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Abstract. We investigate the application of independent-component
analysis �ICA� to remotely sensed hyperspectral image classification. We
focus on the performance of two well-known and frequently used ICA
algorithms: joint approximate diagonalization of eigenmatrices �JADE�
and FastICA; but the proposed method is applicable to other ICA algo-
rithms. The major advantage of using ICA is its ability to classify objects
with unknown spectral signatures in an unknown image scene, i.e., un-
supervised classification. However, ICA suffers from computational ex-
pensiveness, which limits its application to high-dimensional data analy-
sis. In order to make it applicable or reduce the computation time in
hyperspectral image classification, a data-preprocessing procedure is
employed to reduce the data dimensionality. Instead of using principal-
component analysis �PCA�, a noise-adjusted principal-components
�NAPC� transform is employed for this purpose, which can reorganize
the original data with respect to the signal-to-noise ratio, a more appro-
priate image-ranking criterion than variance in PCA. The experimental
results demonstrate that the major principal components from the NAPC
transform can better maintain the object information in the original data
than those from PCA. As a result, an ICA algorithm can provide better
object classification. © 2006 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2151172�
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1 Introduction

Hyperspectral remote sensing is a new research area that
attracts much interest from researchers and practitioners be-
cause the high spectral resolution of an acquired image pro-
vides the potential of more accurate object detection, clas-
sification, and identification than multispectral imagery. A
3-D hyperspectral image cube contains hundreds of coreg-
istered images for the same image scene taken in very nar-
row spectral bands. But how to efficiently deal with its vast
data volume while taking advantage of the optimum
amount of spectral information is challenging.

In many practical applications of remote sensing image
classification, it may be very difficult or even impossible to
get prior information about class signatures, so unsuper-
vised methods need to be applied. The spatial resolution of
remote sensing imagery is rather rough. In general, the area
covered in each pixel includes different materials and ob-
jects. So we have to deal with mixed pixels instead of pure
pixels as in conventional digital image processing. Linear
spectral unmixing analysis is a popular approach used to
handle mixed pixels. This procedure assumes the reflec-
tance of a pixel is a linear mixture of those of all the dif-
ferent materials found in that pixel.1–4 Let L be the number
0091-3286/2006/$22.00 © 2006 SPIE v
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f spectral bands, and r a column pixel vector with dimen-
ion L in a hyperspectral image. The element ri in r is the
eflectance collected in the i’th wavelength band. Let M
enote a matrix containing q independent material spectral
ignatures �referred to as endmembers in the linear mixture
odel1–4�, i.e., M= �m1 ,m2 , . . . ,mq�. Let � be the un-

nown abundance column vector of size q�1 associated
ith M, which is to be estimated. The i’th item �i in �

ig. 1 AVIRIS “Cuprite” image scene: �a� a spectral band image; �b�
patial locations of five pure pixels corresponding to minerals:
lunite �A�, buddingtonite �B�, calcite �C�, kaolinite �K�, and musco-

ite �M�.
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represents the abundance fraction of mi in pixel r. Accord-
ing to the linear mixture model,1–4

r = M� + n , �1�

where n is the noise term. When M is known, the estima-
tion of � can be accomplished by a least-squares approach.
But when M is also unknown, i.e., in unsupervised analy-
sis, the task is much more challenging, since both M and �
need to be estimated.

Independent-component analysis �ICA� is a powerful
tool for unsupervised classification, which has been suc-
cessfully applied to blind source separation.5–13 The basic
idea is to decompose a set of multivariate signals into a
basis of statistically independent sources with minimal loss
of information content so as to achieve detection and clas-
sification. The standard linear ICA-based data model with
additive noise is13

x = As + n , �2�

where x is an L-dimensional data vector, A is an unknown
mixing matrix, and s is an unknown source signal vector.

Fig. 2 The first 20 principal componen
Three assumptions are made on s: �1� each source signal is c
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n independent identically distributed �i.i.d.� stationary ran-
om process; �2� the source signals are statistically inde-
endent at any time; and �3� at most one among the source
ignals has a Gaussian distribution. The mixing matrix A,
lthough unknown, is also assumed to be nonsingular. Then
he solution to the blind source separation problem is ob-
ained with scale and permutation indeterminacy. Let W
epresent the unmixing matrix. It satisfies WA=P�, where

is a generalized permutation matrix and � is a diagonal
atrix. These requirements ensure the existence and

niqueness of the solution to the blind source separation
roblem except for the indeterminacy of the ordering,
igns, and scaling of the outputs. In contrast with many
onventional techniques, which use up to second-order sta-
istics only, ICA exploits higher-order statistics, which
akes it more powerful in extracting irregular features in

he data.
Several researchers have explored ICA for remote sens-

ng image classification.14–19 In general, when the ICA ap-
roach is used to classify optical multispectral or hyper-
pectral images, the linear mixture model in Eq. �1� needs
o be reinterpreted to fit the model given by Eq. �2�. Spe-

PCA for the AVIRIS “Cuprite” scene.
ifically, the pixel vector r is denoted as x in Eq. �2�, the

January 2006/Vol. 45�1�
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endmember matrix M in Eq. �1� corresponds to the un-
known mixing matrix A in Eq. �2�, and the abundance-
fraction vector � in Eq. �1� corresponds to the source signal
vector s in Eq. �2�. Moreover, the abundance fractions are
considered as unknown random quantities specified by ran-
dom signal sources in the ICA model �2� rather than un-
known deterministic quantities as assumed in the linear
mixture mode �1�. With these interpretations and the pre-
ceding assumptions, we use the model �2� to replace the
model �1� hereafter. The advantages offered by using the
model �2� in remote sensing image classification are: �1� no
prior knowledge of endmembers in the mixing process is
required; �2� the spectral variability of endmembers can be
accommodated by the unknown mixing matrix A, since the
source signals are considered as random scalar quantities;
and �3� higher-order statistics can be exploited for better
featureextraction and pattern classification.17

For mathematical tractability, the mixing matrix A and
unmixing matrix W in the ICA model are taken to be
square matrices of size L�L. The major drawback of ICA
is its high computational complexity. For instance, the com-
putational complexity of the joint approximate diagonaliza-

Fig. 3 The first 20 principal components from
tion of eigenmatrices �JADE� algorithm is on the order of c

Optical Engineering 017008-3
4. When JADE is applied to hyperspectral imagery, where
can be as high as 200, the computation becomes prohibi-

ively expensive. Therefore, in order to make the JADE
lgorithm applicable to hyperspectral image classification,
ome data-preprocessing procedure is required to reduce
he image data dimensionality. The common approach is to
se ordinary principal-component analysis �PCA� for di-
ension reduction, which reorganizes the original data in-

ormation in terms of variance. Here, we propose using a
oise-adjusted principal components �NAPC� transform for
his purpose. NAPC can reorganize the original data infor-
ation in terms of the signal-to-noise ratio �SNR�, which is
more reasonable criterion for handling image data.20–22 It

s demonstrated below that the major principal components
PCs� from the NAPC transform can better represent the
riginal object information than those from PCA. In what
ollows we introduce an ICA algorithm that can provide
etter object classification.

Some ICA algorithms, such as the well-known FastICA,
an be applied to high-dimensional data. However, the spa-
ial size of a hyperspectral image can be large, algorithm
xecution can be computationally expensive, and a postpro-

PC transform for the AVIRIS “Cuprite” scene.
the NA
essing step is required to tease out the interesting objects

January 2006/Vol. 45�1�
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from a large number of classification maps. If a preprocess-
ing step using an NAPC transform is applied to reduce the
data dimensionality, the ICA classification step and the
postprocessing step can be finished much more quickly.

It should be noted that Tu in Ref. 16 was the first to
apply the NAPC transform to ICA. In that paper the major
purpose for using an NAPC transform was to improve the
performance of a Gerschgorin disk approach in the estima-
tion of the number of signals in an image scene, which is
the same as the number of independent components to be
determined. We have, however, modified the use of the
NAPC transform. Firstly, the objective of our research is to
employ an NAPC transform to reduce the data dimension-
ality while maintaining most of the object information. As a
result, the ICA algorithms for low-dimensional data �such
as JADE� can be applicable to high-dimensional data, while
the ICA algorithms feasible for high-dimensional data
�such as FastICA� can be made even faster with a compa-
rable classification. Secondly, the noise estimation tech-
nique in our NAPC transform is different from the nearest-
neighbor difference method used in Refs. 16, 20, and 21,
which is introduced in Sec. 3. As demonstrated in Ref. 23,
the NAPC transform is sensitive to noise estimation, and
the performance of the nearest-neighbor difference method
is limited. Thirdly, when the estimation of the number of
independent components is necessary, we resort to an ap-
proach proposed in Ref. 24, which was proven to be effec-
tive in our hyperspectral experiments.

The remainder of this paper is organized as follows.

Fig. 4 JADE classification re
Section 2 briefly describes the JADE and FastICA algo- J
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ithms. Section 3 introduces the NAPC transform for di-
ension reduction of hyperspectral image data. Section 4

resents experiments using data from the Airborne Visible/
nfrared Imaging Spectrometer �AVIRIS� and Hyperspec-
ral Digital Imagery Collection Experiment �HYDICE� to
emonstrate the performance of ICA-based unsupervised
lassification in conjunction with an NAPC-transform-
ased dimension reduction. Section 5 concludes with brief
emarks.

JADE and FastICA Algorithms
he strategy of ICA is to find a linear transform W �i.e., an
nmixing matrix of size L�L� such that the components in
he vector z in the following equation are as statistically
ndependent as possible:

= Wx = WAs + Wn = Qs + Wn. �3�

ased on the assumption that source signals in vector s are
utually statistically independent and non-Gaussian �ex-

ept one that is allowed to be Gaussian�, z can represent the
ource signal vector s up to the permutation, scale, and sign
actors.

Several different types of ICA algorithms have been de-
eloped recently, such as non-Gaussianity-maximization-
ased ICA, maximum-likelihood-estimation-based ICA,
utual-information-minimization-based ICA, and

onlinear-decorrelation-based ICA.13 Among them, the
6 10,11

or the AVIRIS image scene.
ADE algorithm and FastICA are most popular and
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Du, Kopriva, and Szu: Independent-component analysis…
often used. In this paper, we investigate their performance
when an NAPC transform is used for dimension reduction.

JADE is based on the use of fourth-order statistics �cu-
mulants�. The higher-order statistical dependence among
data samples is measured by the higher-order cross-
cumulants. Smaller values of cross-cumulants represent
less dependent samples. In JADE fourth-order statistical
independence is achieved through minimization of the
squares of fourth-order cross-cumulants between the com-
ponents zi of z in Eq. �3�. Then fourth-order cross-
cumulants can be computed as

C4�zi,zj,zk,zl� = E�zizjzkzl� − E�zizj�E�zkzl�

− E�zizk�E�zjzl� − E�zizl�E�zjzk� �4�

for 1� i , j ,k , l�L, where E�·� denotes the statistical expec-
tation operator. Equation �4� can be expressed as an L2

�L2 Hermitian matrix. The optimal unmixing matrix W* is

Fig. 5 FastICA classification
the one that satisfies G
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* = arg min �
i,j,k,l

off�WTC4�zi,zj,zk,zl�W� , �5�

here off �·� is a measure of the off-diagonality of a matrix,
efined as

ff�X� = �
1�i�j�L

�xij�2, �6�

here xij denotes the ij’th element of a matrix X. An intui-
ive way to solving the optimization problem in Eq. �5� is to
ointly diagonalize the eigenmatrices of C4�zi ,zj ,zk ,zl� in
q. �4� via Givens rotation.25 In order for first- and second-
rder statistics not to affect the results, data should be pre-
hitened �so that the mean is zero and the covariance ma-

rix is an identity matrix�.
FastICA is based on a fixed-point iteration scheme for

nding an optimal transform w �one of the vectors in the
nmixing matrix W� that can maximize the non-

T

for the AVIRIS image scene.
aussianity of E�z�=E�w x�, i.e., the objective function is

January 2006/Vol. 45�1�
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Du, Kopriva, and Szu: Independent-component analysis…
max
w

J�w� = E�G�wTx�� subject to �w� = 1, �7�

where G�·� is a nonlinear function measuring non-
Gaussianity that can be chosen as G�u�= �1/a� log cosh au,
G�u�=−�1/a� exp�−au2 /2�, or G�u�= � 1

4
�u4. According to

the Karush-Kuhn-Tucker condition,26 the solution of the
constrained problem in Eq. �7� can be obtained by solving

E�xg�wTx�� − �w = 0, �8�

where g�·� is the derivative of G�·�, i.e., g�·�=G��·�, and �
is a constant that can be evaluated as �=E�w0

Txg�w0
Tx��.

Here, w0 is the value of w at the optimum. Newton’s
method can be used to solve Eq. �8�.27 After simplification,
a fixed-point iterative algorithm is obtained as
w←E�xg�wTx��−E�g��wTx��w and w←w / �w�.

To find a second transform vector w, the algorithm is
reexecuted. To prevent different w from converging to the
same maxima, we can simply decorrelate the output z after
each iteration by using a Gram-Schmidt-like decorrelation
step.11

FastICA can generate the final result much more quickly
than a stochastic gradient descent method and does not
need to carefully adjust the learning rate. In contrast with
JADE, which is very successful for low-dimensional data,
FastICA can be applied to high-dimensional data.

3 PCA and NAPC Transforms and Their
Implementation

3.1 PCA and NAPC Transforms
Consider an observation model

x = � + n , �9�

where �x	 is a set of observation vectors with data dimen-
sionality L, which contains a signal vector � and an uncor-
related additive noise term n. The sample mean of �x	 is m.
The objective of PCA is to find a transformation vector v
such that the variance of the transformed data �vT�x−m�	 is
maximized. It is assumed that the transformed data keep the
most information of �x	 if its variance is maximal. In order
not to let v affect the variance of the transformed data, a
constraint is imposed as vTv=1. So the objective function is

J�v� = vT�v + ��vTv − 1� , �10�

where � is the sample covariance matrix and � is a

Fig. 6 �a� A HYDICE image scene that contains 15 panels; �b�
ground truth map of spatial locations of the 15 panels.
Lagrange multiplier. Taking the partial derivative of Eq. m

Optical Engineering 017008-6
10� with respect to v and setting it equal to 0, we obtain

v = �v . �11�

bviously, this is an eigenproblem with L roots for v and �,
hich are eigenvectors and eigenvalues of �, denoted as
= �v1 ,v2 , . . . ,vL� and �=diag��1 ,�2 , . . . ,�L	, respec-

ively. Here, v1 ,v2 , . . . ,vL are L eigenvectors, and �1��2
¯ ��L are their corresponding eigenvalues. The matri-

es V and � can be related as

T�V = � . �12�

hen the principal components �PCs� from PCA can be
alculated by

PCA = VT�x − m� �13�

ith the variance of the i’th PC being �i.
PCA uses variance as the ranking criterion for PCs, and

he first several PCs �major PCs� have larger variances. It is
ssumed that most of the object information is included in

ig. 7 The first 40 principal components from PCA for the HYDICE
mage scene.
ajor PCs. However, variance can be contributed by both

January 2006/Vol. 45�1�
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signals and noise. In particular, the contribution to the vari-
ance from small objects may be even smaller than that from
noise, and then these objects will appear in minor PCs. As
a result, objects cannot be well compacted into major PCs,
and some major PCs may contain noise only. In other
words, object information is spread into more PCs.

The NAPC transform was proposed to solve this prob-
lem by ranking PCs in terms of image quality, i.e., SNR, so
that most of the object information can be represented in
major PCs.20–22 The objective is to find a transformation
vector v such that the SNR in the transformed data can be
maximized. The objective function is

J�v� = SNR =
vT��v

vT�nv
=

vT�v

vT�nv
− 1, �14�

where �� and �n are the signal and noise covariance
matrices, respectively. In Eq. �14� the relationship
�=��+�n is used. Let F=Kn�n

−1/2 be the noise-whitening

Fig. 8 The first 40 principal components from the NAPC transform
for the HYDICE image scene.
matrix such that s

Optical Engineering 017008-7
T�nF = I and FTF = �n
−1, �15�

here Kn and �n are the eigenvector and eigenvalue ma-
rices of �n, respectively, and I is an identity matrix. Let
=F−1v. Equation �14� becomes

�h� =
hT�FT�F�h

hTh
− 1. �16�

sing the same technique in the derivation of PCA, it can
e easily shown that the L roots of h in H
�h1 ,h2 , . . . ,hL� are the eigenvectors of the noise-whitened
ovariance matrix �n_adj, defined as

n_adj = FT�F . �17�

hen the PCs from the NAPC transform can be calculated
y

NAPC = HTFT�x − m� �18�

ith the variance of the i’th PC being the i’th eigenvalue of
n_adj, which is equal to SNR+1 in the i’th PC.
We can see that an NAPC transform includes two steps:

oise whitening and ordinary PCA. Because noise is whit-
ned, the noise variance in each PC is the same. The PCs
re actually ranked in terms of signal variances. As a result,
bject information can be better compacted into the first

Fig. 9 JADE classification results for the HYDICE image scene.
everal PCs.

January 2006/Vol. 45�1�
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3.2 Noise Estimation
The major difficulty in performing an NAPC transforma-
tion is to have an accurate noise covariance matrix �n. The
following method based on interband correlation is adopted
in our research for its simplicity and effectiveness.28

Let the sample covariance matrix � be decomposed as

� = DED �19�

where D=diag��1 ,�2 , . . . ,�L	 is a diagonal matrix with �l
2

�the variance of the l’th original band� being the diagonal
elements of �, and E is the correlation coefficient matrix,
whose mn’th element represents the correlation coefficient
between the m’th and n’th bands. Similarly, in analogy with
the decomposition of �, its inverse �−1 can also be decom-
posed as

�−1 = D�−1E�−1D�−1, �20�

where D�−1 =diag��1 ,�2 , . . . ,�L	 is a diagonal matrix with
2 −1

Fig. 10 FastICA classification r
�l the diagonal elements of � , and E�−1 is a matrix simi- n

Optical Engineering 017008-8
ar to E with the diagonal elements equal to 1 and all off-
iagonal elements equal to −1 or 1. It turns out that �l can
e related to �l as

l =
1

��l
2�1 − 	L−l

2 ��1/2 , �21�

here 	L−l
2 is the multiple correlation coefficient of the l’th

and, on the other L−1 bands, obtained by using multiple
egression theory.29 So �l

2 is the reciprocal of a good noise
ariance estimate of the l’th band. Therefore, the noise
ovariance matrix �n can be estimated by
n=diag��1

−2 ,�2
−2 , . . . ,�L

−2	, which is a diagonal matrix.

.3 Estimation of the Number of Major Principal
Components

n practice it is difficult to decide where to truncate the
igenspectrum, as the data information may be distributed
nto many PCs. A hypothesis-testing-based estimation tech-

for the HYDICE image scene.
ique in Ref. 24, called noise subspace projection �NSP�,

January 2006/Vol. 45�1�
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was used to estimate the number of distinct signal sources
present in the image scene, referred to as the virtual dimen-
sionality �VD�. This number can be used as a reference for
us to decide how many PCs to keep.

The sample covariance matrix � can be whitened using
Eq. �17�. As a result, the noise variance of each band in the
whitened �n_adj is reduced to unity. Let �v̄l	l=1

L be a set of
eigenvalues for �n_adj. We can express �n_adj as

�n_adj = �
l=1

VD

�̄lv̄lv̄l
T + �

l=VD+1

L

�̄lv̄lv̄l
T, �22�

where �v̄l	l=1
VD and �v̄l	l=VD+1

L span the signal subspace
and noise subspace, respectively. The variances of the
noise components in the second term of Eq. �22� have been

whitened and normalized to unity, i.e., �̄l=1 for

l=VD+1, . . . ,L, and �̄l
1 for l=1, . . . ,VD. Then the
problem of VD estimation can be formulated as the follow-
ing binary hypothesis-testing problem:


H0:yl = �̄l = 1

versus

H1:yl = �̄l 
 1
� for l = 1, . . . ,L . �23�

Each eigenvalue �̄l under hypotheses H0 and H1 can be
modeled as a random variable yl, which has asymptotic
conditional Gaussian distributions N specified by30

p0�yl� = p�yl�H0� � N�1,�yl

2 � for l = 1,2, . . . ,L �24�

and

p1�yl� = p�yl�H1� � N��1,�yl

2 � for l = 1,2, . . . ,L , �25�

respectively, where �l is an unknown constant and �yl

2 is
given by

�yl

2 = Var��̄l� 
2�̄l

2

N
�26�

with N the number of pixel samples.
Now, using Eqs. �23� to �26�, we can find the Neyman-

Pearson detector �NP to determine the VD.24 The major
advantage of hypothesis-testing-based VD estimation tech-
niques is the introduction of Neyman-Pearson detection
theory for the estimation of the number of distinctive sig-
nals, instead of subjectively selecting the “large” eigenval-
ues or “large” Gerschgorin disks as in Ref. 16.

4 Experiments
When applying an ICA algorithm to hyperspectral image
classification, the first several PCs �major PCs� are kept for
classification, and the rest are discarded: we assume that
most of the object information is presented in major PCs. If
some discarded minor PCs contain more information than
major PCs, then the final classification results will be de-
graded. So it is important to compact the important data
information into major PCs. We show below that the NAPC

transform is a better choice than the PCA for this task. F
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Two sets of real hyperspectral image data—the AVIRIS
Cuprite” scene and the HYDICE “Forest” scene—were
sed in the experiments. The former was used for qualita-
ive demonstration of the performance of the NAPC trans-
orm for ICA classification, while the latter was used for
uantitative evaluation because its pixel-level ground truth
s available.

.1 AVIRIS Data Experiment—a Qualitative Study
he AVIRIS “Cuprite” subimage scene, of size 350�350,
hown in Fig. 1, was collected in Nevada in 1997. The
patial resolution is about 20 m. Originally it had 224
ands with 0.4- to 2.5-�m spectral range. After water ab-
orption bands and low-SNR bands were removed, 189
ands were used in the experiment. This image scene is
ell understood mineralogically, and a spectral library of
ure minerals is available.31 The N-FINDER algorithm32

as used to locate the endmember signatures from the im-
ge scene itself, which were compared with the spectral
ibrary to get the locations and distribution of pure pixels
endmembers�. We found out that five minerals were
resent: alunite �A�, buddingtonite �B�, calcite �C�, kaolin-
te �K�, and muscovite �M�. Their approximate spatial loca-
ions of these minerals are marked in Fig. 1�b�.

Figure 2 shows the first 20 PCs from PCA. We can see
hat PC4 and PC6 are very noisy, but they have pretty high
anks in terms of variance. We checked all the PC images,
nd found out that the data information was spread in many
Cs, and even PC71 contained some information. Figure 3
hows the first 20 PCs from the NAPC transform. Now the
C images were ordered in terms of SNR, so a PC image
ith low image quality was ranked lower. All the data in-

ormation was spread over the first 37 PC images. Obvi-
usly, the NAPC transform can better compact the original
ata information into major PCs.

The NSP method in Sec. 3.3 was used to estimate the
umber of distinct signals. The estimate was 23 �for PF
0.001�, which was the reference for the number of PCs

hat ought to be kept. For the purpose of comparison, the
rst 20 and 30 PCs generated from PCA and the NAPC

ransform were selected, respectively, and the JADE and
astICA algorithms were applied. The classification results
re shown in Figs. 4 and 5, where only the independent
omponents �ICs� related to the five minerals of interest are
resented. The classification results by using 30 PCs were
etter than using 20 PCs, since the classification maps had
higher contrast and pixels belonging to the background
ere better suppressed. When using 20 PCs from PCA,

lunite �A� and kaolinite �K� were not well classified, as
hown in Fig. 4�a�. But when using 20 PCs from the NAPC
ransform in Fig. 4�c�, the minerals could be better classi-
ed. Using 30 PC from the NAPC transform in Fig. 4�d�
as also better than using 30 PCs from PCA in Fig. 4�b�,
articularly when classifying alunite and kaolinite. It is
oteworthy that JADE is inapplicable to the original 189-
and image data.

FastICA classification is shown in Fig. 5. When 20 PCs
rom PCA were used for classification in Fig. 5�a�, alunite
as not classified. When 30 PCs from PCA were used in
ig. 5�b�, the alunite classification was improved, although

here were still some background pixels being picked up.

igure 5�c�, using 20 PCs from the NAPC transform, was
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better than Fig. 5�a�, and Fig. 5�d�, using 30 PCs from the
NAPC transform, was better than Fig. 5�b�, because the
background in the alunite and kaolinite classification maps
was better suppressed. Figure 5�e� is the classification re-
sult when all the 189 original bands were used, for FastICA
was applicable to the original data set. We can see that the
difference between Figs. 5�e�, 5�d�, and 4�d� is minor. Fig-
ure 4�d�, using JADE on 30 NAPC components, looks
closer to Fig. 5�e� than does Fig. 5�d�, using FastICA on 30
NAPC components.

Due to the lack of pixel-level ground truth, we are un-
able to quantify the classification accuracy. However, quan-
titative comparison was made between a classified image
using major PCs and its counterpart using all 189 original
bands �from the FastICA method�. Here we assume that the
best classification result is provided by using all the bands.
The correlation coefficient �Corr� between two images is
adopted as the similarity metric for this purpose. The larger
the correlation coefficient is, the more similar two images
are—in this case, also, the better the classification result.
Tables 1 and 2 list the correlation coefficients when JADE
and FastICA were applied to classify the five minerals, re-
spectively. We can see that with the same number of PCs
being selected, using PCs from the NAPC transform always
yielded a more similar result to the one using all original
bands, except that the correlation coefficients were slightly
smaller when classifying calcite. But the overall perfor-
mance �average Corr� of the NAPC-based technique is still
much better. In addition, the classified images using only
30 PCs from the NAPC transform have an average Corr as
great as 0.9 �the highest Corr is 1� with respect to those
using all 189 bands. This indicates these 30 PCs from the
NAPC transform contain the primary object information.

This experiment provides qualitative evaluation of the
NAPC transform for ICA classification: �1� the selection of
the same number of PCs from the NAPC transform allows
a better ICA classification than from PCA; �2� for achieving
similar classification performance, the NAPC transform re-
quires a smaller number of PCs; �3� when an ICA algorithm
is applicable to the original high-dimensional data, a com-

Table 1 The performance of JADE using PCA and the NAPC trans-
form for dimension reduction in the AVIRIS experiment �Corr: corre-
lation coefficient between a classified image using major PCs and
the one using all original bands�.

Corr

Mineral PCA20 PCA30 NAPC20 NAPC30

Alunite �A� 0.4288 0.6587 0.6950 0.8102

Buddingtonite �B� 0.8396 0.8825 0.8917 0.9611

Calcite �C� 0.7784 0.9237 0.7667 0.9231

Kaolinite �K� 0.4147 0.5368 0.5376 0.8988

Muscovite �M� 0.7219 0.7841 0.7893 0.9179

Average 0.6367 0.7572 0.7361 0.9022
parable classification can be generated by using a smaller n

Optical Engineering 017008-1
umber of PC images from the NAPC transform. Com-
ared to the same number of major PCs from PCA, the
ajor PCs from the NAPC transform contain more object

nformation with less noise, which enables an ICA algo-
ithm to distinguish different objects from each other. For
ach resultant classification map, pixels from other objects
nd background can be better suppressed.

.2 HYDICE Data Experiment—a Quantitative
Study

he HYDICE “Forest” subimage scene, of size 64�64,
hown in Fig. 6�a� was collected in Maryland in 1995 from
flight altitude of 10,000 ft with about 1.5-m spatial reso-

ution. The spectral coverage is 0.4 to 2.5 �m. The water
bsorption bands and low-SNR bands were removed, re-
ucing the data dimensionality from 210 to 169. This scene
ncludes 15 panels arranged in a 5�3 matrix. Each element
n this matrix is denoted by pij with row indexed by i
1, . . . ,5 and column indexed by j=a ,b ,c. The three pan-
ls in the same row �pia , pib , pic� were made from the same
aterial of sizes 3�3, 2�2, and 1�1, respectively, which

an be considered as one class, Pi. The ground truth map in
ig. 6�b� shows the precise locations of the panel center
ixels. These panel classes have very close spectral signa-
ures, and it is difficult to discriminate them from each
ther.

Figure 7 shows the first 40 PCs from PCA. We can see
hat they were not ordered in terms of image quality. For
nstance, PC21 had noise only and PC35 had information
bout P1 and P2, but PC21 had higher rank than PC35. The
ame situation happened when ranking minor PC32, PC33,
C35, and PC37, which contained panel information. The
riginal data information was distributed among many PCs,
nd even PC77 contained some information for panels. Fig-
re 8 shows the first 40 principal components from the
APC transform. All the first 35 PCs had some informa-

ion, and the PCs starting from 36 were noisy. Once again,
he NAPC transform provided better performance in com-
acting data information into major PCs.

The NSP method in Sec. 3.3 was used to estimate the

able 2 The performance of FastICA using PCA and the NAPC
ransform for dimension reduction in the AVIRIS experiment �Corr:
orrelation coefficient between a classified image using major PCs
ith the one using all original bands�.

Corr

ineral PCA20 PCA30 NAPC20 NAPC30

lunite �A� 0.5530 0.6249 0.7015 0.7738

uddingtonite �B� 0.8374 0.8822 0.8915 0.9576

alcite �C� 0.7754 0.9184 0.7651 0.9080

aolinite �K� 0.4575 0.5257 0.5122 0.9052

uscovite �M� 0.7144 0.7912 0.7920 0.8104

verage 0.6676 0.7485 0.7326 0.8710
umber of distinct signals. The estimate was 20 �for PF

January 2006/Vol. 45�1�0
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=0.001�, which was the reference for the number of PCs
that ought to be kept. For comparison, we selected the first
20, 30, and 40 PCs from PCA and the NAPC transform for
ICA classification. In Figs. 9�a�–9�c�, the JADE classifica-
tion results using PCA for dimensional reduction are pre-
sented. Only the ICs related to panels are shown here. Ob-
viously, using more PCs could improve the classification.
However, even if the first 40 PCs were used in Fig. 9�c�,
neither P2 and P3 nor P4 and P5 could be well separated
from each other, because their spectral signatures are simi-
lar and the data information contained in the first 40 PCs
from PCA is not enough for accurate panel discrimination.
Figures 9�d�–9�f� show the JADE classification using the

Table 3 The performance of JADE using PCA a
HYDICE experiment �NC: number of correctly c
rate of overall classification�.

PCA20 PCA30

NP NC NF NC NF N

P1 3 2 0 2 0 2

P2 4 4 893 3 0 3

P3 4 3 0 3 0 3

P4 4 4 901 4 243 4

P5 4 3 3 3 3 3

Total 19 16 1797 15 246 1

Roc 0.3553 0.5147

Table 4 The performance of FastICA using PC
the HYDICE experiment �NC: number of correc
Roc: rate of overall classification�.

PCA20 PCA30 PCA40

NP NC NF NC NF NC NF

P1 3 2 0 2 0 2 0

P2 4 — — 3 0 3 0

P3 4 — — 3 0 3 0

P4 4 — — — — 4 574

P5 4 — — — — 3 3

Total 19 — — — — 15 577

Roc — — 0.5127
Optical Engineering 017008-1
Cs from the NAPC transform, where, using only 30 PCs,
ll the five panel classes could be correctly classified. This
eans the first 30 PCs from the NAPC transform contain

ll the panel information for accurate panel discrimination.
FastICA classification results are shown in Fig. 10. Us-

ng 20 or 30 PCs from PCA, P2 and P3, P4, and P5 were
ot separated, as shown in Fig. 10. Even when 40 PCs were
sed, in Fig. 10�c�, P4 and P5 still were not separated.
hen 20 PCs from the NAPC transform were used, P2 and

3 were not separated, as seen in Fig. 10�d�; classification
as significantly improved in Fig. 10�e�, when 30 PCs

rom the NAPC transform were used; all panels were cor-

NAPC transform for dimension reduction in the
d pixels; NF: number of false-alarm pixels; Roc:

NAPC20 NAPC30 NAPC40

F NC NF NC NF NC NF

2 0 2 0 2 0

3 18 3 0 3 0

3 0 3 0 3 0

8 3 0 2 0 3 0

3 0 3 0 3 0

1 14 18 14 0 14 0

0.6077 0.7368 0.7368

he NAPC transform for dimension reduction in
sified pixels; NF: number of false-alarm pixels;

C20 NAPC30 NAPC40 All bands

NF NC NF NC NF NC NF

0 2 0 2 0 2 0

31 3 0 3 0 3 0

3 3 0 3 0 3 0

0 2 0 3 0 3 0

0 3 0 3 0 3 0

34 14 0 14 0 14 0

293 0.7368 0.7368 0.7368
nd the
lassifie

PCA40

C N

0

0

0

1

3

5 2

0.5496
A and t
tly clas
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rectly classified in Fig. 10�f�, when 40 PCs from the NAPC
transform were used. In Fig. 10�g�, FastICA was applied to
all the 169 original bands; the 40-NAPC results in Fig.
10�f� were comparable.

Since the pixel-level ground truth is available for this
HYDICE scene, quantitative study was conducted as shown
in Tables 3 and 4. Table 3 lists the results for the JADE
classification, where NC denotes the number of correctly
classified pure panel pixels, and NF denotes the number of
false-alarm pixels. The numbers of pure pixels for the five
panel classes, NPi

, are 3, 4, 4, 4, and 4, respectively, and the
total number of pure pixels, NP, is 19. Before being com-
pared with the ground truth, each gray scale classification
map was converted into binary by setting the threshold at
the central value of the grayscale range. As listed in Table
3, 14 out of 19 panel pixels were correctly classified with
no false alarms when using the first 30 or 40 PCs from the
NAPC transform. But when using PCA, even if the first 40
PCs were selected, there were still some false-alarm pixels
�NF=14 in this case�. It should be noted that in this image
scene the five panels in the rightmost column were smaller
than the area covered by a single pixel. This is why these
five panel pixels were missed. The overall classification
rate Roc was calculated using the definition in Ref. 33:
Roc=�i=1

5 p�Pi�RC�Pi�, where p�Pi�=�i=1
5 NPi

/NP is the oc-
currence rate of Pi, and RC�Pi�=NC�Pi� / �NPi

+NF�Pi�� is
the classification rate of Pi. We can see that the Roc from an
NAPC-based technique is always greater than its counter-
part from a PCA-based technique. It should be noted that in
this image scene the five panels in the rightmost column
were smaller than the area covered by a single pixel �i.e.,
the spatial resolution�. This is why these five panel pixels
were missed and the largest Roc with NF=0 is 0.7368.

The quantitative study results about the FastICA classi-
fication are listed in Table 4, which shows that 30 and 40
PCs from the NAPC transform provided comparable clas-
sification to the one using all the original bands. But using
40 PCs from PCA, the number of false-alarm pixels, NF,
was as large as 577. If the threshold is changed, then the
number of correctly classified pixels �NC� and false-alarm
pixels �NF� will also be changed. But the NAPC-based
technique always provides a comparable NC with a much
smaller NF than the PCA-based technique using the same
number of PCs. Therefore, it provided larger classification
rates.

This HYDICE experiment further demonstrates that the
NAPC transform is a better preprocessing method than
PCA when ICA is applied to high-dimensional image data,
where a smaller number of PCs permits better classification
performance for the following ICA-based unsupervised
classification. In this case, 30 PCs from the NAPC trans-
form provide the same classification rate as do all the
bands.

5 Conclusion
Independent-component analysis �ICA� is a popular tool for
unsupervised classification. But its very high computational
complexity impedes its application to high-dimensional
data analysis. The common approach is to use principal-
component analysis �PCA� to reduce the data dimensional-

ity before applying the ICA classification. When dealing

Optical Engineering 017008-1
ith image data, we find that it may be more appropriate to
se a noise-adjusted principal-components �NAPC� trans-
orm for this preprocessing step. The principal components
rom the NAPC transform are ranked in terms of image
uality. As a result, object information can be better com-
acted into major principal components �PCs�. When an
CA algorithm is executed on these major PCs, classifica-
ion can be improved. The classification result can be com-
arable or even identical to that when all the original bands
re used. The major difficulty with the NAPC transform is
he estimation of the noise covariance matrix. The dis-
ussed estimation method based on interband correlation is
ery simple and seems to be effective in our real-data ex-
eriments.
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