
www.elsevier.com/locate/optcom

Optics Communications 266 (2006) 456–464
Single frame blind image deconvolution by non-negative
sparse matrix factorization

Ivica Kopriva a,d,*, Dennis J. Garrood b, Vesna Borjanović b,c
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Abstract

Novel approach to single frame multichannel blind image deconvolution has been formulated recently as non-negative matrix factor-
ization problem with sparseness constraints imposed on the unknown mixing vector that accounts for the case of non-sparse source
image. Unlike most of the blind image deconvolution algorithms, the novel approach assumed no a priori knowledge about the blurring
kernel and original image. Our contributions in this paper are: (i) we have formulated generalized non-negative matrix factorization
approach to blind image deconvolution with sparseness constraints imposed on either unknown mixing vector or unknown source image;
(ii) the criteria are established to distinguish whether unknown source image was sparse or not as well as to estimate appropriate sparse-
ness constraint from degraded image itself, thus making the proposed approach completely unsupervised; (iii) an extensive experimental
performance evaluation of the non-negative matrix factorization algorithm is presented on the images degraded by the blur caused by the
photon sieve, out-of-focus blur with sparse and non-sparse images and blur caused by atmospheric turbulence. The algorithm is com-
pared with the state-of-the-art single frame blind image deconvolution algorithms such as blind Richardson–Lucy algorithm and single
frame multichannel independent component analysis based algorithm and non-blind image restoration algorithms such as multiplicative
algebraic restoration technique and Van-Cittert algorithms. It has been experimentally demonstrated that proposed algorithm outper-
forms mentioned non-blind and blind image deconvolution methods.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The goal of image deconvolution is to reconstruct the
original image from an observation degraded by spatially
invariant blurring process and noise. Neglecting the noise
term the process is modeled as a convolution of a blurring
kernel h(s, t) with an original source image f(x,y) as:
0030-4018/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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gðx; yÞ ¼
XK

s¼�K

XK

t¼�K

hðs; tÞf ðxþ s; y þ tÞ ð1Þ

where K denotes the size of the blurring kernel. If the blur-
ring kernel is known, a number of so-called non-blind algo-
rithms is available to reconstruct original image f(x,y) [1].
However, it is not always possible to measure or obtain
information about the blurring kernel, which is why blind
deconvolution (BD) algorithms are important. Compre-
hensive comparison of BD algorithms is given in [1]. They
can be divided into those that estimate the blurring kernel
h(s, t) first and then restore original image by some of the
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non-blind methods [1], and those that estimate the original
image f(x,y) and the blurring kernel simultaneously. In or-
der to estimate the blurring kernel a support size has either
to be given or estimated. Also, quite often a priori knowl-
edge about the nature of the blurring process is assumed
to be available in order to use appropriate parametric mod-
el of the blurring process [2]. It is not always possible to
know the characteristic of the blurring process. Methods
that estimate blurring kernel and original image simulta-
neously use either statistical or deterministic priors of the
original image, the blurring kernel and the noise [2], which
leads to a computationally expensive maximum likelihood
estimation usually implemented by expectation maximiza-
tion algorithm. In addition to that, exact distributions of
the original image required by the maximum likelihood
algorithm are usually unknown. One of the most represen-
tative algorithms from this class is the blind Richardson–
Lucy (R–L) algorithm originally derived for non-blind
deconvolution of astronomical images in [3,4], and later
on formulated in [5] for BD and then modified by iterative
restoration algorithm in [6]. This version of blind R–L
algorithm is implemented in MATLAB� command de-
convblind. It will be used in Section 3 for the comparison
purpose during experimental performance evaluation of
the to be introduced yet non-negative matrix factorization
(NMF) based blind image deconvolution method. In order
to overcome difficulties associated with the ‘‘standard’’ BD
algorithms an approach was proposed in [7] based on quasi
maximum likelihood with an approximate of the probabil-
ity density function. It however assumed that original
image has sparse or super-Gaussian distribution. This is
generally not true because image distributions are mostly
sub-Gaussian. To overcome that difficulty it was proposed
in [7] to apply sparsifying transform to blurred image.
However, design of such a transform requires knowledge
of at least the typical class of images to which original
image belongs in which case training data can be used to
design sparsifying transform. Multivariate data analysis
methods such as independent component analysis (ICA)
[8] might be used to solve BD problem as a blind source
separation (BSS) problem where unknown blurring process
is absorbed into what is known as a mixing matrix. The
advantage of the ICA approach would be that no a priori

knowledge about the origin and size of the support of the
blurring kernel is required. However, multi-channel image
required by ICA is not always available. Even if it is, it
would require the blurring kernel to be non-stationary,
which is true for the blur caused by atmospheric turbulence
[9], but it is not true for the out-of-focus blur for example.
Therefore, an approach to single frame multi-channel blind
deconvolution that requires minimum of a priori informa-
tion about blurring process and original image would be
of great interest. Single frame multi-channel representation
was proposed in [10]. It was based on a bank of 2D Gabor
filters [11] used due to their ability to realize multi-channel
filtering. ICA algorithms have been applied in [10] to mul-
tichannel image in order to extract the source image and
two spatial derivatives along x and y directions. There is
however critical condition that source image and their spa-
tial derivatives must be statistically independent. In general
this is not true as already observed in [12]. Consequently,
quality of the image restoration by proposed single frame
multi-channel approach depends on how well each particu-
lar image satisfies statistical independence assumption.
Therefore, an extension of the ICA approach formulated
in [10] is given in [13] where it has been shown that single
frame multichannel BD can be formulated as NMF prob-
lem with sparseness constraints imposed on the unknown
mixing vector. Consequently, no a priori knowledge about
either the origin or the size of the blurring process is re-
quired. Because NMF is deterministic approach no a priori
information about the statistical nature of the source image
is required as well. We present here generalized NMF
approach to blind image deconvolution with sparseness
constraints imposed on either unknown mixing vector or
unknown source image. The criteria are provided to distin-
guish whether source image was sparse or not as well as to
estimate appropriate sparseness constraint from degraded
image itself making the proposed approach completely
unsupervised. The rest of the paper is organized as follows.
We introduce briefly in Section 2 non-blind Van-Cittert [14]
and multiplicative algebraic restoration technique (MART)
[17,18] image restoration algorithms, blind R–L algorithm
[5,6], ICA approach to single frame multichannel BD [10].
We describe in more details generalized NMF approach to
single frame multichannel BD with sparseness constraints
originally given in [13]. Comparative experimental perfor-
mance evaluation is given in Section3 for images degraded
by photon sieve, sparse and non-sparse images degraded by
out-of-focus blur and images degraded by atmospheric
turbulence. Conclusion is presented in Section 4.
2. Basic overview of the compared non-blind and blind image

deconvolution algorithms

Before proceeding to description of the to be compared
non-blind and blind image deconvolution algorithms we
shall rewrite image observation model given by Eq. (1) in
the lexicographical notation:

g ¼ Hf ð2Þ
where g; f 2 ZMN

0þ ; H 2 RMN�MN
0þ assuming image dimension-

ality of M · N pixels. Observed image vector g and original
image vector f are obtained by the row stacking procedure.
The matrix H is block-circulant matrix [14], and it absorbs
into itself the blurring kernel h(s, t) assuming at least size of
it, K, to be known.

2.1. Non-blind Van-Cittert and MART algorithms

Van-Cittert algorithm solves image restoration problem
through the following iterative procedure [14]:

f̂ðkþ1Þ ¼ f̂k þ eHTðg�Hf̂kÞ ð3Þ
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where k denotes iteration index and e denotes small learn-
ing gain. It is assumed that blurring kernel h(s, t) contained
in the block-circulant matrix H is known. The MART
algorithm is realized through the following multiplicative
iteration scheme [17,18]:

f̂ðkþ1Þ ¼ f̂ðkÞ � ½ðHgÞ£ðHTHf̂ðkÞÞ� ð4Þ
where in Eq. (4) symbol � denotes component-wise multi-
plication and symbol B denotes component-wise division.
The MART algorithm also assumes knowledge of the blur-
ring kernel h(s, t). Multiplicative update rule (4) ensures
positivity of the reconstructed image automatically what
is an advantage of the MART algorithm over the Van-
Cittert algorithm.

2.2. Blind R–L algorithm

Blind R–L method [5,6] follows from the non-blind ver-
sion of the R–L method [3,4] which itself follows from
Bayesian paradigm approach to statistical inference which
dictates that inference about true image f should be based
on conditional probability P(fjg) given by the Bayes rule.
The prior knowledge about image degradation process is
incorporated in probabilities P(gjf) and P(f). These proba-
bilities are also called priors. In the low light level imaging
such as in astronomy, microscopy and the night vision
imaging, the appropriate choice for P(gjf) is Poisson distri-
bution [15,16]. In the high-brightness conditions the Pois-
son prior should be replaced by the Gaussian one. The
R–L algorithm follows when non-informative prior is cho-
sen for P(f) i.e. P(f) / const. The algorithm is obtained
through the maximization of the log-likelihood function:

f̂ ¼ argmax
f

log P ðgjfÞ ð5Þ

EM algorithm is employed to solve problem (5) yielding
numerically efficient multiplicative iterative algorithm
known as blind R–L algorithm [5]:

Ĥ
ðkÞ
iþ1 ¼ ½ðf̂ðk�1ÞÞTðg£ðĤk

i f̂ðk�1ÞÞÞ�ĤðkÞi ð6aÞ

f̂
ðkþ1Þ
iþ1 ¼ f̂

ðkÞ
i � HT g£ Hf̂

ðkÞ
i

� �� �� �h i
£ðHT1Þ ð6bÞ

where index i is used to denote internal iteration of the
blind R–L algorithm, k denotes main iteration index and
1 denotes a column vector with all entries equal to 1. Mul-
tiplicative update rules (6a and 6b) ensure positivity of both
blurring kernel and reconstructed image automatically. As
we see from Eq. (6) the problem with blind R–L algorithm
is that although the blurring kernel incorporated in the
block-circulant matrix H is estimated from the observed
image, the support size K, see Eq. (1), must be known or
estimated by some method. This knowledge is not always
available a priori. This is especially true for non-stationary
degradation process such as atmospheric turbulence where
the strength of the turbulence, measured by the parameter
called scintillation index, will strongly influence the size of
the blur.
2.3. ICA approach to single frame multichannel BD

(SFMICA)

Single frame multi-channel representation was proposed
in [10]. It was based on a bank of 2D Gabor filters [11] used
due to their ability to realize multi-channel filtering and
decomposing an input image into sparse images containing
intensity variation over narrow range of frequency and ori-
entation. Multichannel version of degraded image is shown
in [10] to be in a form:

G ¼

gT

gT
1

. . .

gT
L

2
6664

3
7775 ffi

a1 a2 a3

a11 a12 a13

. . . . . . . . .

aL1 aL2 aL3

2
6664

3
7775

fT

fT
x

fT
y

2
64

3
75 ¼ AF ð7Þ

where images gl, l = 1, . . . ,L, are produced by Gabor filters,
f represents source image and fx and fy represent spatial
derivatives along x and y directions, respectively. Unknown
elements alm of the mixing matrix absorb the blurring ker-
nel assuming no a priori information about it including its
size. The ICA algorithm has been applied in [10] to image
model (7) in order to extract the source image f. There is
however critical condition for the source image that must
hold in order for ICA algorithm to work. Image f and its
spatial derivatives fx and fy must be statistically indepen-
dent. This is in general not true as already observed in
[12]. Consequently, quality of the image restored by pro-
posed single frame multi-channel approach depends on
how well each particular image satisfies statistical indepen-
dence assumption.

2.4. NMF approach to single frame multichannel BD

(SFMNMF)

It was further shown in [13] that single frame multichan-
nel blind deconvolution can approximately be represented
as:

G ¼

gT

gT
1

. . .

gT
L

2
6664

3
7775 ffi

~a1

~a21

. . .

~aL1

2
6664

3
7775½f

T� ¼ ~afT ð8Þ

where images gl, l = 1, . . . ,L, were again produced by Ga-
bor filters and coefficients of the unknown blurring kernel
were absorbed into coefficients ~alm of the unknown mixing
vector ~a. Image model (8) suggests the existence of only
source image f in the linear image observation model. Spa-
tially oriented Gabor filters produce images with sparse
(super-Gaussian) distributions i.e. multichannel version G

of the observed image g is mostly sparse. This gave motiva-
tion in [13] to formulate single frame multichannel blind
image deconvolution problem as NMF problem with
sparseness constraint. If the source image f is non-sparse
i.e. sub-Gaussian, which is the case for natural images, an
unknown mixing vector ~a must be sparse. This case has been



Fig. 1. MSE error with respect to reference image obtained by blind
deconvolution of image shown in Fig. 2 and by using SFMNMF
algorithm. Reference image is shown in Fig. 7. At each run initial
conditions for mixing vector and source image were generated randomly.
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worked out in [13]. We present here generalized NMF
approach to blind image deconvolution with sparseness
constraints [19–21], imposed on either unknown mixing vec-
tor or unknown source image. We follow presentation given
in [21,22], where NMF problem with sparseness constraints
is formulated as:

DðGk~a; fÞ ¼ 1
2

G� ~afT
�� ��2

F
þ a~aJ ~að~aÞ þ afJ fðfÞ

s:t: ~ai P 0; f j P 0 8i; j ð9Þ

where J ~að~aÞ and Jf(f) represent appropriate constraints
and a~a and af are regularization factors. Constraints repre-
sent a priori knowledge we have about the unknown source
image and mixing vector. Typical constraints are sparsity
and smoothness. It is believed that these additional con-
straints enable to overcome difficulties associated with
early NMF algorithms [20], which is poor performance in
the blind source separation problems due to non-unique-
ness of the solution and to help to extract physically mean-
ingful sources in biomedical applications such as EEG and
MEG [21,22]. We believe that from the same reasons NMF
with sparseness constraints extract physically meaningful
source image in BD problem. Due to the already discussed
fact that multichannel version G of observed image g is
sparse we shall impose sparseness constraints on either
source image f or mixing vector ~a. It has been already
shown in the context of underdetermined blind source sep-
aration problem (more sources than sensors), Refs. [23,24],
that l1 norm is appropriate sparsity measure, which ensures
reconstruction of the source signals. This justifies our
choice for JðxÞ ¼

P
nxn where x is some nonnegative vec-

tor. Under this condition minimization of divergence
DðGk~a; fÞ gives the following multiplicative update learning
rules for ~a and f [21,22]:

~a ¼ ~a� ½Gf � a~a�e£ð~afTf þ eÞ
f ¼ f � ð½GT~a� af �e£ðf~aT~aþ eÞÞ

ð10Þ

where again symbol ‘�’ denotes component-wise multipli-
cation, symbol ‘B’ denotes component-wise division and
[x]e = max(x,e) with e = 10�9. In order to obtain truly
unsupervised image restoration algorithm regularization
factors a~a and af, that we sometimes refer to as a sparseness
constraints, have to be estimated from the multichannel
image G only. We propose to use kurtosis of the degraded
image g as a sparsity measure to distinguish whether origi-
nal image f was sparse i.e. super-Gaussian or non-sparse
i.e. sub-Gaussian. If j(g) < 0 we decide that source image
was non-sparse and that, due to the fact that multichannel
image G was sparse, the unknown mixing vector ~a must be
sparse. In this case we set af = 0 and estimate a~a from G as
a ratio between number of sparse images Ls and overall
number of images L + 1, [13], i.e. a~a ¼ Ls=ðLþ 1Þ. To esti-
mate Lskurtosis j of each image in G is estimated. Image gl,
l = 1, . . . ,L + 1, is considered to be sparse if j(gl) > 0. If
j(g) > 0 we decide that source image was sparse. In this
case we set a~a ¼ 0 and estimate af from G as af = j(g). This
enables to obtain truly unsupervised blind image deconvo-
lution method able to restore both sparse and non-sparse
images. Approach presented in [13] is not so general. Abil-
ity to restore sparse images is important for a number of
applications where images are acquired under low-light-
level conditions. For example, such scenarios arise in
astronomy, microscopy, under-water imaging and night vi-
sion imaging. In order to impose the least level of a priori

knowledge about the source image and mixing vector we
start the learning process (10) with the random choice for
both ~a and f. Before proceeding to the comparative perfor-
mance analysis of described blind and non-blind image
deconvolution methods we want to analyze in more details
behavior of the NMF approach to BD with respect to two
basic problems in the image restoration: stability and
uniqueness of the solution. We have already conjectured
that sparseness constraint enables to obtain solution that
is physically sensible. We want to analyze whether the
learning rule (10) will converge toward similar (possibly
same) local optimum from different randomly chosen ini-
tial conditions for ~a and f. For this purpose we have calcu-
lated the mean square error (MSE) defined as:

eðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MN

XMN

n¼1

ðfref
n � fnðkÞÞ2

vuut ð11Þ

where k represents iteration index, n represents pixel index
and fref is image reconstructed first time. We have calcu-
lated MSE error for 100 runs. Each reconstructed image
was normalized to an 8-bit resolution such that MSE error
is expressed in a number of bits. Fig. 1 shows results of
described analysis where an image degraded by photon
sieve placed in front of the CCD sensor, which is shown
in Fig. 2, was used for testing purpose. The SFMNMF
reconstructed image fref itself is shown in Fig. 7. NMF result
together with the results of other algorithms is described in



Fig. 2. Image degraded by photon sieve. Fig. 4. Image reconstructed by MART algorithm after 50 iterations.

Fig. 5. Image reconstructed by blind R–L algorithm after 5 iterations with
the circular blurring kernel with the radius R = 2 pixels.
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Section 3. Restored images were obtained after 3 iterations
when relative error criterion set 0.1% was satisfied. It can
be seen that MSE error is always less than 0.05 bit which
confirms that NMF algorithm with sparseness constraints
indeed converges toward same physically sensible solution.
Because the algorithm consistently produced results with
such a small deviation it can be considered as a stable i.e.
random perturbation in the initial conditions for mixing
vector and source image gave always the restored images
that look the same from the practical application point of
view.

3. Experimental results

We show in Fig. 2 an image degraded by photon sieve
placed in front of the CCD sensor. Image restored by the
sparse version of the Van-Cittert algorithm is shown in
Fig. 3 and is obtained after 5 iterations. Image restored
by the sparse version of the MART algorithm is shown
in Fig. 4 and is obtained after 50 iterations. Fig. 5 shows
image restored by blind R–L algorithm obtained after 5
Fig. 3. Image reconstructed by the modified Van-Cittert algorithm after 5
iterations.
iterations with the circular blurring kernel with the radius
of R = 2 pixels. Because the size of the blurring kernel must
be known a priori for R–L algorithm the algorithm had to
be run several times with the various values for the radius
R and then the value that corresponded with the best qual-
ity of the restored image was chosen. This is time consum-
ing process and it is not applicable in real time image
enhancement. In addition to that, it is known that either
underestimate or overestimate of the size of the blurring
kernel leads to severe distortions of the images recon-
structed by blind R–L algorithm and other blind algo-
rithms of the similar type [1]. Fig. 6 shows image restored
by SFMICA algorithm. FastICA algorithm with the tanh
nonlinearity was used as in [10,25]. Fig. 6 shows image
restored by described SFMNMF algorithm. Note very
poor quality of the image restored by SFMICA algorithm
due to the fact that assumption about statistical indepen-
dence between source image f and its spatial derivatives
fx and fy does not hold. Note also that SFMNMF algo-
rithm produced restored image with the superior quality
over the blind R–L algorithm and even non-blind sparse



Fig. 6. Image reconstructed by the single frame multichannel ICA
algorithm.

Fig. 7. Image reconstructed by the single frame multichannel NMF
algorithm.

Fig. 8. Non-sparse (sub-Gaussian) image degraded by out-of-focus blur
obtained by digital camera in manually de-focused mode.

Fig. 9. Non-sparse image reconstructed by SFMNMF algorithm.

Fig. 10. Non-sparse image reconstructed by SFMICA algorithm.

Fig. 11. Non-sparse image reconstructed by blind Richardson–Lucy
algorithm after 5 iterations with the circular blurring kernel with radius
of R = 3 pixels.
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Van-Cittert and MART algorithms despite the fact that no
information about the blurring process was used/required
by the SFMNMF algorithm. Fig. 8 shows non-sparse
(sub-Gaussian) blurred image obtained by digital camera
in manually de-focused mode. Fig. 9 shows image recon-
structed by SFMNMF algorithm. Because kurtosis of the
blurred image was negative the sparseness constraint af

has been set to zero. Sparseness constraint a~a was estimated
as 0.82. Images shown in Figs. 8 and 9 were already
shown in [13]. Image reconstructed by SFMICA algorithm
is shown in Fig. 10 where FastICA algorithm with tanh
nonlinearity was used again. Image restored by the
SFMICA algorithm has again poor quality due to the
already discussed assumptions made on the statistical inde-
pendence between source image and its spatial derivatives.
Fig. 12. Non-sparse image reconstructed by blind Richardson–Lucy
algorithm after 5 iterations with the circular blurring kernel with radius
of R = 5 pixels.

Fig. 13. Sparse (super-Gaussian) image degraded by out-of-focus blur
obtained by digital camera in manually de-focused mode. Image has been
acquired under low-light-level conditions.

Fig. 14. Sparse image reconstructed by SFMNMF algorithm.

Fig. 15. Sparse image reconstructed by SFMICA algorithm.

Fig. 16. Sparse image reconstructed by blind Richardson–Lucy algorithm
after 5 iterations with the circular blurring kernel with radius of R = 3
pixels.
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The SFMNMF algorithm eliminates all these problems due
to the fact that no a priori knowledge about either the size
of the blurring kernel or statistical nature of the source
image is required. Fig. 11 shows image restored by the blind
R–L algorithm after 5 iterations with the circular blurring
kernel and radius of R = 3 pixels. Because the blurred
image, Fig. 8, was not highly de-focused blind R–L algo-
rithm with the kernel size of R = 3 pixels produced good
result but still inferior to this produced by SFMNMF algo-
rithm shown in Fig. 9. Again, blind R–L algorithm had to
be run several times for different values of the size of the
blurring kernel R. Then, image with the best quality had
to be chosen. In order to illustrate sensitivity of the blind
R–L algorithm (and other methods of that type [1]) on
the overestimation of the size of the blurring kernel we
Fig. 17. Picture of the Washington monument obtained in the conditions
of the weak atmospheric turbulence [9].

Fig. 18. Edges detected by Canny’s edge detector. From left to right: Blurred
algorithm with R = 3 and SIGMA = 3 pixels, blind R–L algorithm with R =
show in Fig. 12 image restored by the blind R–L algorithm
with the kernel size of R = 5 pixels obtained after 5 itera-
tions. In order to illustrate performance of described
SFMNMF algorithm for the blurred images acquired
under low-light-level conditions, which are sparse i.e.
super-Gaussian, we have recorded blurred image obtained
by digital camera in manually de-focused mode under
described conditions. It is shown in Fig. 13. Fig. 14 shows
image reconstructed by SFMNMF algorithm. Because kur-
tosis of the blurred image was positive the regularization
parameter a~a has been set to zero. Regularization parame-
ter af was estimated as j(g) = 7.588. Image reconstructed
by SFMICA algorithm is shown in Fig. 15 where FastICA
algorithm with tanh nonlinearity was used again. Image
restored by the SFMICA algorithm has again poor quality
due to the already discussed assumptions made on the sta-
tistical independence between source image and its spatial
derivatives. Again, the SFMNMF algorithm eliminates
all these problems due to the fact that no a priori knowl-
edge about either the size of the blurring kernel or statisti-
cal nature of the source image is required. Fig. 16 shows
image restored by the blind R–L algorithm after 5 itera-
tions with the circular blurring kernel and radius of
R = 3 pixels. Because the blurred image, Fig. 13, was not
highly de-focused blind R–L algorithm with the kernel size
of R = 3 pixels produced good result but still inferior to
this produced by SFMNMF algorithm shown in Fig. 14.
Again, blind R–L algorithm had to be run several times
for different values of the size of the blurring kernel R.
Then, image with the best quality had to be chosen.
Fig. 17 shows randomly selected frame taken from the
image sequence of the Washington monument obtained
in the conditions of the weak atmospheric turbulence [9].
Image was deconvolved by the SFMNMF algorithm,
SFMICA algorithm with the JADE method used to imple-
ment ICA [26] and blind R–L algorithm. Canny’s edge
detector was applied on deconvolved images with the
results shown in Fig. 18. From left to right are: blurred
image, SFMNMF restored image, SFMICA restored
image and blind R–L restored images with the Gaussian
image, SFMNMF restored image, SFMICA restored image, blind R–L
5 and SIGMA = 5 pixels.
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type of the blurring kernel (suitable for modeling atmo-
spheric turbulence) with the radius of R = 3 and standard
deviation SIGMA = 3 pixels and R = 5 and SIGMA = 5
pixels. It can be observed that windows, which are present
on the Washington monument, are not reconstructed on
the blurred image. It can be also observed that SFMICA
produced poor results due to already discussed reasons.
Blind R–L algorithm with parameters R = 3 and
SIGMA = 3 produced result of the quality which is compa-
rable with those obtained by the SFMNMF algorithm
(only some details in the background are missed by the
blind R–L algorithm), while blind R–L algorithm with
parameters R = 5 and SIGMA = 5 produced result with
the very poor quality illustrating again the known sensitiv-
ity of the blind R–L method on either overestimation or
underestimation of the size of the blurring kernel.

4. Conclusion

Non-negative sparse matrix factorization approach to
single frame blind image deconvolution has been formu-
lated. The main property of the algorithm is that no a pri-
ori knowledge about the statistical nature of the source
image as well as about origin or size of the blurring kernel
is required. It is conjectured that sparseness constraints
imposed on either mixing vector or source image ensured
physically sensible solution. This is illustrated by blind
deconvolution of blurred image where algorithm has been
run 100 times under different initial conditions for mixing
vector and source image. Practically the same restored
image has been obtained for every run. Extensive experi-
mental comparative performance evaluation between novel
non-negative matrix factorization algorithm and other rep-
resentative blind and non-blind image deconvolution algo-
rithms was presented. All image deconvolution methods
were compared on images degraded by photon sieve,
out-of-focus blur and atmospheric turbulence. It has been
demonstrated that novel blind image deconvolution algo-
rithm outperforms other methods. We conjecture that this
result is due to the fact that SFNMF algorithm does not
require any a priori information about the blurring kernel
and original image.
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