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Abstract

Sub-band decomposition independent component analysis (SDICA) assumes that wide-band source signals can be dependent but some

of their sub-components are independent. Thus, it extends applicability of standard independent component analysis (ICA) through the

relaxation of the independence assumption. In this paper, firstly, we introduce novel wavelet packets (WPs) based approach to SDICA

obtaining adaptive sub-band decomposition of the wideband signals. Secondly, we introduce small cumulant based approximation of the

mutual information (MI) as a criterion for the selection of the sub-band with the least-dependent components. Although MI is estimated

for measured signals only, we have provided a proof that shows that index of the sub-band with least dependent components of the

measured signals will correspond with the index of the sub-band with least dependent components of the sources. Unlike in the case of

the competing methods, we demonstrate consistent performance in terms of accuracy and robustness as well as computational efficiency

of WP SDICA algorithm.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Independent component analysis (ICA) is a statistical
technique to extract non-Gaussian and statistically inde-
pendent source signals given only the observed or
measured data [12,23]. The problem is known as blind
source separation (BSS) and is formally described as

xðtÞ ¼ AsðtÞ, (1)

where x 2 RN represents vector of measured signals, A 2
RN�M represents an unknown mixing matrix and s 2 RM

represents unknown vector of the source signals. In the
subsequent derivation, we shall assume M ¼ N. For M4N

the BSS problem is reduced on the squared problem by the
dimensionality reduction technique, which is realized by
the principal component analysis or singular value decom-
position based transforms. The case MoN leads to
underdetermined BSS problem, which is not solvable under
general ICA assumptions (non-Gaussianity and statistical
independence of the source signals). Some additional a

priori information about source signals, such as sparseness
[20,29,30,44], must be known in order to solve the
underdetermined BSS problem. Underdetermined case will
not be treated in this paper.
Statistical independence assumption of the source signals

is satisfied in many situations which leads to the successful
application of the ICA in various fields functional magnetic
resonance imaging signal processing [33], processing of
radio signals from multiantenna based stations in wireless
communication systems [36], multispectral astrono-
mical and remotely sensed images [19,34], multiframe
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Author's personal copy

blind image deconvolution with non-stationary blurring
process [10,27], speech separation and enhancement
[2,28], etc.

However, in practice the independence property of the
source signals does not always hold. The example is brain
source signals observed by EEG [15]. One approach to
solve this problem and relax statistical independence
assumption is to assume that the wideband source signals
are dependent, but there exist some sub-bands where they
are independent. This assumption leads to the SDICA
[13–15,38,40,41]. In [14,38], measured signals had to be
passed through the filter bank in order to achieve sub-band
decomposition. The problem remains how to select the sub-
band with the least dependent components. Some a priori

knowledge in a form of statistical measure such as kurtosis
was used in [14] while in [38] it has been additionally
assumed the existence of at least two sub-bands where sub-
components of the source signals are independent. These
assumptions may not necessarily hold in practical situa-
tions. In addition to that, in the later approach the problem
still remains how to select the best sub-band.

A simplified version of the filter bank approach is to use
the high pass (HP) filter only [14,15] in preprocessing the
observed signals and apply standard ICA algorithm on
filtered data in order to learn the mixing matrix. This is
motivated by the fact that high pass filtered version is
usually more independent than original signals. At the
same time, this approach is computationally very efficient,
which makes it attractive for BSS problems with statisti-
cally dependent sources. Nevertheless, we shall illustrate
that due to its simplicity the method is not robust under
certain interference conditions. The similar comments
apply for innovation-based blind separation of statistically
dependent sources [21,24]. The arguments for using
innovations are that they are usually more independent
from each other and more non-Gaussian than original
processes [21]. In relation to [21] where innovations
representation was proposed as a preprocessing method
to increase accuracy of the linear instantaneous ICA
algorithms, in [24] this was additionally extended to the
post-nonlinear instantaneous ICA problems. In [24] it was
assumed that source signals are statistically independent
and temporally correlated. Usage of the linear filter to
temporally decorrelate sources will make them more non-
Gaussian and consequently increase accuracy of the ICA
algorithms. We comment here that in the context of the
BSS problem with statistically dependent sources, we use
both properties of innovations: to be more independent
and more non-Gaussain than original processes. Another
reason to use innovations representation for discussed
problem is its computational efficiency, because it is
implemented by simple linear time invariant filter. How-
ever, as in the case of HP filter, we shall illustrate that
innovations approach is also not robust under certain
interference conditions.

Another approach has been formulated in [40,41] where
measured signals were preprocessed by an adaptive filter

with adaptation based on the minimum of mutual
information (MI) among the filter outputs. In the first
version of the algorithm [40], prefilter adaptation and de-
mixing matrix adaptation of instantaneous ICA stage are
implemented simultaneously. In the second version of the
algorithm [41], the prefilter is adapted alone on the subset
of source signals, which are assumed to be available. ICA is
then applied on filtered observed data. We find the
assumption about the availability of the subset of
the source signals unfair and somewhat unrealistic in the
context of the blind processing scenario. Additional
critique of this approach is problems associated with the
adaptation of the prefilter. Standard score functions are
needed in learning. It is known that a priori knowledge of
at least statistical class to which source signals belong is
required for their estimation. In order to obtain optimal
score functions, some form of the kernel-based estimation
of the unknown density functions is required [5,35], which
is used in the implementation of the adaptive filter
algorithm [40]. This is one part that adds to the
computational complexity of this algorithm. Moreover,
estimation of the joint score function is also required
during filter adaptation phase. The joint score function
depends on joint density function, which is known to be
computationally very demanding to estimate, especially
when the BSS problem is highly dimensional. The tradeoff
has been found in [40] by minimizing pairwise MI.
Anyway, this is another part that adds to the computa-
tional complexity of this algorithm. We shall demonstrate
computational inefficiency of this algorithm as well as
difficulties associated with the stability of the adaptive
learning process in Section 4.
Alternative approach for separation of statistically

dependent sources has been proposed in [7] where
maximization of the non-Gaussianity measure equivalent
to the minimization of the Shannon entropy is used.
Performance of this approach strongly depends on the
correlation level between the sources. In addition to that,
there is also relatively high computational cost involved
with the entropy-based approximation of MI.
We propose an approach to SDICA, which is based on

multiresolution decomposition using wavelet packets
(WPs) based iterative filter banks [31,39]. In order to
enable the filter bank to adaptively select the sub-band with
the least dependent sub-components of the source signals,
we have introduced a criterion based on small cumulant
approximation of MI. As it has been demonstrated in the
Appendix A the cumulant based approximation is con-
sistent estimator of the MI and computationally more
efficient than entropy-based estimator. Although MI is
estimated for measured signals only, we provide a proof at
the end of Appendix A that shows that index of the sub-
band with least dependent components of the measured
signals will correspond with the index of the sub-band with
least dependent components of the sources. Thus, our
approach is adaptive as in [40,41] and computationally
efficient as in [14,15,21,38]. Moreover, it is directly
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extendable to time-frequency representation. Additionally,
as demonstrated in Section 4, it exhibits consistent
performance in terms of robustness and accuracy for
various characters of interfering signals that act as
dependent components.

The rest of the paper is organized as follows. We
introduce the sub-band decomposition independent com-
ponent analysis (SDICA) model in Section 2. The WP-
based approach to SDICA is introduced in Section 3.
Simulation results with comparative performance evalua-
tion are presented in Section 4. Conclusion is given in
Section 5.

2. SDICA model

In the BSS problem (1) to be solved by the ICA
algorithms, it is assumed that sources sm(t), mA{1,y,M},
are non-Gaussian and statistically independent. A powerful
extension and generalization of this basic ICA model is
SDICA. It assumes that wide-band source signals can be
dependent, but some of their sub-components are inde-
pendent. Thus, source signals can be represented as
[14,15,38,40,41]:

smðtÞ ¼ sm;1ðtÞ þ sm;2ðtÞ þ . . .þ sm;LðtÞ, (2)

where sm,k(t), k ¼ 1,y,L, are narrow-band sub-compo-
nents. The ICA problem is to find a separation or demixing
matrix W9A�1, which recovers independent components
or source signals

yðtÞ ¼WxðtÞ, (3)

where y 2 RM and y9s. Like [40,41] we shall assume that
for certain set of k, sub-components in (2) are least
dependent or possibly independent. This significantly
relaxes assumptions on the sub-band model (2) in relation
to assumptions made in [14], where some a priori

information about the sources is assumed. That contradicts
to blindness assumption used to solve the BSS problem (1),
or in [38], where existence of at least two sets of k sub-
components is assumed. Under presented assumption the
standard linear ICA algorithms can be applied to the
selected set of k sub-components in order to learn de-
mixing matrix W:

ykðtÞ ¼WxkðtÞ. (4)

The problems to be resolved are which preprocessing
transform should be used to obtain sub-band representa-
tion of the original wideband BSS problem (1) and which
criteria should be used to select the set k with least
dependent sub-components.

3. Multiresolution SDICA

In order to obtain sub-band representation of the
original wideband BSS problem (1), we can use any linear
operator Tk which will extract a set k of sub-components

skðtÞ ¼ Tk sðtÞ½ �, (5)

where Tk can, for example, represent a linear time-
invariant bandpass filter. Using (5) and sub-band repre-
sentation of the sources (2), application of the operator Tk

on the wideband BSS model (1) yields

xkðtÞ ¼ Tk AsðtÞ½ � ¼ ATk sðtÞ½ � ¼ AskðtÞ. (6)

For this purpose a fixed filter bank has been used in
[14,38]. A high pass filtering can be seen as a special case of
the filter bank approach. An adaptive pre-filter has been
applied on xn, nA{1,y,N} in [40,41] and trained by
minimizing MI information among the filter outputs, thus
eliminating dependent sub-components sk. In this paper we
propose WP transform to be used for Tk in order to obtain
sub-band representation of the wideband BSS problem (1).
The main reason is existence of the WP transform in a form
of iterative filter bank and multiresolution property of the
WP transform which allows isolation of the fine details
within each decomposition level and enable adaptive sub-
band decomposition [31,39]. In the context of SDICA, it
means that an independent sub-band that is arbitrarily
narrow can be isolated, by progressing to the higher
decomposition levels. Also, computationally efficient im-
plementations of the WP transform exist for both two-
dimension (2D) and 1D signals. This will be illustrated in
the next section by applying WP-based SDICA approach
to blind separation of human faces, as well as to 1D signals
with a sine wave as interferer, i.e. dependent component.
We further use properties of the WP transform in order to
confirm existence of (6). That property was extensively
exploited in various versions of the sparse ICA, where it
has been found that either WP or short-time Fourier
transform are very useful for obtaining new representation
of data which is sparser than original formulation. As it
has been shown, executing ICA in sparse domain produced
more accurate solutions in solving linear instantaneous
BSS problem and enabled to solve underdetermined (more
sources than sensors) BSS problem [20,25,29,30,44]. In
particular case of WP, we express each source signal
(image) in terms of its decomposition coefficients:

s
j
kmðtÞ ¼

X
l

c
j
kmljjlðtÞ, (7)

where j represents scale level, k represents sub-band index,
m represents source index and l represents shift index. jj(t)
is the chosen wavelet also called atom or element of the
representation space and c

j
kml are decomposition coeffi-

cients. In our implementation of the described SDICA
algorithm, we have used shift-invariant 2D WP decom-
position for separation of human faces and 1D WP for
separation of 1D signals. If we choose the same representa-
tion space as for the source signals, we express each
component of the observed data x as

x
j
knðtÞ ¼

X
l

f
j
knljjlðtÞ, (8)

where n represents sensor index. Let vectors fl and cl be
constructed from the lth coefficients of the mixtures and
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I. Kopriva, D. Seršić / Neurocomputing 71 (2008) 1642–16551644



Author's personal copy

sources, respectively. From (1) and (8) using the orthogon-
ality property of the functions jj(t) we obtain

f l ¼ Acl . (9)

If additive noise is present this relation holds approxi-
mately, i.e. expanding the noise term in the same
representation n

j
kmðtÞ ¼

P
le

j
kmljjlðtÞ would add up to (9)

a vector el of the decomposition coefficients of the noise
[25]. Thus, when the noise is present Eq. (9) becomes
flEAcl. From (1) and (9) we see the same relation between
signals in the original domain and WP representation
domain. Inserting (9) into (8) and using (7) we obtain:

x
j
kðtÞ ¼ As

j
kðtÞ, (10)

as it was announced by (6) where no assumption of
multiscale decomposition has been made. For each
component xn of the observed data vector x, the WP
transform creates a tree with the nodes that correspond to
the sub-bands of the appropriate scale. In order to select
the sub-band with least dependent components sk, we
measure MI between the same nodes in the WP trees. For
this purpose we use the small cumulant approximation of
the Kullback–Leibler divergence, which is an exact
measure of MI, obtained under weak correlation and weak
non-Gaussianity assumptions [9]:

Î
j

k x
j
k1;x

j
k2; . . . ;x

j
kN

� �
�

1

4

X
0pnolpN

nal

cum2ðx
j
kn;x

j
klÞ

þ
1

12

X
0pnolpN

nal

cum2ðx
j
kn; x

j
kn;x

j
klÞ þ cum2ðx

j
kn;x

j
kl ; x

j
klÞ

� �

þ
1

48

X
0pnolpL

nal

cum2ðx
j
kn;x

j
kn; x

j
kn;x

j
klÞ

�

þcum2ðx
j
kn;x

j
kn;x

j
kl ; x

j
klÞ þ cum2ðx

j
kn;x

j
kl ;x

j
kl ; x

j
klÞ

�
, ð11Þ

where cum() in (11) denotes second, third or fourth-order
cross-cumulants [6,32]. Approximation of the joint MI by
the sum of pair-wise MI is commonly used in the ICA
community in order to simplify computational complexity
of the linear instantaneous ICA algorithms [17]. We have
demonstrated in Appendix A as follows: (i) that cumulant
based approximation (11) of the MI is consistent as and
computationally more efficient than entropy based approx-
imation of MI [18]; (ii) although MI is estimated for
measured signals only index of the sub-band with least
dependent components of the measured signals will
correspond with the index of the sub-band with least
dependent components of the sources. However, because
we use small cumulant-based approximation (11) of the
MI, it means that sometimes instead of selecting a sub-
band with least dependent sub-components of the source
signals we shall only get close to this sub-band. By
consistency, we assume that for mutually independent
processes approximation (11) of the MI converges toward
zero when the sample size grows toward infinity and that

its value is increased when dependence level between the
processes is increased. Once the sub-band with the least
dependent components is selected, we obtain either
estimation of the inverse of the basis matrix W or
estimation of the basis matrix A by applying standard
ICA algorithms on the model (10). Reconstructed source
signals y are obtained by applying W on the original data x

as it is given by (3). Alternatively, mixed signals can be
reconstructed through the synthesis part of the WP
transform, where sub-bands with a high level of MI are
removed from the reconstruction. This is demonstrated in
experiments 1 and 2 in the next section. We summarize
multiscale SDICA BSS algorithm in the following four
steps:

1. Perform multiscale WP decomposition of each compo-
nent of the multivariate data x. Wavelet tree will be
associated to each component of x (Eq. (6)–(10).

2. Select sub-band with the least dependent components by
estimating MI between the same nodes (sub-bands) in
the wavelet trees (Eq. (10) and (11).

3. Learn basis matrix A or its inverse W by executing
standard ICA algorithm for linear instantaneous pro-
blem on the selected sub-band (Eq. (10)).

4. Obtain recovered sources y by applying W on data
vector x (Eq. (3)).

4. Simulation examples

In this section we examine performance of derived WP
SDICA algorithm using the same examples as in [40]. The
code for MATLAB implementation of the WP SDICA
algorithm can be found and downloaded from [26]. In
order to quantify separation quality, we also use the
Amari’s performance index Perr [1] that measures closeness
of the global separation matrix Q ¼WA to the general
permutation matrix P ¼ KI, where K represents diagonal
matrix and I represents identity matrix. Perr is calculated as

Perr ¼
1

NðN � 1Þ

XN

i¼1

XN

j¼1

qij

�� ��
maxk qik

�� ��� 1

 !(

þ
XN

j¼1

qji

�� ��
maxk qki

�� ��� 1

 !
, ð12Þ

where qij ¼ [Q]ij and 0pPerrp2. Perr approaches zero when
Q approaches P. We compare WP SDICA algorithm with
adaptive prefiltering algorithms [40,41], innovations ap-
proach [21,24] and high pass prefiltering approach [14,15].
We have implemented the high pass prefiltering by means
of 1D wavelet transform with the one decomposition level.
It realizes coarse approximation and details by means of
the two half band filters. All the experiments have been
conducted in MATLABr environment on a 3GHz PC
machine with dual core microprocessor and 2GB of
internal memory. In a case of all tested algorithms, we
have used the FastICA algorithm in a symmetric mode
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with tanh nonlinearity [22]. We would like to comment that
choice of the nonlinearity for the FastICA algorithm is not
critical as it would be for the ICA algorithm based on the
classical score function [4,43]. We have also tested FastICA
algorithm with cubic nonlinearity as well as JADE
algorithm [8] that is known to be ‘‘nonlinearity free’’.
The obtained results were only slightly different than those
obtained by FastICA algorithm with tanh nonlinearity.
The reason why FastICA and any standard ICA algorithm
will fail when applied directly on measured data is violation
of statistical independence assumption.

4.1. Experiment 1: WP-based SDICA with artificially

generated data

In this experiment, we have used the four independent
sub-components: amplitude-modulated signal, a square
wave, a high-frequency noise signal and a speech signal.
Each signal has 10,000 samples. Each original signal si

contains one of the above independent signals together
with a sine wave with the same frequency, O ¼ 0.41 rad,
but different phases for different sources, which represents
dependent sub-component. Fig. 1 shows these signals as
well as their magnitude spectra. Fig. 2 shows waveforms
(left) and corresponding power spectrums (right) of the
observed or mixed signals xi. We have used the same
mixing matrix as in [40]. Fig. 3 shows waveforms of the
true dependent source signals (left) and waveforms of the
estimated dependent source signals (right) reconstructed by
direct application of the FastICA algorithm on the
observed signals xi. It is evident that separation quality is

poor. The value of the corresponding Amari’s error is
Perr ¼ 0.4728, which is significantly greater than zero.
Evidently, the presence of the dependent sub-components
prevented ICA algorithm from learning de-mixing matrix
W correctly. Fig. 4 shows equivalent results when described
WP-based SDICA has been applied on observed data. We
have used 1D shift-invariant WPs with five decomposition
levels. Regarding the type of the wavelet our choice was
symmlets with eight vanishing moments. The amount of
the MI equals to 9.3059e-8, where MI has been normalized
with respect to the maximal value in the whole WP tree. In
order to derive a truly unsupervised approach to blind
separation of statistically dependent sources, we need a
criterion for the selection of decomposition level. One way
to automate algorithm completely is to monitor the rate of
change of the MI, as decomposition level is increasing and
stop when rate of change is small. For example, by
carefully looking Table 1 we observed that change of MI in
the part of the wavelet tree that spreads from the high pass
part of the decomposition level 1 is insignificant in
comparison with the MI at the high pass part of
decomposition level 1. This issue is commented in more
details at the end of the section. Table 1 shows normalized
MI among the corresponding nodes of the wavelet trees
obtained after WP-based decomposition of the observed
data. The observed data were reconstructed using the
synthesis part of the WP tree. Only the nodes with
normalized MIo0.05 have been retained, i.e. the nodes
with higher level of MI were eliminated. In this way the
dependent sub-component has been treated as interferer
and eliminated from measurements before separation. We

ARTICLE IN PRESS

Fig. 1. The source independent sub-components (top four) and the waveform of dependent sub-component (the bottom one), as well as their magnitude

spectra. Only 400 samples are plotted for illustration. The sources are si ¼ si,I+si,D and si,D are sinusoid waves with the same frequency but different phases.
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then applied FastICA algorithm on the reconstructed
observed data in order to learn de-mixing matrix W. The
Amari’s error was Perr ¼ 0.0051, that is 92.7 times less than
the value when the FastICA algorithm has been applied
directly on measured data. The whole process, analysis and
synthesis part, took approximately 9.5 s.

The competing innovations approach has been tested
with a 10th order of the AR model. The prediction filter

was very efficient in eliminating the dependent sine wave
component. The FastICA algorithm has been applied on
innovations to learn the de-mixing matrix W. The Amari’s
error was Perr ¼ 0.0885 that is 5.3 times less than the value
when the FastICA algorithm has been applied directly on
measured data. The whole process took approximately
0.3 s. When HP filter has been applied to solve described
BSS problem value of the Amari’s error was Perr ¼ 0.0823,

ARTICLE IN PRESS

Fig. 2. The observed signals (left) and their magnitude spectra (right) in the experiment 1.

Fig. 3. The source independent sub-components with added dependent component (left) and reconstructed waveforms by direct application of FastICA

method on the observed data (right).

I. Kopriva, D. Seršić / Neurocomputing 71 (2008) 1642–1655 1647
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that is 5.7 times less than the value when the FastICA
algorithm has been applied directly on measured data. The
whole process took approximately 0.22 s. The HP filter
used in the experiment has been obtained from the WPs. It
is interesting to note that use of simple differentiator, i.e.
FIR filter with coefficients [1 �1], that works very well with
face images gives very poor performance in the presented
case of 1D signals. For such a filter value of Amari’s error
was Perr ¼ 0.5646.

Thus, it is evident that both HP and innovations are
reasonably accurate and yet computationally very efficient.
On the other hand, WP approach offers an order of
magnitude better accuracy with an increased computa-
tional time that is still of the order of a few seconds.
However, if we change the frequency of the sine dependent
components to O ¼ 2.14 rad, the WP approach achieves
the value of Amari’s error Perr ¼ 0.0069, the innovations
approach Perr ¼ 0.01271 and the HP filtering approach
Perr ¼ 0.4423. The reason while HP filtering approach
failed has been of course that interference is in a high pass
part of the spectrum. Without a priori information about
location of the interference HP approach fails. By this
simple experiment we have demonstrated the meaning and
importance of adaptability of the proposed WP SDICA
approach.

The adaptive prefilter algorithm has been applied on
mixed data with adaptive filter learning gain Zh ¼ 0.1, de-
mixing matrix learning gain ZW ¼ 0.15 and filter order
equal to 17. These values were suggested in [40]. We have
used the code provided on the web-site [42]. The algorithm
failed to remove sine dependent component. When applied

in independence enhanced mode [40], which assumes
availability of the subset of source signals, the adaptive
filter strongly suppressed sine dependent component and
achieved value of the Amari’s error was Perr ¼ 0.0046.
However, we find assumption about availability of the
subset of source signals unfair in the context of blind
scenario.
In [16] additive information cost function was proposed

for the selection of the best basis of WPs. Table 1 shows the
values of normalized MI for all nodes in the WP tree. It is
important to note that MI is not an additive function that
fits in the best basis scheme. Nevertheless, we can compare
MI measure in the parent and child nodes and decide
whether the further splitting was fruitful. If the child nodes
do not differ significantly among each other in the MI, we
can stop the further splitting in that direction.

4.2. Experiment 2: WP-based SDICA for separating images

of human faces

This example has been chosen from the same reason as in
[40]. Namely, it has been already found out that face
images, represented as 1D signals, are dependent and hard
to separate [21]. We demonstrate here the capability of the
WP SDICA algorithm to successfully separate four images
of human faces and compare its performance with adaptive
prefiltering algorithm [40], innovations approach and HP
prefiltering approach. We have used differentiator with the
impulse response h ¼ [1 �1] to implement HP filter for
which it is known to works well with the face images.
Regarding the type of the wavelet, we have also used

ARTICLE IN PRESS

Fig. 4. Reconstructed source independent sub-components (left) and their magnitude spectra (right) obtained by WP-based SDICA. It can be seen from

the magnitude spectra that dependent component with OE0.41 rad is removed from the reconstructed sources.

I. Kopriva, D. Seršić / Neurocomputing 71 (2008) 1642–16551648



Author's personal copy

symmlets with eight vanishing moments. The four original
images are shown in Fig. 5. It has been already demon-
strated that both innovations and HP prefiltering are
successful in separating faces from their mixtures [21,40].
However, let us assume the existence of the external
background Gaussian noise that is treated in BSS scenario
as another source signal [12]. It obviously represents a

dependent sub-component. We have added it such that an
average SNR with respect to source images was 29.1 dB.
The noise corrupted source images are mixed with the 4� 4
random mixing matrix. Mixed images are shown in
Fig. 6(a). It can be observed that external background
noise is not visible. Fig. 6(b) shows separated images
obtained after applications of the FastICA algorithm on
the mixed images. The quality of the separated images is
evidently very poor, that is also confirmed by the value of
the Amari’s error Perr ¼ 0.7382. If we now apply the WP
SDICA algorithm, innovations approach and HP prefilter-
ing approach to these noisy data, we respectively obtain the
following values of the Amari’s error Perr ¼ 0.0344, 0.2761
and 0.1685. Performance of WP SDICA algorithm has
been improved 21.4 times, performance of the innovations
approach has been improved only 2.7 times and perfor-
mance of the HP prefiltering approach has been improved
4.38 times. Fig. 6(c) shows separated image by WP SDICA
algorithm, while Fig. 6(d) shows separated images by
innovations approach. Normalized mutual information
among the corresponding nodes of the wavelet trees
obtained after WP based decomposition of the observed
data is shown in Table 2. The observed data were
reconstructed using the synthesis part of the wavelet packet
tree. Only the nodes with normalized mutual information
less than 0.05 have been retained. The reason why
innovations failed is that dependent white Gaussian noise
term is not predictable. The HP prefiletring approach failed
due to the wideband character of the external noise term,
i.e. the HP filtering kept half of its power. The WP SDICA
algorithm with two decomposition levels took approxi-
mately 91 s. The innovations approach took approximately
19 s while HP prefiltering approach took approximately
12 s. When WP transform was implemented in decimated
version obtained Amari’s error for two decomposition
levels was Perr ¼ 0.04, which is slightly worse than for non-
decimated version while the execution time was equal to
14 s. This experiment is additional evidence about the
robustness of the WP SDICA algorithm as well as its
flexibility in achieving tradeoff between accuracy and
computational efficiency.
The adaptive prefilter algorithm has been additionally

tested on a case without external noise with the parameter
values as proposed in [40] and using code provided by
Zhang et al. [42]. The filter order was 11, filter learning
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Fig. 5. Separating mixtures of images of human faces: original images.

Table 1

Values of the normalized mutual information between the same nodes in

the wavelet packet trees of the mixed signals in experiment 1

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

6.6338e-6 1.0165e-4 0.001568 0.001114 0.004123 0.03762

4.3069e-5

0.005760 0.09283**

3.7627e-4

0.003929 9.8547e-8 1.0896e-7

9.3059e-8*

0.06284 1.00000**

1.1561e-7

9.5130e-8 1.1057e-7 1.1187e-7 1.1368e-7

1.1205e-7

1.0864e-7 1.0740e-7

1.2148e-7

1.2969e-7 9.2024e-7 1.6753e-6

3.9823e-6

1.0114e-7 1.0295e-7

9.8636e-8

1.1252e-7 1.1725e-7 1.3701e-7 3.3412e-7 7.5134e-7

2.2103e-7

1.1139e-7 1.7694e-7

2.6185e-7

1.1155e-7 3.7135e-7 2.6591e-7

1.2917e-7

2.8068e-7 6.6695e-7

1.2161e-7

1.3022e-7 1.1119e-7 1.1409e-7 1.1270e-7

1.2488e-7

1.1268e-7 1.5636e-7

1.2049e-7

1.3680e-7 2.8687e-7 3.2190e-7

1.2617e-7

1.1647e-7 2.1985e-7

1.4093e-7

Node that corresponds to the minimum MI is marked with an asterisk,

while nodes that represent sub-bands with a high level of mutual

information are marked with two asterisks. The italic nodes denote the

sub-bands from which the partial reconstruction has been done.

I. Kopriva, D. Seršić / Neurocomputing 71 (2008) 1642–1655 1649



Author's personal copy

gain 0.04 and de-mixing matrix learning gain in the
instantaneous ICA stage 0.08. Initial value of de-mixing
matrix has been obtained by the FastICA algorithm. The
best result obtained after 265 iterations was Perr ¼ 0.0134.
However after 500 iterations algorithm stopped at similar
value Perr ¼ 0.0124, but the error has been oscillating
during the adaptation process. The value of the Amari’s
error vs. iteration index is shown in Fig. 7(a), which
illustrates oscillating character of the learning process. We
have decreased the prefilter and de-mixing matrix learning
gains 10 times to 0.004 and 0.008. Fig. 7(b) shows behavior
of the Amari’s error vs. iteration index for 5000 iterations.
Minimum of the Amari’s error Perr ¼ 0.0077 has been

achieved after 4567 iterations. Evidently, the learning is
more stable but small oscillations still remained. We found
very difficult to determine when to stop the algorithm. The
oscillating character of the learning process may represent
serious difficulty in real world applications where Amari’s
error is impossible to be calculated and monitored. There
are no such difficulties associated with the WP SDICA
approach. We have also tested the [41] on the same
example in a slightly modified mode, i.e. the prefilter has
been applied on observed data only and ICA algorithm has
been applied to filtered data in order to learn de-mixing
matrix. Obtained results are equivalent to those already
reported when filtering and instantaneous ICA are

ARTICLE IN PRESS

Fig. 6. Separating mixtures of images of human faces with an external Gaussian noise source. Average SNR value was equal to 29.1 dB. (a) Mixed images.

(b) Separation results obtained by FastICA algorithm. (c) Separation results obtained by WP SDICA algorithm. (d) Separation results obtained by

innovations based algorithm.
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executed together [40]. Regarding computational complex-
ity of the [40] algorithm it took approximately 360 s for 500
iterations. For an accuracy of Perr ¼ 0.0077 achieved after
4567 iterations it took 3240 s. The same accuracy has been
achieved by WP SDICA algorithm in 91 s only.

5. Conclusion

We have formulated a new method for blind separation
of statistically dependent sources. The method is based
upon assumption that wideband sources are dependent,
but there exists sub-band where sources are independent.
Adaptive sub-band decomposition is realized through WP

transform implemented in a form of iterative filter bank.
The sub-band with least dependent components is selected
by measuring MI between the same nodes of the wavelet
trees in the multiscale decomposition of the mixed signals.
The computationally efficient small cumulant approxima-
tion of the MI has been used for this purpose. If
reconstruction of dependent sub-components is desired,
the de-mixing matrix, learnt by applying the standard ICA
algorithm on selected sub-band mixed signals, is applied on
original mixed signals. This is illustrated by successful
separation of images of human faces from the mixtures. If
reconstruction of dependent sub-components is not de-
sired, the learnt de-mixing matrix is applied on a cleaned

version of the mixed signals obtained through the synthesis
part of the WP transform, where only sub-bands with
normalized MI less than predefined threshold retained.
Demixing matrix is learnt by applying ICA on recon-
structed mixed signals with eliminated dependent sub-
components. This is illustrated by successful separation of
artificially generated 1D signals corrupted by a sine wave as
dependent sub-component. In relation to the innovations
algorithm proposed in [21] and high pass prefiltering
algorithm proposed in [14,15], it has been demonstrated
that WP SDICA algorithm exhibits consistent performance
in terms of accuracy and robustness with respect to various
interfering signals that act as dependent components, while
the other two methods fail under certain circumstances.
Yet, the WP SDICA algorithm keeps reasonably small
computational complexity. Unlike the adaptive prefiltering
algorithms proposed in [40,41], the WP SDICA algorithm
does not have any stability problems associated with an
adaptive learning process and is an order of magnitude
computationally more efficient. Thus, we consider that WP
SDICA algorithm may be quite useful in practical
applications due to its robustness and computational
efficiency.
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Table 2

Values of the normalized mutual information between corresponding

nodes in the wavelet packet trees of the mixed signals in experiment 2

Level 0 Level 1 Level 2

3.1104e-2 3.6502e-2 1.00000**

3.4570e-2

2.5430e-2*

3.2171e-2

3.9920e-2 5.2337e-2**

3.8559e-2

2.9874e-2

3.3041e-2

2.8660e-2 2.9893e-2

2.8736e-2

2.7758e-2

3.1539e-2

3.0871e-2 2.8029e-2

2.9845e-2

3.0672e-2

3.1825e-2

For description of used notation see Table 1.

Fig. 7. Amari’s error vs. iteration index for algorithm (Zhang and Chan, 2006a) in blind separation of human faces. (a) Prefilter learning gain 0.04, de-

mixing matrix learning gain 0.08. (b) Prefilter learning gain 0.004, de-mixing matrix learning gain 0.008.
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Appendix A. Approximation of the MI and its use in sub-

band selection

Under weak correlation and weak non-Gaussian as-
sumptions, it has been shown in [9], Eqs. (70), (66) and
(68), that MI can be approximated via small cumulant
approximation of the Kullback–Leibler divergence
(Gram–Charlier expansion of non-Gaussian distributions
around normal distribution) as

I y1; y2; . . . ; yN

� �
�

1

4

X
1piojpN

iaj

c2ij þ
1

2

X
rX3

1

r!

XN

i1i2;...;ir¼1

c2i1i2;...;ir
,

(A.1)

where c2i1i2;...;ir
denotes square of the related rth order cross-

cumulant and i1i2,y,ir denotes partition of indices such
that they are not all identical and cij denotes cross-
correlation or second-order cross-cumulant. If we further
assume that all the cumulants of the order higher than 4
(weak non-Gaussian assumptions) are small, then (A.1) is
reduced to
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c2i1i2i3i4
. ðA:2Þ

We now apply another approximation commonly done
in ICA community [17] and approximate joint indepen-
dence I(y1,y2,y,yn) by the sum of pairwise independences
and arrive to
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where in (A.3) n,mA{1,2}, p,qA{1,2,3}, n+m ¼ 3 and
p+q ¼ 4. As it has been proven in [9] it applies for such
a measure I(y1,y2,y,yN)X0. It is equal to zero when

yn

� 	N

n¼1
are mutually statistically independent or pairwise

statistically independent. This pairwise approximation of
MI has been also used in [40], Eq. (19), as a cost function
for filter adaptation. It follows that above approximation
represents consistent measure of statistical (in)dependence.
From the practical reasons we shall rewrite Eq. (A.3) in
terms of explicit use of second-, third- and fourth-order
cross-cumulants
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�
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1piojpN
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þ
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�

þcum2ðyi; yj ; yj ; yjÞ

�
, ðA:4Þ

where subscript c denotes cumulant-based approximation.
Alternative to this approximation is to employ the entropy-
based approximation that follows from the definition of the
MI [18]:

IðyÞ ¼
XN

n¼1

HðynÞ �HðyÞ, (A.5)

where H denotes the entropy, HðynÞ ¼ �E½logðpyn
ðynÞÞ�

and pyn
is the density function of yn. It is necessary to

approximate marginal entropies, joint entropy and related
density functions:

ÎH ðyÞ ¼
XN

n¼1

ĤðynÞ � ĤðyÞ, (A.6)

where subscript H denotes entropy-based approximation.
We follow approach exposed in [3]:

ĤðynÞ ¼ �
1

T

XT

t¼1

log p̂yn
ðynðtÞÞ,

p̂yn
ðynðtÞÞ ¼

1

T

XT

m¼1

Kh ynðtÞ � ynðmÞ
� �

,

ĤðyÞ ¼ �
1

T

XT

t¼1

log p̂y yðtÞð Þ,

p̂yðyðtÞÞ ¼
1

T

XT

m¼1

YN
n¼1

Kh ynðtÞ � ymðtÞ
� �

, (A.7)

where T denotes the sample size. In (A.7) Kh represents
kernel. Various kernels might be used for density estima-
tion [11,35,37]. The commonly used kernel is Gaussian
kernel

KhðynðtÞ � ynðmÞÞ ¼ exp �
ynðtÞ � ynðmÞ
� �2

h

 !
, (A.8)
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where h denotes the bin width of the kernel. Recommenda-
tion for choosing h is [37]:

h ¼ 0:6
ŝffiffiffiffi
T5
p , (A.9)

where ŝ denotes sample standard deviation of yn. The joint
density estimator in (A.7) is expressed using a product of
1D kernels. This simplifies computational complexity, but
represents a restriction since joint density does not factorize
except if marginal variables are independent. However, it
has been proven in [3] that this choice improves the bias of
the estimator of the MI that asymptotically converges
toward zero with a speed 1/T. Therefore, MI estimator
(A.6) satisfies ÎH ðyÞX0 with the equality to zero only when
variables of y are statistically independent.

We now demonstrate consistency of the two MI
estimators Î cðyÞ and ÎH ðyÞ. Fig. A.1 shows MI as a
function of the sample size for two Laplacian distributed
processes, where ‘x’ denotes entropy-based approximation
and ‘o’ denotes cumulant-based approximation. It is
evident that both approximations converge toward zero
as sample size increases. Fig. A.2 shows approximations of
the MI for two partially dependent processes s1 ¼ s1

u+csd

and s2 ¼ s2
u+csd where s1

u and s2
u were two zero mean

uniformly distributed processes and dependent component
sd being normally distributed process with zero mean and
unit variance. The scale factor c has been varied between
0.1 and 1 with the step equal to 0.1. It is evident from
Fig. A.2 that both Î c and ÎH are consistent, i.e.
Î cðHÞ s1ðc1Þ; s2ðc1Þð Þ4Î cðHÞ s1ðc2Þ; s2ðc2Þð Þ for c14c2. In the
case of dependent processes both approximations are less
accurate, ÎH due to the already discussed reasons related to
the use of 1D kernel in the joint density estimator (A.7) and
Î c due to the fact that only cumulants up to the order four
were used in the approximation (A.4). Nevertheless,
demonstrated consistency makes both measures suitable
for detection of the sub-band with the least dependent
components. Due to the huge difference in computational
complexity, we have selected cumulant-based approxima-
tion Î c for the use in sub-band detection criterion. For the
sake of illustration, Fig. A.3 shows estimated computation
time for MATLAB implementation of both approxima-

tions as a function of the sample size for the example
analyzed in Fig. A.1. Note that small inconsistency with
the cumulant-based measure is due to the poor resolution
capability of the MATLAB functions clock and etime, on
the milliseconds scale, that were used for measuring the
computation time.
After demonstrating consistency of the MI estimators

Î cðyÞ and ÎH ðyÞ, we now want to prove that index of the
sub-band with the statistically least dependent components
of the measured signals, that is found at the minimum of
the MI of the measured signals, corresponds with the index
of the sub-band with the statistically least dependent
components of the source signals. For that purpose, we
rewrite sub-band decomposition representation, Eq. (6), of
the wideband BSS model:

xkðtÞ ¼ AskðtÞ. (A.10)

Index of the sub-band with the statistically least
dependent components of the measured signals k* is
obtained as

k� ¼ argmin
k

IðxkÞ. (A.11)
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Fig. A1. MI approximation as a function of the sample size for two Laplacian distributed processes. ‘x’ denotes entropy-based approximation while ‘o’

denotes cumulant-based approximation.

Fig. A2. MI approximation as a function of dependence factor. Two

uniformly distributed processes were used as independent processes.

Normally distributed process was added as a dependent process with the

scale factor that influenced dependence level. ‘x’ denotes entropy-based

approximation while ‘o’ denotes cumulant based approximation.

I. Kopriva, D. Seršić / Neurocomputing 71 (2008) 1642–1655 1653



Author's personal copy

Consequently, we want to prove

k� ¼ argmin
k

IðxkÞ ¼ argmin
k

IðskÞ. (A.12)

Let us now express the MI in a form of Kullback
divergence:

IðxkÞ ¼ D pðxkÞ
YN
n¼1

pnðxknÞ

�����
 !

¼

Z
pðxkÞ log

pðxkÞQN
n¼1pnðxknÞ

¼
XN

n¼1

HðxknÞ �HðxkÞ, ðA:13Þ

where H(xkn) and H(xk) respectively represent marginal
and joint differential entropy [18, pp. 224–233]. MI defined
as Kullback divergence is a convex function with the
property I(xk)X0 and equality with zero only if xkn are
independent, i.e. pðxkÞ ¼

QN
n¼1pnðxknÞ, see theorem 9.6.1 in

[18]. Also from the corollary defined by Eq. (9.59) in [18], it
follows:

HðxkÞp
XN

n¼1

HðxknÞ, (A.14)

with equality only if xkn are independent. Because we are
looking for the sub-band with least dependent components
of the measured signals, sum of the marginal entropies in
such a case will be closest to the joint entropy. Therefore,
from (A.13) and (A.14) it follows:

k� ¼ argmin
k

IðxkÞ ¼ argmin
k

XN

n¼1

HðxknÞ � argmax
k

HðxkÞ.

(A.15)

It follows from (A.14) and (A.15) that minimizing the
MI is equivalent to the simultaneous minimization of the
sum of marginal entropies and maximization of the joint
entropy. Thus, maximization of joint entropy implies
simultaneous minimization of the sum of marginal
entropies driving MI toward zero. We now express joint
entropy H(xk) in terms of the joint entropy H(sk) using the
rule for the entropy of the linear transformation xk ¼ Ask

[18] (theorem 9.6.4, i.e. Eq. (9.67)):

HðxkÞ ¼ HðskÞ þ log jdet Aj. (A.16)

Taking account that second term in (A.16) is invariant
with respect to the sub-band index k it follows:

argmax
k

HðxkÞ ¼ argmax
k

HðskÞ. (A.17)

Due to already discussed reasons maximization of H(sk)
will simultaneously imply minimization of

PN
n¼1HðsknÞ.

Hence

k� ¼ argmin
k

IðxkÞ

¼ argmin
k

XN

n¼1

HðxknÞ � argmax
k

HðxkÞ

¼ argmin
k

XN

n¼1

HðsknÞ � argmax
k

HðskÞ

¼ argmin
k

IðskÞ, ðA:18Þ

which proves (A.12). However, because we use small
cumulant-based approximation (A.4) of the MI (A.5), the
equality (A.12) holds approximately. It means that some-
times instead of selecting a sub-band with least dependent
sub-components of the source signals we shall only get
close to it.
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