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Abstract

A stochastic gradient is formulated based on deterministic gradient augmented with Cauchy

simulated annealing capable to reach a global minimum with a convergence speed significantly

faster when simulated annealing is used alone. In order to solve space-time variant inverse

problems known as blind source separation, a novel Helmholtz free energy contrast function,

H ¼ E � T0S; with imposed thermodynamics constraint at a constant temperature T0 was

introduced generalizing the Shannon maximum entropy S of the closed systems to the open

systems having non-zero input–output energy exchange E. Here, only the input data vector

was known while source vector and mixing matrix were unknown. A stochastic gradient was

successfully applied to solve inverse space-variant imaging problems on a concurrent pixel-by-

pixel basis with the unknown mixing matrix (imaging point spread function) varying from

pixel to pixel.

Published by Elsevier B.V.
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1. Introduction

Gradient optimization is generally incapable of reaching global minimum of the
functional with multiple minimums [32]. A stochastic optimization known as
simulated annealing [1,39,40], is guaranteed to reach global minimum but with the
see front matter Published by Elsevier B.V.
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very low speed of convergence. Geman and Geman proved in 1984 the convergence
guaranteed to find the global minimum by means of classical Gaussian annealing to
be an exceedingly slow admissible cooling schedule, TaðtÞ ¼ T0= log t: Their proof
used the Metropolis annealing algorithm to generate random walks based on
Gaussian distribution [17]. Szu in 1986 [39,40] had extended Geman–Geman
convergence proof for the case of the Cauchy noise with unbounded variance
combining naturally both Gaussian random walks with Levi random flights
achieving the admissible cooling schedule T cðtÞ ¼ T0=t: In this paper, we have
augmented the classical gradient optimization with the fast fluctuating term using the
rapid Cauchy annealing cooling schedule. We coined this approach the stochastic
gradient optimization. One important application of the derived stochastic gradient
optimization aimed to be unsupervised learning applied to the solution of the highly
non-stationary linear inverse problems known as blind source separation (BSS)
[11,6,4,3,10,9,12,13,23,24,26,33,46]. In this regard we have introduced a novel
Helmholtz free energy contrast function, H ¼ E � T0S; with the imposed
thermodynamics constraint at a constant temperature T0 generalizing the Shannon
maximum entropy S of the closed systems to the open systems having non-zero
input–output energy exchange E. Following BSS terminology for linear data models,
only the input data vector was known while the source vector and mixing matrix
were unknown. In comparison with a number of the cost functions for BSS already
proposed we have demonstrated a feature of the Helmholtz free energy cost function
to have global minimum at the solution of the linear inverse problem. That enabled
the applicability of the proposed cost function to solve the BSS problems when the
unknown mixing matrix varied from measurement to measurement. In this paper, we
have successfully applied a stochastic gradient optimization to solve inverse space-
variant imaging problems on a concurrent pixel-by-pixel basis with the unknown
mixing matrix (imaging point spread function) varying from pixel to pixel.
The organization of the paper is as follows. In Section 2, we have introduced the

BSS problem as well as the Helmholtz free energy cost function with the classical
gradient solution for the BSS problem. Section 3 gives the convergence proofs for
both Cauchy and Gaussian annealing, along with their differences in free space and
in gradient potential wells. The stochastic gradient is also introduced in Section 3.
Performances of the 2-dimensional Cauchy and Gaussian annealing search
algorithms as well as performances of stochastic gradient algorithm with Cauchy
and Gaussian cooling schedule were compared with multiple minimums on the
objective function. Section 4 gives more detailed description and illustration of the
Helmholtz free energy H ¼ E � T0S applied on the solution of both linear and
nonlinear BSS problems. Comparison has been carried out with the adaptive
independent component analysis (ICA) algorithms for linear [3,6,10,33] and post-
nonlinear [46] mixtures. The conclusion is given in Section 5. For readers’
convenience, Appendix A provides a derivation of the higher-dimensional Cauchy
annealing algorithm based on the transformation of the higher-dimensional Cauchy
pdf from Cartesian to hyper-spherical coordinates. Biological conjecture of the
unsupervised learning based on the minimum of the Helmholtz free energy is given in
Appendix B.
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2. Helmholtz free energy cost function and blind source separation problem

The linear BSS problem is to find a solution to the linear inverse problem

xðrÞ ¼ AðrÞsðrÞ (1)

in terms of the mixing matrix A and source vector s given the data vector x only
[11,6,4,3,10,9,12,13,23,24,26,33]. Here r represents the generalized coordinate
emphasizing that both mixing matrix and source vector are r coordinate variant.
Data model (1) can for example represent multispectral image [41,43] where rðp; qÞ ¼
1 . . .P � Q ðp ¼ 1 . . .P; q ¼ 1 . . .QÞ represents pixel location in the image with the
size of P�Q pixels. Because we have focused our attention on imaging applications,
the positivity constraints were imposed on the data vector, source vector, and mixing
matrix. Without loss of generality we assume here x; s 2 RþN

0 ; A 2 RþN�N
0 ; where Rþ

0

is a set of positive real numbers including zero and N represents a number of sensors
and a number of sources. Generally, a solution is given in terms of the de-mixing
matrix W

uðrÞ ¼WðrÞxðrÞ, (2)

where Wffi A�1: Hence, the algorithm initially presented in [41,43] and further
elaborated here finds solution of the non-stationary BSS problem at the minimum of
the to-be-defined Helmholtz free energy cost function by allowing both the mixing
matrix and source vector to be r-variant. The independent component analysis (ICA)
algorithms defined in [11,6,4,3,10,9,12,13,23,24,26,33] solve the problem on the
statistical basis assuming the unknown mixing matrix to be r-invariant (Fig. 1).
In order to motivate our further work we first postulate with the Lyapunov

convergence proof that a mammals’ simultaneous (supervised and unsupervised)
learning capability is achieved by minimizing the Helmholtz thermodynamic energy,
H ¼ E � T0S; at a constant cybernetic temperature T0. This is the so-called
homeostatic warm-blooded animal learning theory proposed by Szu [38].

Theorem 1. (Homeostatic learning). It is assumed that neurodynamics are governed by

the second law of thermodynamics in terms of the Helmholtz free energy of an open

system in an isothermal dynamic balance

Hðs1; . . . ; sn;w1; . . . ;wnÞ ¼ Energyðs1; :::; snÞ � T0 Entropyðw1; . . . ;wnÞ, (3)

where the thermal reservoir temperature T0 was assumed to be constant. It is also

assumed that scalable local gradient dynamics are given with

dui

dt
¼ �

qEnergy

qvi

(4)

that corresponds with the minimum energy in the Hopfield–Grossberg–Kohonen sense

and ni ¼ sðuiÞ is standard artificial neural network (ANN) sigmoid output

[16,18,20,21,34]. It is further assumed that learning of the de-mixing matrix is
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Fig. 1. Independent component analysis (ICA) artificial neural network (ANN) that performs the blind

source separation task through maximization of the a posteriori entropy function that has been proven [6]

to factorize the joint pdf of the ANN outputs. Consequently, a neighborhood data are required in order to

make the joint pdf factorization possible, which indirectly assumed the space-invariant nature of the

mixing.
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governed by the natural gradient [3,4,10] MaxEnt algorithms

dW=dt ¼
dEntropy

dW
WTW

� �
. (5)

Then, both supervised and unsupervised learning occured concurrently at the Lyapunov

equilibrium at the minimum of the thermodynamic Helmholtz free energy

dH

dt
¼
dEnergy

dt
� T0

dEntropy

dt
p0. (6)

Proof. By means of a monotonic logic dvi=dui40 and by means of (4) we prove

dE=dt ¼
X

i
ðdEnergy=dviÞðdvi=duiÞðdui=dtÞ

ffi �
X

i
ðdEnergy=dviÞ

2
ðdvi=duiÞp0. ð7Þ

Also by using (5) we prove

dEntropy=dt ¼
dEntropy

dW
WTW

� �
dW=dt
� �

¼
dEntropy

dW
WTW

� �� �2

X0.

(8)

In (8) the Euclidean gradient dEntropy=dW was corrected by the metric tensorWTW

in order to obtain the natural or relative gradient [3,19]. Now, combining (7) and (8)
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we prove Eq. (6) as

dH

dt
¼
dEnergy

dt
� T0

dEntropy

dt
p0: &

We have shown from the definition of the thermodynamic Helmholtz free energy
that a constant cybernetic temperature T0 allowed simultaneous minimization of the
internal energy for supervised categorization and maximization of the entropy for
unsupervised component analysis, such as simultaneous de-noising and associative
recall in the cocktail party effect.

A natural question arises: what are mathematical principles of learning without a
teacher? We can furthermore derive unsupervised neural networks if we assume that
the first-order estimation Energy term is defined as

E 	 kTðx � AsÞ ¼ lTðWx� sÞ, (9)

where k 2 RN and l 2 RN represent vectors of the Lagrange multipliers and
superscript T denotes transpose operation. When the external information enters the
system through a set of smart sensors, hundreds of millions of excitations are
generated by sensory neurons. In theory, these neurons could take energy to sustain
themselves and, thereby, make sense of incoming data and reduce an unwanted
redundancy among brain waves in order to make room for further stimuli. Did in
situ neural pathways take the advantage of inevitable decay to learn something
quickly without supervision, based on data in memory? We conjectured the
affirmative: systematic decay by gradient descent and stochastic decay by ‘‘adrenal’’
annealing. In fact, in this paper, we combined both into one stochastic gradient
descent learning methodology.
We begin to build up a truly unsupervised form of learning by first considering

that, without macroscopic constraints defined by data vector x, the Shannon entropy
alone would at the equilibrium point produce a trivial solution in terms of the
unknown source vector s: This is stated by the following physics theorem.

Theorem 2. (Closed system equal partition equilibrium law). If the total number of

components is N, then the maximum entropy solution of a closed system is given by

s̄;j ¼ 1=N ; for all j, where Shannon–Boltzmann entropy [22] is defined with the

Lagrange constraint KBðl0 þ 1Þ to incorporate the unit normalization of the total of

unknown source components as in (10):

S ¼ �KBjsj
XN

j¼1

s;j ln s;j þ KBjsjðl0 þ 1Þ
XN

j¼1

s;j � 1

 !
. (10a)

In (10a) KB represents Boltzmann’s constant and |s| represents L1 norm of the source

vector s, i.e.

jsj ¼
XN

j¼1

sj s;j ¼ sj



jsj (10b)
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or in equivalent vector notation

s ¼ jsjs;. (10c)

In the subsequent derivations we shall assume that jsj and s;j are independent
variables that will be estimated separately using optimization procedure to be
defined.

Proof of Theorem 2. From (10a) we obtain

qS

qs;j
¼ �KBjsjðln s;j þ 1Þ þ KBjsjðl0 þ 1Þ ¼ 0 (11)

from which it follows that

s̄;j ¼ expðl0Þ. (12)

The unit sum constraint
PN

j¼1 s;j ¼ 1 implies

expðl0Þ ¼
1

N
(13)

and from (12) and (13) we get

s̄;j ¼
1

N
: &

We have generalized the Shannon entropy S of a closed system to an open system
in dynamic equilibrium with the external energy E in terms of the Lagrange
constraint. Then the following optimization problem is formulated, for the
multispectral imaging data, for example, on the pure space-variant basis

½A�; jsj�; s;� ¼ argminHðjsj; s;;AÞ, (14a)

where Helmholtz free energy cost function is defined as follows:

Hðjsj; s;;AÞ ¼ Eðjsj; s;;AÞ � T0Sðjsj; s
;Þ

¼ jsj
XN

i¼1

li xi �
XN

j¼1

aijs
;
j

 !
þ KBT0jsj

XN

j¼1

s;j ln s;j

� KBT0jsj l0 þ 1ð Þ
XN

j¼1

s;j � 1

 !
, ð14bÞ

where in (14a) superscript * denotes optimal values in the sense of the minimum of
the Helmholtz free energy Hðjsj; s;;AÞ: In (14b) xi are components of the
multispectral image at one particular pixel location, i.e., we have dropped the r

term from (1)–(2) in order to simplify the notation. Nonlinear constraints [32] could
be also used in (14b) as will be considered later. As already pointed out, in the cost
function (14b) we treat the L1 norm jsj and components of the scaled sources vector
s;j as independent (separate) variables.
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Theorem 3. (The open system sigmoid partition law). The analytical solution for the

class vector s; obtained at the minimum of the Helmholtz free energy has the classic

ANN sigmoid logic [41]

s;j ¼
1

1þ
PN

k¼1
kaj

expð 1
KBT0

PN
i¼1 liðaik � aijÞÞ

¼ sjðA; kÞ. (15)
Proof. Equating the derivation of the Helmholtz free energy (14a)/(14b) w.r.t. s; with
zero [41]

qH

qs;j
¼ �

XN

i¼1

liaijjsj þ jsjKBT0 lnðs
;
jÞ þ jsjKBT0l0 ¼ 0 (16)

yields

s;j ¼ exp
1

KBT0

XN

i¼1

aijli � l0

 ! !
, (17)

where the minimum is guaranteed by the positive second derivative

q2H

qs;2j
¼

1

s;j
40

because, from (17), it follows that s;j is non-negative. Likewise, the total class
probability can be normalized. Thus, we summed (17) over an arbitrary number N of
total classes to determine l0

exp
l0

KBT0

� �
¼
XN

k¼1

exp
1

KBT0

XN

i¼1

aikli

 !
, (18)

where l0 is the Helmholtz free energy and the right-hand side of (18) is the (canonical
ensemble) partition function in statistical mechanics [22]. Inserting (18) into (17), we
obtain

s;j ¼
expð

PN
i¼1 aijliÞPN

k¼1 expð
PN

i¼1 aikliÞ
. (19)

Dividing both numerator and denominator of (19) by the numerator yields the ANN
sigmoid function (15) without assuming it. &

We could justify the name of Lagrange Constraint ANN if we further derive the
unsupervised Hebbian learning rule using only input data vector and neglecting any
desirable output as follows.
Given the associative recall data x ¼ As and assuming the message s has been

found for the time being, we estimated the associative memory (AM) matrix A from
the given pair through the vector outer product formula [41]

A ¼ x
ŝ
T

jŝj2
, (20)
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which obviously recalls the solution As ¼ x: Because the mixing matrix in (20) was
rank-1, what was still missing was the fault tolerance (FT) for the inverse association
A�1x ¼ s: It had been shown in [43] that, for pattern recall in a case of adaptive
learning matrix A; the classifier distance is modified by the Riemannian learning
metric tensor G ¼ ATA: It follows from the fact that, while the Euclidean distance
measure dx of data x had the identity metric I; the recall message s has the equivalent
distance ds in the s-space with the Riemannian metric G

dx 	 x; Ixð Þ ¼ xTx ¼ sTATAs ¼ ðs;ATAsÞ 	 s;Gsð Þ 	 ds. (21)

The implication of Eq. (21) is important for machine ATR [15], i.e., given the
identical data set, a machine could be trained to classify better by altering the metric
distance measure ds ¼ ðs;GsÞ: It might be quite profound that we have explicitly
proven Amari’s assertion of the brain learning geometry utilizing the Riemannian
metric for pattern recognition [2,3]. In [43] we have applied Riemannian metric
tensor G ¼ ATA to embed the flat space Euclidean learning within the Riemannian
learning hyper-sphere to produce the full rank AM Hebbian learning algorithm.
The full rank AM learning rule is computed based on the natural gradient of the

minimum estimation error averaged over the source. Minimizing Helmholtz free
energy H in (14a)/(14b) w.r.t. A, we obtain

qA
qt

¼ �
qHðs;AÞ

qA
ATA

� �
sources

, (22)

where the Riemannian metric tensor for the sources’ distance was derived from the
Euclidean inner product distance of sources. The unsupervised learnt matrix A has to
be full rank for the inverse of the associative learning to exist. From both (22) and
(14a), we obtain

Aðk þ 1Þ ¼ AðkÞ þ ZqA=qt ¼ AðkÞ � Z qHðs;AÞ=qA
� 

s
ATA

¼ AðkÞ þ ZksTAðkÞTAðkÞ ¼ ðIþ ZkxTÞAðkÞ, ð23Þ

where in (23) Z represents small learning gain. Here, we have applied the natural
gradient learning rule [3] at the single pixel level [43]. The termination of iterations
without a teacher occurs after the input data x becomes orthogonal to the Lagrange
multipliers vector k: this is similar to Oja’s hyper-spherical rotation. The subscript
index s in (23) means that iterations are done over the source vector s: that explains
why we did not need to use the neighborhood data averaging. Update Eq. (23) gives
the full rank mixing matrix A. In (18), (19) and (23) k is the vector of the Lagrange
multipliers whose update Dk; according to [43], is obtained as a solution of the
variation equation

Dxi ¼
XN

k¼1

q ~xi

qlk

Dlk,

where ~xi ¼
PN

j¼1 aijsj represents approximation of the data component xi at some
iteration l and Dxi ¼ xi � ~xi represents approximation error. Solution of the above
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variation equation is given with

Dk ¼ ð ~xðlÞ ~xTðlÞ � AðlÞdiagfsjðlÞg
N
j¼1A

T
ðlÞÞ�1ðx� AðlÞsðlÞÞ. (24)

We want to point out here that while the mixing matrix gradient descent learning
rule (23) together with the Lagrange multipliers learning rule (24) and source
probabilities equation (17) enables solution of the linear inverse problem (1) there is
no guarantee that global minimum of the cost function (14a)/(14b) will be reached.
That motivated our efforts to formulate stochastic gradient descent learning as a
combination of the gradient descent and stochastic Cauchy annealing.
3. Fast Cauchy annealing

The constraint optimization could be generalized for both supervised and
unsupervised ANN depending on the construction of the energy landscape. Our
empirical data indicated that the supervised ANN was associated with a gentle,
Piedmont-like landscape with multiple lakes of different depths; in contrast, the
unsupervised ANN, having unlabelled training data, was associated with much
narrower attractor basins, including the singularity-like golf-course landscape. This
type of singular landscape was obtained when deterministic blind inversion of the
space-variant imaging problem was solved by minimizing the Helmholtz free energy
[27,28,44]. When the cost function CðxÞ had a single minimum, a gradient descent
gave a unique ground state, and any reasonable method could approach it. However,
when the cost function had multiple extremes, more powerful techniques were
required for escaping from local extremes. Simulated annealing was just such a
stochastic strategy for searching the global ground state. Geman and Geman had
proved the cooling schedule of simulated annealing theorem [17], using the
Metropolis annealing algorithm to generate random walks with reduced variances.
As a result, the algorithm reached the global minimum at an exceedingly slow
inversely logarithmic cooling schedule [17]. Fast Cauchy simulated annealing (CSA)
combining Gaussian random walks with occasional Levy random flights could
achieve the global optimization with a much faster cooling schedule: inversely linear
in the state-transition time steps [39,40]. The cooling schedule of the Cauchy
annealing algorithm was proved to be inversely linear in time—which was fast
compared to Geman–Geman Gaussian simulated annealing (GSA), which is strictly
a local search requiring that the cooling schedule be inversely proportional to the
logarithmic function of time [17].
We recapitulated the proof of the convergence of the cooling schedules for both

fast CSA [40] and GSA [1,17].

Theorem 4. (Fast Cauchy annealing). The Cauchy annealing with the cooling schedule

T cðtÞ ¼ T0=t for some T040 could visit the local neighborhood with the probability gt

at any time t. Similarly, the Gaussian annealing with the cooling schedule TaðtÞ ¼

T0= log t for some T040 could visit the local neighborhood with the probability gt at

any time t.
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Proof. Let the state-generating probability at the cooling temperature T cðtÞ at the
time t and within a neighborhood be (bounded below) Xgt: Then the probability
of not generating a state in the neighborhood is obviously (bounded above by)
pð1� gtÞ: To prove that a specific cooling schedule maintains the state-generation
infinite often in time it is easier to prove the negation of the converse, i.e., the
impossibility of never generating a state in the neighborhood after an arbitrary time
t0. In other words, the negation probability vanishes

Y1
t¼t0

ð1� gtÞ ¼ 0. (25)

Taking the logarithm of (25) and expanding in Taylor series (noting that
log 0 ¼ �1; logð1� gtÞ � �gt), shows that proving (25) is equivalent to proving
(26)

X1
t¼t0

gt ¼ 1. (26)

We can now verify cooling schedules satisfying (26) in the D-dimensional
neighborhood for an arbitrary size jDxj ¼ jx� x0j and t0; where x0 is the previously
chosen point to test. For the bounded variance-type GSA, there exists an initial T0:
For t40,

TaðtÞ ¼ T0= log t, (27)

gtðxÞ ¼ ð2pTaðtÞÞ
�D=2 exp½�jDxj2=ð2TaðtÞÞ, (28)

X1
t¼t0

gtX

X1
t¼t0

expð� ln tÞ ¼
X1
t¼t0

1=t ¼ 1. (29)

For the unbounded variance-type Cauchy annealing for arbitrary T040;

TcðtÞ ¼ T0=t, (30)

gtðxÞ ¼
T cðtÞ

½T2
cðtÞ þ jDxj2ðDþ1Þ=2

�
T0

tjDxjDþ1
, (31)

X1
t¼t0

gt �
T0

jDxjDþ1

X1
t¼t0

1

t
¼ 1. (32)

So, the local neighborhood is visited infinite number of times at each time t, and the
cooling schedule algorithm is admissible. &

To apply CSA to D-dimensional problems, we had to introduce the transforma-
tion from Cartesian to hyper-spherical coordinates in order to simplify generation of
D-dimensional Cauchy pdf (in Cartesian coordinates) as a product of D one-
dimensional pdf’s (in the hyper-spherical coordinates). The full derivation of the
annealing algorithm based on this transformation is given in Appendix A. The CSA
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Fig. 2. From left to right are: (a) 2D objective functions with the ‘ocean’-like type of landscape; (b)

multiple ‘lakes’-like type of landscape; (c) ‘golf hole’-like type of landscape.
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algorithm could then be applied to search both the supervised learning multiple lake-
like landscape and the unsupervised learning golf-course-like landscape. Fig. 2
illustrates three possible landscapes (a) left: ocean landscape, (b) center: multiple
minima in a lake landscape, and (c) right: golf course landscape. Convergence of fast
Cauchy annealing had been demonstrated in [39] for a 1-D double-well potential
function, the 2-D equivalent of which is shown in Fig. 2b. The Helmholtz free
energy-based objective function used in blind space-variant imaging problems
[27,28,44] had a very difficult golf-course landscape: note the two spikes in Fig. 2c.
Here, we demonstrated the application of the higher-dimensional fast Cauchy
annealing on the global minimization of a golf-course landscape using techniques
such as blind de-mixing of a space-variant mixture of images. Other applications for
such de-mixing include telescope images in astronomy or remotely sensed images
where pixel values are represented as positive intensities [41,42].
In Fig. 3, we illustrated the fundamental difference between Gaussian annealing

[1] and Cauchy annealing [39,40]. The top portion of Fig. 3 shows free space random
walks for an independent variable with a Gaussian distribution where variance of the
distribution was equivalent to the temperature, the change of which is inversely
proportional with logarithm of time, i.e. TaðtÞ=T0 ¼ 1= logð1þ tÞ: The bottom
portion of Fig. 3 shows the free space random walk for the same independent
variable generated with a Cauchy or Lorentz distribution. Here, the temperature
equivalent parameter is inversely proportional to time:

cðtÞ ¼ T cðtÞ=T0 ¼ 1=ð1þ tÞ (33)

A faster cooling rate combined with occasional long jumps is what enables the
Cauchy annealing to converge faster than Gaussian annealing. To apply Cauchy
annealing theory on the D-dimensional non-convex optimization problems, we
needed to generate the D-dimensional Cauchy distribution given by [39]

pðxÞ ¼
c

½c3 þ jxj2 Dþ1ð Þ=2
(34)

which we showed was easier to generate if the parameter vector x was transformed
from the Cartesian to hyper-spherical coordinates. We give a comprehensive
mathematical treatment of this transformation in Appendix A. Here, we pointed out
that D-dimensional distribution pðxÞ can be generated as the product of D
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Fig. 3. Comparison of the free-space random walk for Gaussian distribution with cooling rate inversely

proportional with the logarithm of time (top) and for Cauchy distribution with the cooling rate inversely

proportional with time (down).
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one-dimensional distributions pðy1Þpðy2Þ::::pðyD�1ÞpðrÞ; where yi i ¼ 1; 2; . . . ;D � 1
are angles in the hyper-spherical coordinate system, and r is the magnitude of the D-
dimensional parameter vector x: The one-dimensional distributions are derived from
the identityZ Z

. . .

Z
pðx1;x2; . . . ;xDÞdx1 dx2 . . . dxD

¼

Z Z
. . .

Z
pðy1Þpðy2Þ . . . pðyD�1ÞpðrÞdy1 dy2 . . . dyD�1 dr ¼ 1: ð35Þ

We illustrated performance of two-dimensional Cauchy annealing on an example:
three objective functions with the three different landscapes shown in Fig. 2. The
objective function for Fig. 2a is C1ðx1;x2Þ ¼ x2

1 þ x2
2: It has a single minimum that

can be reached by standard gradient descent methods. Fig. 2b has this objective
function

C2ðx1;x2Þ ¼ x4
1 � 16x2

1 þ 5x1 þ x4
2 � 16x2

2 þ 5x2. (36)

For (36), the interval x1; x2 2 ½�5; 5 has four minimums and one maximum. The
global minimum of the objective function C2ðx1;x2Þ is located at the point x1 ¼

x2 ¼ �2:9 when C2ð�2:9;�2:9Þ ¼ �156:66: The third objective function, shown in
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Fig. 2c is of the form

C3ðx1;x2Þ ¼
cos x1

sinðx2 � x1Þ
4:3132þ

sin x1

sinðx2 � x1Þ
6:6153� 5

� �2

þ
cos x2

sinðx2 � x1Þ
4:3132þ

sin x2

sinðx2 � x1Þ
6:6153� 3

� �2

, ð37Þ

where x1 2 ½p2;p and x2 2 ½�p
2; 0: The objective function (37) is minimized by solving

the two-dimensional linear space-variant inverse imaging problem [44], where
independent variables x1 and x2 are angles of the parameterized de-mixing matrix.
From the optimization point of view, it was interesting that the global minimum of
Fig. 2c’s objective function, C3ðx1;x2Þ; which had the so-called singularity golf
course landscape, again was practically impossible to find by means of gradient
descent algorithms. In Section 4, we demonstrated performance of the Cauchy
annealing algorithm applied to the five-dimensional objective function with the same
type landscape as C3ðx1; x2Þ: For the 2-D objective function given in (36), we
computed gradients as

qCðx1;x2Þ

qx1
¼ 4x3

1 � 32x1 þ 5,

qCðx1;x2Þ

qx2
¼ 4x3

2 � 32x2 þ 5. (38)

Now, the stochastic gradient learning algorithm for x1 and x2 was given by

qxi

qt
¼ FiðtÞ ¼ F iðtÞ þ ~FiðtÞ ¼ �

qC

qxi

þ ~FiðtÞ, (39)

where according to Uhlenbeck and Lawson [29], we have decomposed a macroscopic
dynamic variable FiðtÞ into two terms: (i) a systematic behavior denoted by a time-
averaging superscript bar or an ensemble expectation bracket in a slow time scale—
F̄ iðtÞ , and (ii) the fluctuation difference denoted by the superscript tilde in a fast time
scale— ~FiðtÞ: Evaluating both sides of (39) at transition time step k þ 1; we obtained

xiðk þ 1Þ ¼ x̄iðkÞ � Z
qCðx1ðk þ 1Þ;x2ðk þ 1ÞÞ

qxi

þ gi ~xiðk þ 1Þ; gi 	 q ~F i=q ~xi,

(40)

where x̄i represented the last value accepted by following either criterion in (41)

Cðx1ðk þ 1Þ;x2ðk þ 1ÞÞoCðx̄1; x̄2Þ (41)

or the Metropolis criterion [30], in (42)

pkp
1

ð1þ eDCk=T Þ
, (42)

where pk is uniformly generated probability and DCk ¼ Cðx1ðk þ 1Þ;x2ðk þ 1ÞÞ �
Cðx̄1; x̄2Þ40 is the increase in the error energy at iteration k. The Metropolis
criterion (42) was derived from the normalization of two transition states in the
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canonical probability exp(�E/KBT) ¼ exp(�C/T), which accepts the new state even
if the current ‘guess’ is not in the decreasing energy direction of the objective
function. Either of the Cauchy or Gaussian pdf can generate the perturbation ~xi in
(40). The Cauchy pdf exceeded the Gaussian in the sense that it occasionally
generated random Levy flights or long jumps and local random walks otherwise.
This was helpful if the last accepted solution x̄ was already in the proximity of the
global minimum, because the gradient part qCðx1;x2Þ=qxi of the learning rule (40)
would continue toward global minimum’s direction even when contribution from the
thermal noise part ~xi was negligible. Once algorithm (40) approached the proximity
of global minimum, contributions from the gradient part qCðx1;x2Þ=qxi would
approach zero. If the system was cooled enough, the noise part ~xi of the learning rule
(40) would not be able to move the solution away from stable global minimum
because both criteria (41) and (42) could not be satisfied anymore. If, however, the
algorithm sits in a local minimum, the gradient part of the learning rule
qCðx1;x2Þ=qxi will approach zero. But contribution from the thermal noise ~xi

would be able to move the system from the local minimum because a new ‘‘guess’’
could satisfy either criterion (41), or if the system was not completely cooled,
criterion (42). Fig. 4 showed convergence, in terms of the mean-square error, of the
stochastic gradient algorithm with the Cauchy annealing (solid line) and Gaussian
Fig. 4. Mean-square error of the multiple well cost function C2ðx1;x2Þ for stochastic gradient algorithms

with the Cauchy annealing (solid line) and Gaussian annealing (dashed line).
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annealing (dashed line) applied to the stochastic optimization of the multiple-well
objective function (40), where two-dimensional ground state was sampled in polar
coordinates using two one-dimensional distributions: pðyÞ and pðrÞ: Fig. 5 shows
convergence of the two-dimensional stochastic gradient algorithms with Cauchy
annealing (dashed line with ‘�’ marks) and standard deterministic gradient descent
(‘+’ marks) algorithm in the plane spanned by the independent variables x1 and x2:
Both algorithms started from the initial point (2.3,3.4), (‘&’ mark) that was closed to
local minimum (2.9;2.9), (‘r’ mark). Global minimum was located at (�2.9,�2.9),
(‘O’ mark). As seen in Fig. 5, standard gradient descent becomes trapped in the
local minimum while the stochastic gradient with Cauchy annealing manages to
converge toward the global minimum. Fig. 6 shows the cumulative value of the
average number of iterations necessary to reach the global minimum under given
criterion

jCðx1;x2Þ � Cðx�
1;x

�
2Þj

Cðx�
1;x

�
2Þ

p0:01. (43)
Fig. 5. Convergence of the two-dimensional stochastic gradient algorithms with Cauchy annealing

(dashed line with ‘�’ marks) and standard deterministic gradient descent (‘+’ marks) algorithm in the

plane spanned by independent variables x1 and x2: Both algorithms started from the initial point (2.3,3.4),

(‘&’ mark) that was closed to local minimum (2.9,2.9), (‘r’ mark). Global minimum was located at

(�2.9,�2.9), (‘O’ mark). As could be seen, standard gradient descent was trapped in the local minimum

while stochastic gradient with Cauchy annealing managed to converge toward global minimum.
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Fig. 6. Cumulative value of the average number of iterations necessary to reach the global minima under

given criteria jC2ðx1; x2Þ � C2ðx
�
1 ; x

�
2Þj=C2ðx

�
1 ; x

�
2Þp0:01: Average number of iterations was evaluated as a

function of the run index over 1000 runs. From top to down are: (a) Gaussian annealing algorithm (dot-

dashed line); (b) Cauchy annealing algorithm (dotted line); (c) Stochastic gradient algorithm with

Gaussian annealing (dashed line); (d) Stochastic gradient algorithm with Cauchy annealing (solid line). In

average 12,175 iterations were necessary for Gaussian annealing algorithm, 2833 iteration for Cauchy

annealing algorithm, 844 iterations for stochastic gradient algorithm with Gaussian annealing and only

155 iterations for stochastic gradient with Cauchy annealing. For comparison 10,000 iterations are

necessary for exhaustive search in order to find the independent variables with precision on the first

decimal place. This gives speed-up factor of E64.5 for the stochastic gradient algorithm with Cauchy

annealing.
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The average number of iterations was evaluated as a function of the run index over
1000 runs according to

M̄ðkÞ ¼
1

k
½MðkÞ ¼

1

k

Xk

m¼1

MðmÞ, (44)

where MðkÞ represents cumulative number of iterations necessary to reach the global
minimum when algorithm is run k times. In our performance evaluation experiment
k was run from 1 to 1000. From top-down, Fig. 6 has four parts: (a) the Gaussian
annealing algorithm (dot-dashed line), (b) the Cauchy annealing algorithm (dotted
line), (c) the stochastic gradient algorithm with Gaussian annealing (dashed line),
and (d) the stochastic gradient algorithm with Cauchy annealing (solid line). On the
average, 12,175 iterations were necessary for Gaussian annealing algorithm, 2833
iteration for Cauchy annealing algorithm, 844 iterations for stochastic gradient
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algorithm with Gaussian annealing, and only 155 iterations for stochastic gradient
with Cauchy annealing. For comparison, 10,000 iterations are necessary for
exhaustive search in order to find the independent variables x1 and x2 with precision
to the first decimal place. This demonstrates an increase in speed of E64.5 for the
stochastic gradient algorithm with Cauchy annealing.
4. Nonlinear blind space-variant imaging

In this section, we applied the Cauchy annealing algorithm described in Section 3
to the minimization of the Helmholtz free energy cost function in blind space-variant
linear and nonlinear imaging problems [27,44]. The cost function for one particular
set of parameters was given by (37) and, as illustrated in Fig. 2c, had a singularity
landscape that makes the gradient term vanish in the vicinity of the global minimum.
Therefore, only stochastic search based on the Cauchy pdf has been used to find the
global minimum of the cost function (37); that for more general nonlinear case is
given in (49). Based on [27], we formulated the nonlinear space-variant imaging
problem as

xðrÞ ¼ gðAðrÞsðrÞÞ, (45)

where r in (45) means that both unknown mixing matrix A and unknown source
vector s are pixel dependent, i.e., space-variant. Unlike algorithms described in
[35,46], that can solve the post-nonlinear (PNL) BSS problem with unknown
nonlinearity, the algorithm described here is not capable to do so. Like in [8] we did
assume that functional form of the sensor nonlinearity gðÞ was known depending on
the unknown parameters. The main reason why the algorithm described here is not
able to estimate inverse of the unknown nonlinearity is the space variant nature of
model (45). Statistical approaches [35,46], used to estimate the inverse nonlinearity,
cannot be used in the space-variant mixture. In the simulation example shown in
Figs. 11 and 12 we had used a typical saturation type of infrared sensor nonlinearity

xn
i ¼ gðxiÞ ¼ 2Bð1� e�aixi Þ, (46)

where B ¼ 8 represented number of bits and ai was unknown slope parameter to be
determined with the Cauchy annealing stochastic optimization algorithm. The value
of the slope parameter used in the two-dimensional simulation experiments reported
in Figs. 11 and 12 was ai ¼ 0:01 for both sensors. In nonlinear blind de-mixing
process, the linearized part of the data vector (46) had been modeled as

~x1

~x2

" #
¼ jsj

cos y cos j

sin y sin j

" #
s;1

s;2

" #
, (47)

where ~xi ¼ g�1ðxiÞ: Although this representation might seem to be quite specific it
describes well the conservative propagation medium and is physically relevant. It
also incorporates positivity constraints necessary to deal with the imaging problems.
The model can be generalized to higher dimensions [28,44], in which case the N � 1
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Fig. 7. Illustration of the blind inversion of the nonlinear space-variant imaging problem.
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angle per column vector of the mixing matrix is necessary to describe a position of
the unit norm column vector in the N-dimensional space. Fig. 7 shows that the blind
inversion algorithm for the nonlinear space-variant imaging problem consisted of
two steps: (i) linearization of the nonlinear data vector x and (ii) blind inversion of
the linearized space-variant problem. However, both linearization and solution of
the linear BSS problem are obtained simultaneously. The nonlinear blind inversion
approach illustrated in Fig. 7 is in principle equivalent to the post-nonlinear mixture
model studied by Taleb and Jutten [46]. In implementing the Taleb–Jutten
algorithm, demonstrated in Figs. 11 and 12, we took advantage of the fact that
type of the nonlinearity was known and given in (46). That way, estimation of the
inverse nonlinearity was avoided, and the Taleb–Jutten algorithm was in a fair
position in comparison with our algorithm. As already pointed out for the algorithm
presented here the type of the nonlinearity must be known with the unknown
parameters. For the simulation experiments reported in Figs. 9–12, space-(in)variant
mixtures were generated by using data model (47): their mixing matrices were
parameterized in terms of two mixing angles y and j: For the space-invariant
cases, mixing angles were constant for all the pixels with values y ¼ 64� and j ¼ 45�:
For the space-variant cases, mixing angles were changed row-wise as illustrated in
Fig. 8. The image size used in the simulation experiments was 72� 88 pixels. The j
angle was changing row-wise 11 per row, ranging from 11 to 721. The y angle was
always 41 greater than the j angle. Based on (46), an inverse nonlinearity has been
obtained

g�1ðxiÞ ¼
1

ai

ln
1

1� ðxi=2
BÞ
. (48)

To solve the two-dimensional nonlinear space-variant imaging problem, assuming
that each sensor’s nonlinearity could be modeled by using one parameter only, it was
necessary to minimize the five-dimensional objective function with the golf course
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Fig. 8. A columnwise change of the mixing angles j and y in accordance with the linear mixing model

(49). Solid line—j angle; dashed line—y angle.
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type of landscape such as (37)

ða�;A�; jsj�Þ ¼ arg min jHj2 ffi arg min jEj2 (49a)

with

jEj2 ¼ ðg�1ðxÞ � Ajsjs;ÞTðg�1ðxÞ � Ajsjs;Þ, (49b)

where a was the vector of the unknown nonlinearity parameters; g�1ð�Þ was the
inverse nonlinearity (48) such that ~x ¼ g�1ðxÞ; x was the given data vector; A was the
unknown mixing matrix parameterized in terms of the two angles y and j; and jsjand
s; were, respectively, the magnitude and scaled components of the unknown source
vector s ¼ jsjs;: Because cost function (49b) is non-negative, it is bounded from
below. In (49b) s; was found at the equilibrium of the Helmholtz free energy, defined
as

Hða;A; jsj; s;Þ ¼ E � T0S ¼ kT½g�1ðxÞ � Ajsjs; þ jsjKBT0

XN

i¼1

s;i ln s;i

� jsjKBT0ðl0 þ 1Þ
XN

i¼1

s;i � 1

 !
. ð50Þ
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We want to comment here that formulation of the Helmholtz free energy given by
(14b) is a special case, obtained just for the linear data model, of the more general
formulation (50). The reason that minimizing the objective function (49b) was
equivalent to minimizing the Helmholtz free energy defined by (50) was that
Shannon entropy S used in (50) was invariant w.r.t. triplet ða;A; jsjÞ:Here, the vector
of nonlinearity parameters a and unknown de-mixing matrix were found by using
Cauchy annealing. This is how the algorithm works. At some iteration, l; triplet
ðaðlÞ;AðlÞ; jsjðlÞÞ is generated as an output of Cauchy annealing in an attempt to reach
possibly global minimum of the estimation error energy (49b), i.e.

ðaðlÞ;AðlÞ; jsjðlÞÞ ¼ arg min jEj.

For a given triplet ðaðlÞ;AðlÞ; jsjðlÞÞ; the MaxEnt-like algorithm in [44] computed the
most probable solution for the vector of source probabilities, s;ðlÞ based on the (17)

s
;ðl;kÞ
j ¼ exp

1

KBT0

XN

i¼1

a
ðlÞ
ij l

ðkÞ
i � l0

 ! !

and Lagrange multipliers learning equation derived in a similar way as (24)

Dlj ¼
XN

i¼1

qlj

qs;i
Ds;i

¼
XN

i¼1

XN

m¼1

wmj

KBT0

s
;ðkÞ
i

dim þ
XN

n¼1

lðkÞn a
ðlÞ
ni

 ! ! XN

n¼1

w
ðlÞ
in

xn

jsj
� s

;ðkÞ
i

 !
,

where k represents another iteration index associated with learning of the scaled
source vector components s;j for a given triplet ðaðlÞ;AðlÞ; jsjðlÞÞ and wmj and win are
components of the de-mixing matrixW. After each iteration l is completed, we get a
quadruple, aðlÞ;AðlÞ; jsjðlÞ; s;ðlÞ

� �
: The algorithm accepts as a final solution the

quadruple a�;A�; jsj�; s;�ð Þ for which the estimation error energy (49b) reaches a
possibly global minimum. Because the nonlinear function (46) has unique inverse,
the quadruple ða�;A�; jsj�; s;�Þ; corresponding with given data model (45)–(47), gives
a global minimum of the error energy function (49b). The described algorithm is
summarized in the pseudocode given in Table 1.
Fig. 9 shows results of blind de-mixing for the linear space-invariant imaging

problem. From left to right: (a) source images; (b) space-invariant, noise-free linear
mixtures; (c) recovery of the source images using Helmholtz free energy and
linear version of the Helmholtz free energy blind inversion algorithm in (43)–(46)
with the Cauchy annealing-based algorithm described in Section 3, and (d) recovery
of the source images using Infomax ICA algorithm [6]. In Fig. 9d, the source
images were recovered using the maximum likelihood/Infomax ICA algorithm
[6,33] in combination with Amari’s natural [3] or Cardoso’s relative [10]
gradient. Thus, an adaptive ICA algorithm for estimation of the de-mixing matrix
is obtained

Wðk þ 1Þ ¼WðkÞ þ Z I� jðyÞyðkÞT
� �

WðkÞ; (51)
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Fig. 9. Results of blind de-mixing for linear space-invariant imaging problem. From left to right are: (a)

source images; (b) space-invariant noise free linear mixture; (c) recovery of the source images using

Helmholtz free energy (50)/(51) and Cauchy annealing based linear blind inversion algorithm described in

Section 3; (d) recovery of the source images using Infomax ICA algorithm [6]. Due to the space-invariant

nature of the mixing only one pixel had to be solved by Helmholtz free energy and Cauchy annealing

algorithm.

Table 1

A pseudocode of the Helmholtz free energy based algorithm for solving space-variant post-nonlinear BSS

problem

1. START with some a(0), A(0), |s|(0), l ¼ 0;

2. s
;ðl;0Þ
j ¼ 1=N; lð0Þj ¼ 0; k ¼ 0;

DO

Dlj ¼
PN
i¼1

PN
m¼1

wmj
KBT0

s
;ðl;kÞ
i

dim þ
PN
n¼1

lðkÞn a
ðlÞ
ni

� �� � PN
n¼1

w
ðlÞ
in

xn

jsjðlÞ
� s

;ðl;kÞ
i

� �
lðkþ1Þj ¼ lðkÞj þ Dlj

s
;ðl;kþ1Þ
j ¼ 1

1þ
PN

m¼1
maj

expð
1

KBT0

PN

i¼1
li ðaim�aij ÞÞ

k ¼ k+1;

UNTILðjs;ðl;kÞ � s;ðl;k�1Þjo�Þ
3. l ¼ l+1;

ðaðlÞ;AðlÞ; jsjðlÞÞ ¼ arg min jEj2

¼ arg minðg�1ðlÞðxÞ � AðlÞ
jsjðlÞs;ðlÞÞTðg�1ðlÞðxÞ � AðlÞ

jsjðlÞs;ðlÞÞ

IF ðjEj2o�EÞ THEN

Solution is given with ða�;A�; jsj�; s;�Þ ¼ ðaðlÞ;AðlÞ; jsjðlÞ; s;ðlÞÞ
ELSE

go to 2

END
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where Z is a small learning gain, y is the ANN’s output vector of separated signals,
and j is the nonlinearity in the optimal case given with jðyjÞ ¼ �ðdpðyjÞ=dyjÞ=pðyjÞ:
Due to both the space-invariant and the linear nature of the mixture, the ICA
algorithm (51) gave good result. However, we emphasize that, in the space-invariant
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case only, one pixel has to be solved with the Helmholtz free energy and Cauchy
annealing algorithm first; then, the mixing matrix that is found can be applied to all
the pixels. This makes the computation of the Helmholtz free energy and Cauchy
annealing algorithm invariant w.r.t. image size. Fig. 10 shows results of the blind de-
mixing for the linear space-variant imaging problem using a space-variant mixing
matrix based on data model (47) and Fig. 8. From left to right: (a) source images; (b)
space-variant, noise-free linear mixtures; (c) recovery of the source images using the
linear version of the Helmholtz free energy blind inversion algorithm (45)–(46) with
Cauchy annealing; and (d) recovery of the source images using ICA algorithm (51)
[6,9,46]. Due to the space-variant nature of the mixture that changes from pixel to
pixel, the stochastic ICA algorithm (51) gave poor result. Why? The changes
occurred so quickly that the adaptive ICA algorithm (51) could not converge. This
happened because, as already explained and illustrated by Fig. 8, the mixing matrix
was changing row-wise, but conversion from a 2� D image to a 1� D signal to form
the data model (45)/(47) had been done columnwise. The result: the mixing matrix
was effectively changing from pixel to pixel, so the adaptive ICA algorithm (51) was
not able to converge. Fig. 11 shows results of blind de-mixing for the nonlinear
space-invariant imaging problem. From left to right: (a) source images; (b) space-
invariant, noise-free nonlinear mixtures; (c) recovery of the source images using the
Helmholtz free energy-based nonlinear blind inversion algorithm (49)–(50) with
Cauchy annealing; and (d) recovery of the source images using Taleb–Jutten BSS
algorithm [46] derived for post-nonlinear mixtures. This took advantage of the fact
that the type of nonlinearity was known and given with (50). As already discussed,
this inverse nonlinearity was formulated in (48) avoiding estimation of the inverse
nonlinearity. Thus, Taleb–Jutten algorithm was put in a fair position relative to our
method. Also, we took advantage of the fact that image data used in the simulation
Fig. 10. Results of blind de-mixing for linear space-variant imaging problem. From left to right are: (a)

source images; (b) space-variant noise free linear mixture; (c) recovery of the source images using Cauchy

annealing based linear blind inversion algorithm described in Section 3; (d) recovery of the source images

using Infomax ICA algorithm [6]. Due to the space-variant nature of the mixture that changes from pixel

to pixel, stochastic ICA algorithm gave poor result.
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Fig. 12. Results of blind de-mixing for nonlinear space-variant imaging problem. From left to right are: (a)

source images; (b) space-variant noise free nonlinear mixture; (c) recovery of the source images using

Cauchy annealing based nonlinear blind inversion algorithm described in Section 3; (d) recovery of the

source images using BSS algorithm derived for post-nonlinear mixture [46]. Due to the space-variant

nature of the mixture stochastic nonlinear BSS algorithms gave poor result.

Fig. 11. Results of blind de-mixing for nonlinear space-invariant imaging problem. From left to right are:

(a) source images; (b) space-invariant noise free nonlinear mixture; (c) recovery of the source images using

Cauchy annealing based nonlinear blind inversion algorithm described in Section 3; (d) recovery of the

source images using BSS algorithm derived for post-nonlinear mixture [46]. Due to the space-invariant

nature of the mixture linear BSS algorithm [46] gave good results.
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are sub-Gaussian, so that the nonlinearity j used in (51) could be fixed.
Consequently, there was no necessity to estimate score functions in the Taleb–Jutten
algorithm. We have used nonlinear function jðyjÞ ¼ signðyjÞy

2
j ; which is known to be

good for sub-Gaussian data. As can be seen from Fig. 11, due to the space-invariant
nature of the mixture, the post-nonlinear BSS algorithm [46] performed well. Finally,
Fig. 12 shows results of blind de-mixing for the nonlinear space-variant imaging
problem where nonlinearity (46) has been included and the mixing matrix has been
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changed row-wise, as already described and illustrated in Fig. 8. From left to right:
(a) source images; (b) space-variant, noise-free nonlinear mixture; (c) recovery of the
source images using the Helmholtz free energy-based nonlinear blind inversion
algorithm (49)–(50) with Cauchy annealing; and (d) recovery of the source images
using Taleb–Jutten post-nonlinear mixture BSS algorithm [46]. Due to the space-
variant nature of the mixture that effectively changed from pixel to pixel, the
stochastic BSS algorithm [46] performed poorly.
5. Conclusion

The stochastic gradient is formulated based on deterministic gradient augmented
with Cauchy simulated annealing capable of avoiding local minimums with a
convergence speed significantly faster in relation to when simulated annealing is used
alone and still being capable of reaching global minimum. In order to solve highly
non-stationary linear inverse problems known as blind source separation a novel
contrast function known as the Helmholtz free energy, H ¼ E � T0S; with imposed
thermodynamics constraint at a constant temperature T0 was introduced general-
izing the Shannon maximum entropy S of the closed systems to the open systems
having non-zero input–output energy exchange E. Here, only the input data vector
was known while source vector and mixing matrix were unknown. A stochastic
gradient was successfully applied to solve inverse space-variant imaging problems on
a concurrent pixel-by-pixel basis with the unknown mixing matrix (imaging point
spread function) varying from pixel to pixel.
Appendix A. Cauchy PDF in hyper-spherical coordinates

To apply Cauchy annealing theory on the D-dimensional non-convex optimiza-
tion problems, we need to generate the D-dimensional Cauchy distribution given
by [43]

pðxÞ ¼
c

½c3 þ jxj2 Dþ1ð Þ=2
. (A.1)

If the parameter vector x is transformed from the Cartesian to hyper-spherical
coordinates, then the problem of generating one D-dimensional distribution
pðxÞ is transformed into the problem of generating D one-dimensional pdfs,
pðy1Þpðy2Þ::::pðyD�1ÞpðrÞ where yi i ¼ 1; 2; . . . ;D � 1 angles are in the hyper-spherical
coordinate system and r is the magnitude of the D-dimensional parameter vector x:
The one-dimensional distribution can then be derived from the identityZ Z

. . .

Z
pðx1;x2; . . . ;xDÞdx1 dx2 . . . dxD

¼

Z Z
. . .

Z
pðy1Þpðy2Þ:::pðyD�1ÞpðrÞdy1 dy2 . . . dyD�1 dr ¼ 1: ðA:2Þ
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In order to derive the right-hand side of Eq. (A.2), a determinant of the Jacobin jJj

of the coordinate transformation must be derived due to the equality:

dx1 dx2 . . . dxD ¼ jJjdy1 dy2 . . . dyD�1 dr, (A.3)

where the Jacobin matrix of the transformation is given by

J ¼

qx1
qy1

qx1
qy2

:::: qx1
qr

qx2
qy1

qx2
qy2

:::: qx2
qr

:::: :::: :::: ::::
qxD
qy1

qxD
qy2

:::: qxD
qr

2
666664

3
777775 (A.4)

and relations between Cartesian and hyper-spherical coordinates are given by

x1 ¼ r cos y1,

xk ¼ r
Yk

i¼1

sin yi

 !
cos ykþ1,

xD ¼ r
YD
i¼1

sin yi. ðA:5Þ

For the general D-dimensional case determinant of the Jacobian could be written as

jJj ¼ f rðrÞf 1ðy1Þf 2ðy2Þ . . . f D�1ðyD�1Þ. (A.6)

For a polar coordinate system, the determinant of the Jacobian is given by jJj ¼ r;
so, consequently, f rðrÞ ¼ r; f 1ðy1Þ ¼ 1: For a spherical coordinate system, the
determinant of the Jacobian is given by jJj ¼ r2 sin y1; consequently, f rðrÞ ¼

r2; f 1ðy1Þ ¼ sin y1; f 2ðy2Þ ¼ 1: Now, taking into account that jxj2 ¼ r2 and taking
into account (A.6), Eq. (A.2) can be written asZZZ

pðx1; x2; . . . ; xDÞdx1 dx2 . . . dxD

¼

ZZZ
c

ðc2 þ r2ÞðDþ1Þ=2
f rðrÞf 1ðy1Þf 2ðy2Þ . . .

� f D�1ðyD�1Þdrdy1 dy2 . . . dyD�1

¼

Z
c

ðc2 þ r2ÞðDþ1Þ=2
f rðrÞdr

Z
f 1ðy1Þdy1 . . .

Z
f D�1ðyD�1ÞdyD�1

¼ 1. ðA:7Þ

Eq. (A.7) shows that, after transformation from Cartesian to polar coordinates, the
problem of generating one D-dimensional Cauchy pdf is replaced by the problem of
generating D one-dimensional pdfs. Related one-dimensional pdfs can be derived
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from (A.7)

pðrÞ ¼ Kr

c

ðc2 þ r2ÞðDþ1Þ=2
f rðrÞ,

pðykÞ ¼ Kkf kðykÞ k ¼ 1; 2; . . . ;D � 1, ðA:8Þ

where constants Kr and Kk introduced in (A.8) are from normalization:Z rmax

rmin

pðrÞdr ¼ 1

Z ykmax

ykmin

pðykÞ ¼ 1 k ¼ 1; 2; . . . ;D � 1. ðA:9Þ

Upon transformation from Cartesian to polar coordinates, we get

pðy1Þ ¼
1

y1max � y1min
,

pðrÞ ¼ Kr

cr

ðr2 þ c2Þ3=2
,

Kr ¼
1

c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2min þ c2

q �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2max þ c2
p

0
B@

1
CA

�1

. (A.10)

In order to generate distributions for (A.10) w.r.t. uniform distribution on the
interval [0,1], the use of the following identity is made:

jpðyÞdyj ¼ jpðxÞdxj, (A.11)

where y was distributed according to some general distribution and x was distributed
uniformly on the interval [0,1]. For the two-dimensional case given by (A.10), from
condition (A.11), we get

y1 ¼ y1max � y1minð Þx þ y1min,

r ¼ Kr

c

~x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

r ~x
2

q
,

~x ¼ ~xmax � ~xminð Þx þ ~xmin,

~xmin ¼
Krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2min

q ~xmax ¼
Krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2max
p , (A.12)

where in (A.12), y1min; y1max; rmin; and rmax are integration boundaries.
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Appendix B. Biological conjecture of the Helmholtz free energy-based unsupervised

learning

We conjectured that if Hebb synaptic weights were on the order of milli-Volts,
then, from physical dimensionality analysis of the energy power viewpoint, Lagrange
multipliers could be on the order of the pico-Ampere currents from the single
dendrite ion channels. These currents were demonstrated by 1991 Nobel Laureates
Erwin Neher and Bert Sakmann from the Max Planck Institute [31]. As matter of
fact, it is almost a miraculous coincidence that ten of thousands of neurons forming
the associative memory in fully connected neural networks in the hippocampus are
energetically equivalent to the Poisson fluctuations of neurotransmittals. For these
neurotransmittals, the mean by definition equals the variance, as is meaningfully
defined to be the brain cybernetic temperature 37 1C (with the help of physics
conversion factor 310KBT at brain temperature ¼ (37/27)� (1/40) eV). Further-
more, with brain anatomy revealing billions of neurons (defined by the binding
between pair firing rates for the Hebbian synaptic memory) and an equal amount of
housekeeping glial cells, this new Lagrange dynamic variable may represent the
housekeeping glial cells’ supporting dendrite tree signal pre-conditioning in the
unsupervised learning methodology. Active roles of these glial cells in information
processing are suspected but not yet explicitly verified. (While there are hundreds of
types of neurons, only three classes of glial cells exist to keep the thermodynamic
balance. The first type is (i) astrocytes, or glial cells that provide the glue, so-to-speak
glue, of blood vessels to the neurons. The second type is the oligodendroglia/cytes,
that provide the myelin sheath wrapped around the central nerve system like a link
of sausages forming an express way. The third and last type is the Schwann cells,
which wrap around the peripheral nervous system other than the brain and the
spinal cord.) We expect that the role of glial cells is above and beyond the
housekeeping of brain activity and that they are also necessary for unsupervised
learning via the equilibrium heat reservoir. Thus, both actions by neurons and the
reactions of housekeeping glial cells are simultaneously present in our ANN model.
Any direct or indirect evidence in biological and neuro-psychological experiments
would be welcomed. Statistical mechanics, which allow the macroscopic world to be
understood in terms of microscopic properties of chemicals, provides some basic
tools for investigating human natural intelligence. However, the results of applying
statistical mechanics to learning in the human brain need to be supported and
confirmed by other methods. These include (i) advanced instrumentation (PET,
F_NMR, SQUIB, EO/IR Brain Imaging, etc.); (ii) interdisciplinary investigations
into biological relevance mentioned in this conclusion (there are 10 orders of
magnitude spanning the scales from CNS to DNA); and (iii) understanding/analysis
of vector time series of input pairs used in unsupervised learning.
This study into truly unsupervised learning began with a question: why do

mammalian brains employ pairs of inputs to feed a single output? One obvious
answer would be to accommodate pairs of sensors (e.g., eyes, ears); another would be
that the redundancy supports wet-ware fault tolerance. There was, however, another
possibility: an unsupervised learning strategy that involved ‘‘squeezing out the
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garbage.’’ Consider this: if a sensor pair could reject misinformation (garbage) by
simple in situ comparison, what remained was the unknown but wanted signal. Not
unlike common mode rejection in an electrical circuit, this process could provide
instantaneous correlation for selective feature amplification, a great binaural hearing
aid. Thus, the computing adage ‘‘garbage in, garbage out’’ can be modified to suit
this strategy for a pair of smart receivers: ‘‘raw pair of energies in, garbage entropy
out.’’ This learning strategy might be discussed in terms of a sensor-pair time-series
vector representation (as opposed to a single-sensor time-series scalar), which takes
advantage of brainwave diffusion to reduce the redundancy to conserve energy and
make room for upcoming new excitations. With this strategy (and vector
representation), a synapse might filter out garbage and maintain an accurate
external world representation without the need for a teacher.
There are vast differences between natural intelligence, as was encountered in

human biology [5,7,36], and artificial intelligence, as encountered in artificial neural
networks (ANN) [14,25], although some similarity exists. It is interesting to examine
how each form of intelligence handles unsupervised learning. An unsupervised
artificial neural network evolves—it essentially teaches itself to extract features or
regularities present in input vectors it receives [19]. In biological naturally intelligent
system, this functionality is realized with greater underlying complexity than more
manipulation of network weights (e.g., temporally driven consolidation of short-
term memory into long-term memory in humans [38]) and far more neurons than is
possible to implement in an artificial network.
So far, we have briefly reviewed (i) global equilibrium body temperature

regulation and (ii) housekeeping glial cells. We used these to prove (iii) the
convergence of our statistical mechanics model of unsupervised learning. We also
demonstrated (iv) a quenching of local r.m.s fluctuations in annealing to satisfy
constraints. One important application of the discussed unsupervised learning
methodology might be the solution of inverse problems. Can one solve the linear
system of equations x ¼ As without knowing the mixing matrix A? Several groups
[11,6,4,3,10,9,12,13,23,24,26,33,41,44,46] offer ANN solutions in terms of two
different approaches:
(i) The statistical approach is based on the ensemble average [11,6,4,3,10,9,12,13,

23,24,26,33,46], where one assumes for all pixels an unknown mixing matrix A which
was valid in the space-invariant imaging A. The ANN algorithm was able to solve
for the inverse matrix Wffi A�1 by exploiting the principle of statistical
independence. The missing information could be derived from neighborhood
pixels statistics by assuming space-invariant problem, in which case one gains
additional information by taking into account those neighborhood pixel measure-
ments without increasing the number of unknown A’s. For that case, a MaxEnt
natural gradient neural network algorithm has been derived see Fig. 1 as well as
[3,4,6,10,33].

qW
qt

¼
qSðyðWxÞÞ

qW
WTW

� �
pixels

. (B.1)
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We would augment the following stochastic gradient learning with fast Cauchy
annealing:

qW
qt

¼ F ðtÞ ¼
qS

qW
WTW

� �
pixels

þ ~F ðtÞ. (B.2)

(ii) Space variant problems [37,41,43,44], where each pixel has a different mixing
matrix A; can be solved by the Lagrange constrained neural network (LCNN).
Giving the data model x ¼ As as a linear photon source de-mixing problem, the
LCNN found unknown s and A by adopting the Lagrange constraint methodology
with demonstrated real word applications in remote sensing [41] and infrared breast
cancer detection [45].
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