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Abstract

Without multiplexing, Powerline (PL) can support the concept of smart sensor web broadcast-
ing of an N -sensors-to-single-owner (N -to-1) for household=stadium=mall=metro=city surveillance.
In order to make the single user scenario feasible, the underdetermined blind source separation
(BSS) problem x(k) = 〈*a; *s (k)〉+ n(k) has to be solved so that only inner product time series
signal x(k) is known. Our contribution is based on the understanding that the 3nite alphabet
property of the binary sources

*
s (k) can resolve the underdetermined PL BSS case. For exam-

ple, the alphabet of two binary sources consists of four states (1 1, 1 −1, −1 1, −1 −1), which
mixing vector

*
a and noise n(k) will spread in the mixed signal x(k), around the four centroids.

We apply self-organizing maps to compute centroids from which the impulse response vector
*
a is determined. Then, the source vector

*
s (k) is recovered using the standard LMS method.
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1. Introduction

Powerline communication (PLC), [7], has become a new choice of communication
media by using orthogonal frequency division multiplexing (OFDM), [10], in Euro-
pean Internet application and by using time division multiple access (TDMA) to read
electric power meters and mimic the function of phone-line DSL in Japan. Several
hundred homes sharing one power transformer make a value-added Internet application
economically and technically feasible in Germany, Israel, and Japan. However in the
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Fig. 1. Time response of the real PL on the two input square wave signals (left): The experiment had
been done by generating data pulses from two sources, then sent them into a powerline network (NM-B
AWG14-2 with ground and AWG12-2 with ground, indoor standard power cables), and the output of the
mixing signal is obtained. Magnitude response of the isolation transformer (right): The isolation transformer
is also placed in between the two sources and the receiver for a reality of the network. The 3gure also
shows that the isolation transformer has a low-pass 3lter property with the resonance frequency at 141.81
kHz. The solid line represents a real magnitude response obtained from measurement, and the dash line
represents a magnitude response from the model where the gain constant G = 0:905 and the resonance
factor � = 0:189.

USA, a dense power grid supplies 110V of electrical power to only a few houses.
The low-pass nature of the transformer limits the bandwidth to 0.1MHz only, Fig. 1.
Moreover, PLC has unpredictable Lenz induction noise, impedance-mismatch echoes,
and fatal attenuation, allowing no address for signal switching. Thus, the US has so
far neglected the PLC about which six IEEE International Symposiums have been held
outside the North America. In this letter, we consider a special surveillance niche that,
without using any kind of addressing and switching infrastructure, plugs N surveil-
lance sensors into the same powerline that broadcasts to a single receiver, [4]. In such
a niche, [3], this could be very suitable for homeland defense; PL is more cost eIective
than 3ber optics and demands less maintenance. Once these surveillance sensors have
found a local receiver or terminal, they will propagate through the existing Internet
and other wireless networks.
Signal de-mixing in a single plug-out case is an under-determined BSS problem that

cannot be solved by traditional ICA algorithms [1,8]. Instead, we extend the method
given in [5] where we exploit the sparseness of the binary data representation (3nite
alphabet or 3nite realization phase space). The single measurement results in a scalar
time series x(k):

x(k) = 〈*a; *s (k)〉+ n(k) (1)

that is described by the inner product of the unknown column mixing vector
*
a =

[a1; a2; : : : ; aN ]T, and unknown source vector
*
s (k)=[s1(k); : : : ; sN (k)]T with an additive

noise n(k), where k represents the time sample index. Based on works in [2,11], we
create a new powerline model that is suitable for a frequency range below 100 KHz.
The new model shows that the powerline is a memoryless system in this particular
frequency range and (1) can be applied.
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2. Traditional statistical techniques

In a case of poor SNR, we could, but we do not, rely on the traditional statisti-
cal density estimation methods [6]. Rather because of robust binary signal mixture,
we can use the simple centroid self-organizing maps (SOM) from the histogram of
the measured data in order to count the number of independent binary sources exist-
ing in the received signal x(k). Our contributions are: (1) we are the 3rst to apply
BSS on sparse binary representation in the PLC (US Patent Pending); (2) we re-
duce the explosive O(N 2) broadcasting growth rate to the linear O(N ) law by broad-
casting the N sensors-to-single owner (N -to-1); (3) each sensor contributes to the
time series x(k) through an unknown impulse response function that can be deter-
mined from the binary data by an unsupervised neural network using sparseness of
the signal phased space that contains 2N elements; (4) unlike the method described
in [5], which assumes that a number of source signals is known, we use an unsu-
pervised clustering algorithm to determine the number of source signals si(k) in the
mixture x(k). It has been shown in [4,5] that probability distribution function of x(k)
can be modeled as a mixture of M = 2N Gaussians. Assuming that elements of

*
a

are ordered i.e. a1¿a2¿ · · ·¿an¿ 0, it has been shown in [5] that the mixing
vector

*
a can be computed uniquely once the centroids �i are estimated. We pro-

pose the use of two unsupervised nearest neighbor-like clustering algorithms to esti-
mate centroids �i. If the distance between the incoming new data x(k) and the ith
class centroids �i is less than some prede3ned value �, then the new data are la-
beled with the ith class label. However, if distances between x(k) and all existing
class centroids �i are greater than �, then the new class is created. At the end of
the clustering process, the algorithm returns the number of the classes M̂ , and the
number of source signals si(k) existing in the received signal x(k) is estimated by
N̂ =log2M̂ . In Fig. 2, centroids �i can be sequentially extracted by using the described
unsupervised clustering algorithm. We plot 1D and 2D histograms for one second
of the mixed speech data x(k) obtained with an 8 kHz sampling rate. From the 2D
histogram, we can observe the clustering of four centroids �1; �2; �3; �4 that implies
the presence of two binary sources; N̂ = log2 4 = 2 in the received signal x(k). As
shown on Fig. 2, by using only one receiver and computing the 1D histogram, some
peak of the centroids is diLcult to distinguish. The mean estimators for eLcient elec-
tronic chip implementation at each sensor are Kohonen’s SOM, which in a sequential
mode is equivalent to a Kalman-like orthogonal update. Namely the diIerence be-
tween new data x(k + 1) and an old average is added with a learning rate known as
Kalman gain �:

�̂i ∼= 〈X〉k+1 ≡ (x1 + x2 + · · ·+ xk + xk+1)=(k + 1) = 〈X〉k + �(xk+1 − 〈X〉k): (2)

The Kohonen SOM learning rate for the new centroid is equivalent to the Kalman
gain for uniform average, which is derived as �=1=(k +1), and �̂i means that the ith
centroid is selected according to the nearest-neighbor classi3er.
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Fig. 2. 1D histogram of the received signal x(k) (top); 2D of the same signal using two receivers (bottom).
By representing mixing data in higher dimensional space, the centroids of the data can be extracted easier.
Using the 2D histogram, the 1D histogram can be clearly extracted from a projection of the 2D histogram,
and then the centroids can be estimated by PCA. Based on (5) and (6), not all of the centroids need
to be estimated in order to estimate the mixing parameters, â. This increases the robustness of signal
separation.

3. Sparse phase space coding

After estimating the centroids �̂i, components of the mixing vector
*
a are obtained

as follows. The coding constraint imposed on the data signal is binary format i.e.
si(k)∈{−1; 1}. If we apply an ensemble-averaging operator E[x] =

∫ +∞
−∞ x�(x) dx on

Eq. (1), where the probability density function �(x) is obtained from the measured
normalized histogram, Fig. 2, we get:

E(x) = E(〈*a; *s 〉|*s = *
t i) + E(n) ∼= 〈E(*a); E(*t i)〉= 〈*a; *t i〉= �i (3)
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where
*
t i= the ith row of a 3nite alphabet matrix which in a case of two sources

equals to:

T =
[−1 −1 +1 +1
−1 +1 −1 +1

]T
:

Because the voltage of Lenz impulsive shot noise n(k) has usually zero oIset value,
and taking into account that the impulse response function is independent of the input

video signals: E(〈*a; *t i〉)= 〈E(*a); E(*t i)〉, and that the expectation of the binary signal
mixture is one of the four possible combinations in Eq. (4).


�1
�2
�3
�4


=



−1 −1
−1 +1
+1 −1
+1 +1



[
a1
a2

]
: (4)

Given centroid values
*
� estimated by SOM, we did solve Eq. (4) component-wise as

follows: �1 = −a1 − a2, �2 = −a1 + a2, �3 = a1 − a2, �4 = a1 + a2. If centroids �i
are sorted in increasing order �1¡�2¡�3¡�4, and assuming components of

*
a are

ordered and positive, the algebraic solution for
*
a is obtained as:

â1 = (�̂3 − �̂1)=2 = (�̂4 − �̂2)=2 = (�̂4 + �̂3)=2 =−(�̂1 + �̂2)=2; (5)

â2 = (�̂2 − �̂1)=2 = (�̂4 + �̂2)=2 = (�̂4 − �̂3)=2 =−(�̂.1 + �̂3)=2; (6)

�̂2 + �̂3 = 0; �̂1 + �̂4 = 0: (7)

However, as already discussed, in the poor SNR by using 2D histogram shown in Fig.
2 we can determine the centroid values more accurately.

4. Source time series recovery

Once the mixing vector
*
a has been obtained, it is no longer blind source separation

(BSS) and the standard LMS methods, [9], can be used to estimate the binary source
signals ŝi(k). Then the bene3t of using two receivers is an error correction capability
that enables the algorithm to automatically select a 3nal value, one that is closer to the
corresponding measurement of two binary speech signals. Two original speech signals
as well as two de-mixed signals recovered by using described algorithm are shown in
Fig. 3.

5. Conclusions

The presented algorithm works well provided the source signals are binary. The per-
formance of the whole de-mixing algorithm depends on the accuracy of the SOM for the
estimation of the centroids �i, of which the quality of the self-organization-clustering
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Fig. 3. First row are original two speech signals; second row are de-mixed speech signals by means of
binary representation and one receiver only, so-called underdetermined sparse BSS.

algorithm is critical. Use of two receivers and a 2D histogram can improve accuracy of
the centroids, �i, estimation process in the case of a noisy environment. The separation
distance between the components of the mixing vector

*
a that determines the minimal

distance between the centroids �i can be adjusted. These adjustments are critical for the
success of the clustering algorithm in the noisy scenario. Therefore, we conclude that
the powerline N -to-1-user broadcasting communication without addressing for home
security surveillance is feasible and experimentally veri3able. The bandwidth scaling
law in terms of number of sensors remains to be demonstrated experimentally.
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