig. 4
with a spatial transmission function is given by

sðr; hÞ ¼ 1

2
þ 1

4

r
R
ð1þ cos hÞ cosð30hÞ: ð7Þ

More details about the reticle tracking systems can
be found in [8–14].

3. Derivation of the signal model

We shall assume the scenario shown in Fig. 1.
Intensity at point Q (detector) is obtained as

IQ ¼ huðQ; tÞu
ðQ; tÞi; ð8Þ

where

uðQ; tÞ ¼ uðQ1; tÞ þ uðQ2; tÞ ð9Þ

and uðQ1; tÞ is disturbance at the point Q due to
the point P1 in the plane R1 and uðQ2; tÞ is distur-
bance at the point Q due the point P2 in plane R1.
Those quantities can be obtained as functions of
the radiation at the points P1 and P2 by application
of the Huygens–Fresnel principle to the propaga-
tion of the optical waves. Relation will be derived
for the quantity uðQ1; tÞ while for uðQ2; tÞ the full
analogy applies. We shall give derivation for the
quasi-monochromatic or narrow-band light since
it is of the practical interest. The purely mono-
chromatic case is obtained as a special case of the
quasi-monochromatic derivation. If the light is
quasi-monochromatic, then [1,2]

uðQ1; tÞ ¼
Z Z

R1

uðP1; t � d1=cÞ
d1

KðP1;Q1ÞK1 dP1;

ð10Þ
where K1 is the inclination factor that for the small
diffraction angle h1 can be approximated with
K1 ¼ 1=j�kk, where �kk is central wavelength of the
source emitting band. Because the optical system is
present between R1 and R2 its influence is takenFig. 3. Frequency vs. radius and angle [12].

Fig. 4. Amplitude vs. radius and angle [13].
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into account introducing KðP1;Q1Þ into the inte-
gral (10). We shall assume here the ideal lenses and
only rtf to be important so that

KðP1;Q1Þ ffi sðr1;Xt � u1Þ: ð11Þ

Now intensity IQ in Eq. (8) is obtained as

IQ ¼ huðQ1; tÞu
ðQ1; tÞi þ huðQ2; tÞu
ðQ2; tÞi
þ huðQ1; tÞu
ðQ2; tÞi
þ hu
ðQ1; tÞ; uðQ2; tÞi: ð12Þ

The first two parts in Eq. (12) represent intensities
produced by the optical sources placed at the
points P1 and P2, respectively. Then for the quasi-
monochromatic light it applies

IðQ1; tÞ ¼ huðQ1; tÞu
ðQ1; tÞi

¼ 1
�kk2

Z Z
R1

Z Z
R1

IðP1; tÞ
d21

dP1 dP1


 sðr1;u1; tÞ: ð13Þ

If we assume a point source at P1, then

u P1; t
�

� d1
c

�
¼ u P1; t

�
� d1
c

�
dðjP � P1jÞ: ð14Þ

Then Eq. (13) is reduced to

IðQ1; tÞ ¼
1
�kk2
IðP1; tÞ
d21

sðr1;u1; tÞ: ð15Þ

In Eqs. (13) and (15) as well as in analogous
subsequent derivations it will be assumed that
[4,5]:

s2ðr1;u1; tÞ ¼ sðr1;u1; tÞ;
hsðr1;u1; tÞi ¼ sðr1;u1; tÞ:

Derivation of the third and fourth part in Eq. (12)
is becoming especially interesting. For a narrow-
band light it applies the following

huðQ1; tÞu
ðQ2; tÞi

¼ 1
�kk2d1d2

Z Z
R1

Z Z
R1

C P1; P2; t
�

� d2 � d1
c

�


 dP1 dP2 
 sðr1;u1; tÞsðr2;u2; tÞ: ð16Þ

For the hu
ðQ1; tÞuðQ2; tÞi the same expression is
obtained so it will not be derived. According to [2,
pp. 180 and 197, Eqs. (5.2-31) and (5.4-7)] it ap-
plies for the quasi-monochromatic light

C P1;P2;
d2 � d1
c

� �
¼ JðP1;P2Þ exp

�
� j

2p
�kk
ðd2 � d1Þ

�

and Eq. (16) becomes

huðQ1; tÞu
ðQ2; tÞi

¼ 1
�kk2d1d2

Z Z
R1

Z Z
R1

JðP1; P2Þ


 exp

�
� j

2p
�kk
ðd2 � d1Þ

�


 dP1 dP2 
 sðr1;u1; tÞsðr2;u2; tÞ; ð17Þ
where C ðP1; P2; sÞ is the mutual coherence and
JðP1; P2Þ is the mutual intensity of light at the
points P1 and P2. According to [2, p. 181, Eqs. (5.2-
30)–(5.2-33)] and [1, p. 507, Eqs. (9) and (10)] the
mutual intensity can be expressed as

JðP1; P2Þ exp
�
� j

2p
�kk
ðd2 � d1Þ

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðP1ÞIðP2Þ

p
c12ð0Þ;

where c12ð0Þ is the mutual degree of coherence of
the two sources u1 and u2 in the plane R1. Then
Eq. (17) is transformed into

huðQ1; tÞu
ðQ2; tÞi

¼ 1
�kk2d1d2

Z Z
R1

Z Z
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðP1; P2Þ

p
c12ð0ÞdP1 dP2


 sðr1;u1; tÞsðr2;u2; tÞ: ð18Þ

Assuming point sources at the points P1 and P2 we
finally obtain

huðQ1; tÞu
ðQ2; tÞi ¼
1

�kk2d1d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðP1; P2Þ

p
c12ð0Þ


 sðr1;u1; tÞsðr2;u2; tÞ: ð19Þ

From [1, pp. 507–508, Eqs. (9)–(13)] and [2, pp.
181 and 205, Eqs. (5.2-37) and (5.5-14)–(5.5-16)] it
applies for the quasi-monochromatic source

c12ð0Þ ¼ jc12ð0Þj cosðb12Þ; ð20Þ
where

b12 ¼ arg c12ð0Þ ¼ UðP2Þ � UðP1Þ ð21Þ
and for the moving quasi-monochromatic sources
it can be written

c12ðtÞ ¼ jc12ðtÞj cos 2p
m
�kk
t

�
þ DU

�
; ð22Þ
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where m is relative velocity between the two points
and DU is some initial phase difference. Now
Eq. (18) can be written as

huðQ1; tÞu
ðQ2; tÞi

¼ 1
�kk2d1d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðP1; P2Þ

p

 c12ðtÞsðr1;u1; tÞsðr2;u2; tÞ;

ð23Þ

where c12ðtÞ is given with Eq. (22) for the quasi-
monochromatic radiation and is in principle the
unknown function of time for the polychromatic
radiation. Eq. (23) can be applied on the pure
monochromatic sources replacing �kk with k0. The
photo-current is obtained when the intensity IQ,
Eq. (12) and the related Eqs. (15) and (23), is ex-
pressed in terms of the spectral irradiance and
when detector spectral responsivity is taken into
consideration giving for the quasi-monochromatic
and purely monochromatic sources

iðtÞ ¼ A
�kk2
IðP1; �kk; tÞ
d21

Rð�kkÞ 
 sðr1;u1; tÞ

þ A
�kk2
IðP2; �kk; tÞ
d22

Rð�kkÞ 
 sðr2;u2; tÞ

þ 1
�kk2d1d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðP1; �kk; tÞIðP2; �kk; tÞ

q
c12ðtÞ


 sðr1;u1; tÞsðr2;u2; tÞ; ð24Þ

where A is the detector sensing area and Rð�kkÞ is the
detector, responsivity. Eq. (24) will be the basis for

obtaining expressions for the optical tracker out-
put signals.
Let the modified tracker be illustrated with Fig. 5

[3–7]. The reason for using more detectors is the
inability of the existing tracker, Fig. 1, to discrim-
inate more optical sources [3–14]. On the basis of
Eq. (24) the photo-currents i1 and i2 can be
obtained by simply inserting sðkÞ and qðkÞ in (24),
where sðkÞ is the beam splitter transmission coeffi-
cient and qðkÞ is the beam splitter reflection coeffi-
cient. The optical tracker output signals x1 and x2
are obtained as

xjðtÞ ¼ gjðtÞ 
 ijðtÞ; j 2 f1; 2g; ð25Þ
where g1 and g2 are impulse responses of the se-
lective amplifiers and 
 means temporal convolu-
tion. Based on Eq. (24) the following is obtained
for the quasi-monochromatic and monochromatic
sources

x1ðtÞ ¼ g11ðtÞ 
 sðr1;u1; tÞ þ g12ðtÞ

 sðr2;u2; tÞ þ g13ðtÞ

 ½c12ðtÞ 
 sðr1;u1; tÞsðr2;u2; tÞ� ð26Þ

x2ðtÞ ¼ g21ðtÞ 
 sðr1;u1; tÞ þ g22ðtÞ

 sðr2;u2; tÞ þ g23ðtÞ

 ½c12ðtÞ 
 sðr1;u1; tÞsðr2;u2; tÞ�;

where expressions for the impulse responses
gijðtÞ i; j 2 f1; 2; 3g are given in [4,5]. Due to the
high level of non-stationarity we were not able to

Fig. 5. The modified optical tracker.
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include in Eq. (26) the mutual degree of coherence
c12ðtÞ as the part of the impulse responses. The
general approach to work with nonlinear mixtures
is to apply ICA algorithms developed for the
nonlinear models such as [18–20]. However, we
shall exploit here the special properties of the
physical model of the optical tracking system that
makes it possible to use linear ICA algorithms.
The signal model equation (26) is reduced into the
linear one when the optical sources are incoherent
i.e. c12ðtÞ ¼ 0 [3–7]. Also, if c12ðtÞ ¼ const: the
signal model equation (26) is transformed into the
linear one by simple linear bandpass filtering [4,5].
In the most general case when c12ðtÞ is some arbi-
trary function of time we can introduce additional
artificial source signal: s3ðtÞ ¼ Re½c12ðtÞ� 
 s1ðtÞ
s2ðtÞ. We can either use the ICA method developed
for undercomplete representation (i.e. more sour-
ces than sensors) [27], in order to recover the three
source signals from the two measured signals or to
introduce one additional beam splitter and one
additional detector in order to recover the three
unknown source signals on the basis of three
measured signals. We can discard the source signal
s3 after recovery since we are not interested in it.
Since the first two source signals are sub-Gaussian
signals the third source signal can be even Gauss-
ian. That fulfills the non-Gaussianity requirement
for the ICA theory to work. The second require-
ment is the statistical independence between the
source signals. It has been shown in [3] that this
requirement is fulfilled for the source signals s1 and
s2. The third requirement is the non-singularity of
the mixing system equation (26) and it has been
shown in [3] that this requirement is also fulfilled if
the beam splitter transmission coefficient satisfies
sðkÞ 6¼ const: in the wavelength region of interest
what turns out to be always satisfied. We have to
show now that the artificial source signal s3 is
statistically independent in relation to the first two
source signals. For the two FM signals generated
by the nutating rising-sun reticle system, Fig. 2,
Fig. 6 shows the autocorrelation function c2ðs1Þ
while the cross-correlation function c11ðs1; s3Þ is
shown in Fig. 7. The fourth-order cumulant c4ðs1Þ
is shown in Fig. 8 while the fourth-order cross-
cumulant c22ðs1; s3Þ is shown in Fig. 9. It can be
noticed that the second- and fourth-order cross-

cumulants between s1; s2 and s3 are more than 10
times smaller than the related second- and fourth-
order cumulants. One can also note that in the
special case of the quasi-monochromatic radiation,
Eq. (22), for �kk ¼ 1 lm and relative velocity
m > 0:1 ms�1 the numerical frequency f ¼ m=�kk is
greater than 100 kHz in which case the nonlinear
part in Eq. (26) is transformed on the higher fre-
quencies that are out of the pass-band region of
the bandpass filters g13 and g23 so that the signal
model equation (26) could be again reduced on the
linear one by using linear bandpass filters.

Fig. 6. The autocorrelation function c2ðs1Þ.

Fig. 7. The cross-correlation function c11ðs1; s3Þ.
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4. Characterization of the signal model and blind

source separation algorithm

Since we have shown that the nonlinear model
(26) can in principle be reduced onto the linear one
we shall assume the linear form of the signal model
(26) i.e. that optical sources are mutually inco-
herent with c12ðtÞ ¼ 0. There are two problems
associated with the statistical inversion of the
convolutive mixtures, Fig. 10 and Eq. (26): the
whitening problems and problems with the non-
minimum phase of the mixing system transfer
function. The whitening problem can be solved by

the recurrent neural network architecture, Fig. 11
[15]. It is straightforward to derive relationships
between the mixing filters and the separation filters
in the Z domain:

W12ðzÞ ¼ G12ðzÞG22ðzÞ�1;
W21ðzÞ ¼ G21ðzÞG11ðzÞ�1

ð27Þ

or

W12ðzÞ ¼ G11ðzÞG21ðzÞ�1;
W21ðzÞ ¼ G22ðzÞG12ðzÞ�1:

ð28Þ

If the mixing filters G11ðzÞ; G12ðzÞ; G21ðzÞ and
G22ðzÞ have zeros outside the unit circle, then non-
causal realization of the separating filters W12ðzÞ
and W21ðzÞ must be used in order to approximate
unstable roots. Since any non-minimum phase
system can be written as GðzÞ ¼ GminðzÞGAPðzÞ,
where GminðzÞ is a minimum phase system and
GAPðzÞ is an all-pass system [25], the problem of
inverting the non-minimum phase system is to
delay the inverting systems properly [26]. For the

Fig. 10. Convolutive signal model.

Fig. 11. Recurrent separation network.

Fig. 8. The fourth-order cumulant c4ðs1Þ.

Fig. 9. The fourth-order cross-cumulant c22ðs1; s3Þ.
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recurrent separation network such delay is ob-
tained by going to the frequency domain and per-
forming the signal separation on the block by block
basis. Therefore, we have applied here an adaptive
frequency domain algorithm [24]. In order to
identify the possible non-minimum phase problems
we have applied the fourth-order cumulant based
blind identification [21], of the mixing filters G11ðzÞ
and G22ðzÞ that were modeled as the FIR filters of
the 14th order. Provided that the input signals are
non-Gaussian i.i.d. signals the coefficients of the
FIR filter of the order L are obtained as [21]

hðiÞ ¼ C4yðL; 0; iÞ
C4yðL; 0; 0Þ

; i ¼ 0; . . . ; L; ð29Þ

where C4yðL; 0; iÞ are the fourth-order cumulants
of the output signal y. Since in our case the input
signal is FM signal, that belongs to the sub-
Gaussian class of signals, the fourth-order cumu-
lants exist. Fig. 12 shows impulse response of such
blindly identified FIR filter while the magnitude
response is shown in Fig. 13 confirming the band-
pass nature of the selective amplifier postfilters.
Fig. 14 shows location of the zeros of such blindly
identified FIR mixing filter. Obviously, there are
zeros outside the unit circle. It should be noted
that the zeros locations of the mixing filters G11ðzÞ
and G22ðzÞ are influenced mainly by the character
of the selective amplifiers impulse responses.

One possible approach to blind source separa-
tion in multipath mixtures has been given in [32].
To recover the source signals we shall apply the
slightly modified version of the adaptive frequency
domain blind signal separation (BSS) algorithm
developed by Back and Tsoi [23], that was itself
the frequency domain extension of the time do-
main Herault–Jutten neural network [16,17]. The
convolutive BSS problem is described withFig. 12. Impulse response of the blindly estimated FIR filter.

Fig. 13. Magnitude response of the blindly estimated FIR filter.

Fig. 14. Zeros of the blindly identified FIR filter.
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xiðkÞ ¼
XN
j¼1

XL
s¼0
gijðsÞsjðk � sÞ 816 i6M ; ð30Þ

where M is the number of sensors, N is the number
of sources and L is the windowed filter’s length. We
shall assume here M ¼ N and gijs are the unknown
FIR filters shown for the 2
 2 case in Fig. 10. It is
a general recommendation for any BSS method to
apply it on the vector of the whitened or stan-
dardized data giving

~xx ¼ Vx; ð31Þ
where E½~xx~xxT� ¼ I and the whitening matrix V is
obtained as

V ¼ QK�1=2QT; ð32Þ
where K and Q are eigenvalue and eigenvector
matrices of the covariance matrix of the measured
vector x, i.e.

E½xxT� ¼ QKQT:

The solution of the convolutive BSS problem is to
find the matrix of filters that will transform in the

linear manner the standardized vector ~xx into the
output vector y with as much statistically inde-
pendent components as possible. Transformation
of the time domain convolutive model into the
frequency domain results in the complex instan-
taneous model at each frequency band according
to Fig. 15. In this way a linear convolutive prob-
lem (26)–(31) is transformed into the L complex
instantaneous problems that can be solved with
the BSS algorithms basically developed for the
instantaneous mixtures [17,28–30]. Here L is the
DFT length. There are, however, two problems
associated with the convolutive mixtures that
generally do not exist in the instantaneous case.
The first one is scaling and permutation indeter-
minacy that is a feature inherent to the all BSS
algorithms. The permutation indeterminacy be-
comes especially a serious problem if the convol-
utive problem is being solved in the frequency
domain since the reconstruction of the time do-
main output signals requires all the frequency
components of the same source. If the complete
BSS algorithm is carried out in the frequency

Fig. 15. Frequency domain adaptive blind source separation.
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domain the very complicated solutions for the
permutation indeterminacy are being proposed
[31,33,34]. If however, filtering is done in fre-
quency domain and separation criterion (inde-
pendence, nonlinearities, HOS) is done in time
domain the permutation and scaling problems do
not exist. Examples of such methods are given in
[23,24,26,34]. The second problem is the whitening
effect that generally does not exist with the in-
stantaneous mixtures. It can be avoided by the use
of the recurrent neural network, Fig. 11, to per-
form the BSS task [15]. For the recurrent neural
network, Fig. 11, the input–output equations at
each frequency bin k are given with

Y ðz; kÞ ¼ ~XX ðz; kÞ � W ðz; kÞY ðz; kÞ; ð33Þ

where Y and ~XX are DFTs of y and ~xx, W is the off-
diagonal matrix, and k is the frequency bin index.
When separation matrix W ðz; kÞ is updated ac-
cording to some learning rules the vector of the
recovered signals Y is based on (33), obtained as

Y ðz; kÞ ¼ ðI þ W ðz; kÞÞ�1 ~XX ðz; kÞ: ð34Þ
The frequency domain learning rules of the re-
current neural network developed by Back and
Tsoi [23], are similar to the time domain Herault–
Jutten neural network [17]

DWij ¼ Uð�yyj; kÞWðyi; kÞ; ð35Þ

where nonlinearities Uð�Þ and Wð�Þ are obtained
as:

WðyiÞ ¼ STFT½wðyiÞ�; Uð�yyjÞ ¼ STFT½uð�yyjÞ�;
yi ¼ ISTFTðYiÞ; �yyj ¼ ISTFTðY 


j Þ; ð36Þ

where STFT means the Short-Time Fourier
Transform that for the signal xiðkÞ is given with [36]

X STFT
i ðx;mÞ ¼

X1
k¼�1

xðkÞwðk � mÞe�jkx;

where wðkÞ is the sliding window of the length L
centered at k ¼ 0 and m is the data block index. In
the experiments reported in Section 5 we have used
the Hanning window for wðkÞ. The STFT enables
us to handle the non-stationary mixtures and sig-
nals. The convergence of the learning equation
(35) is ensured provided that the source signals
have even pdfs and the nonlinear functions Uð�Þ

and Wð�Þ are odd. We have found, however, that
modification of the learning rule (35) in the fol-
lowing manner improves the performance signifi-
cantly [24]:

DWij ¼ Uð�yyj; kÞWðyi; kÞ;
DWji ¼ Uðyi; kÞWð�yyj; kÞ;

ð37Þ

where i ¼ 1; . . . ;N � 1; j ¼ iþ 1; . . . ;N and

UðyiÞ ¼ STFT½uðyiÞ�; Uð�yyiÞ ¼ STFT½uð�yyiÞ�;
WðyiÞ ¼ STFT½wðyiÞ�; Wð�yyiÞ ¼ STFT½wð�yyiÞ�;
yi ¼ ISTFTðYiÞ; �yyi ¼ ISTFTðY 


i Þ ð38Þ

and the nonlinearities uð�Þ and wð�Þ are applied
componentwise. In computing the STFT we will
use the Cooley–Tuckey fast Fourier transform
(FFT) algorithm. For the 2
 2 case here proposed
learning rule based on (37) is:

DW12 ¼ Uð�yy2; kÞWðy1; kÞ;
DW21 ¼ Uðy1; kÞWð�yy2; kÞ:

ð39Þ

It has been shown additionally for the instanta-
neous mixtures in [28,29] that the separation al-
gorithms will still be efficient if wð�Þ is linear
function and uð�Þ is some odd nonlinear function.
This significantly simplifies learning equation (39):

DW21 ¼ Uð�yy2; kÞY1ðkÞ;
DW12 ¼ Uðy1; kÞY 


2 ðkÞ;
ð40Þ

since one FFT and one IFFT less are required. It
has been shown that from both the maximum
likelihood principle [30] and the entropy maximi-
zation principle [35] the optimal choice of the
nonlinearity uð�Þ is given with

uðyiÞ ¼ � 1

pðyiÞ
dpðyiÞ
dyi

; ð41Þ

where pðyÞ is the pdf of the data. This is in con-
tradiction with the assumed blind scenario ac-
cording to which we do not know the pdf of the
data. But the learning equations will still be su-
perefficient [22], provided that the pdf of the data
is an even function and the uð�Þ is an odd non-
linear function. For the super-Gaussian data the
good choice is uðyÞ ¼ tanhðyÞ while for the sub-
Gaussian data the good choice is uðyÞ ¼ 2yþ
signðyÞy2.
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5. Experimental results for the incoherent (heat)

sources

Measured signals x1 and x2 are obtained on the
basis of the two frequency modulated (FM) source
signals s1 and s2 by means of the optical tracking
device [3–7], whose schematic diagram is shown in
Fig. 5 and photography of the working model is
shown in Fig. 16. Deviation of the FM signal is
proportional with the distance of the optical

source from the optical axis of the optical tracker.
Spectrograms of the source signals s1 and s2 are
shown in Figs. 17 and 18, respectively, while the
spectrograms of the measured signals x1 and x2 are
shown in Figs. 19 and 20, respectively. It can be
seen from the spectrograms in Figs. 19 and 20 that
two signals, corresponding with the associated
single optical sources, exist simultaneously in the
measured signals x1 and x2. When an FM de-
modulator is applied on either signal x1 or signal
x2, only the IR optical source that was placed near
the center of the field of view (FOV) can be dis-

Fig. 16. Functional model of the modified reticle tracker.

Fig. 17. Spectrogram of the signal s1.

Fig. 18. Spectrogram of the signal s2.

Fig. 19. Spectrogram of the signal x1.
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criminated. If, however, the frequency domain
based BSS algorithm, Eqs. (34)–(41), is applied on
the signals x1 and x2 the influence of the IR source
placed near the center of the FOV can be elimi-
nated and both IR sources can be discriminated.
Here, we have used the filter length of the 32 taps.
In order to eliminate effects of the circular con-
volution the 32 zeros are added to the signal vec-
tors prior to doing FFT. So the overall FFT length
was L ¼ 64. This FFT length introduces 1 ms de-
lay in the tracking loop making it suitable for the
real time tracking. We have done the frequency
domain implementation using the overlap-save

technique with the overlap factor 0.5. The data
were whitened before applying the BSS algorithm.
Spectrograms of the output signals y1 and y2, ob-
tained according to Eq. (33) are shown in Figs. 21
and 22. It can be observed in the signal y1 that the
influence of the IR source placed near the center of
the FOV is eliminated. Fig. 23 shows demodulated
signals: the first one (with dick solid line) obtained
after demodulation of the original source signal
and the second one (with thin solid line) obtained
after demodulation of the recovered signal with
uðyÞ þ 2y þ signðyÞy2.

Fig. 21. Spectrogram of the signal y1.

Fig. 22. Spectrogram of the signal y2.

Fig. 23. Demodulated signals: dick line-original source; thin

line-recovered source.

Fig. 20. Spectrogram of the signal x2.
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6. Conclusion

The beam splitter based modification of the
reticle optical trackers is used for tracking and
discrimination of the several optical sources. The
mathematical framework called ICA is used for
that purpose. The theoretical basis of the problem
is formulated by using the statistical optics prin-
ciples, the partial coherence theory and the Huy-
gens–Fresnel principle. It has been shown
analytically and verified experimentally that inco-
herent (heat) sources produce the linear ICA
model which enables the application of the linear
ICA theory to recover the unknown rtfs that en-
code positions of the corresponding single optical
sources. In a case of the partially coherent illumi-
nation by laser a nonlinear and highly nonsta-
tionary signal model is obtained. However,
transformation into the linear model is possible in
a special case when the partially coherent optical
sources are not in a relative motion i.e. when the
mutual degree of coherence is time invariant. If the
coherence factor is time dependent we can intro-
duce an additional source signal and apply the
linear ICA algorithms developed for the under-
complete representation or an additional sensor
must be used in order to have the same number of
sensors and sources.
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