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Abstract - The problem is to recover stochastic signals from 
an unknown stationary linear mixture. The paper presents 
analytical solution for blind separation of two statistically 
independent signals. It requires two fourth-order input 
sample cumulants to be estimated, contrary to the solution 
given in references that requires estimation of three fourth- 
order input sample cross-cumulants. When real-time 
separation problem is considered this difference can be 
significant. 

L INTRODUCTION 

The so-called blind signal separation problem has been 
attracted sigdicant attention in last several years. The 
problem is consisted of separating and estimating 
generally multiple source signals from an array of sensors. 
It is assumed that the problem is described with: 

y = Ax (1) 
where x,y E R", and AER"", n is number of signals and 
detA#O. The only assumption made here is that 
components of x are mutually independent up to at least 
fourth order. To solve the blind signal separation problem 
the linear transformation matrix W must be find such 
that: 

where s is scaled version of the original source signal 
vector x. It has been shown that (1)-(2) can be solved by 
using two approaches: neural network and higher-order 
(fourth-order) statistics. The neural network based 
solution was firstly given in [6], while in [7,8] a new 
algorithms were proposed that allow the extraction of 
extremely badly scaled signals i.e. the mixing matrix A 
can be ill-conditioned. The neural network approach 
requires the source signals x,, j=l ... n, to have even 
probability density function. The higher-order 
independence test is introduced indirectly by using 
nonlinear odd activation functions. The neural network 
solution enables that the number of signals to be separated 
can in general case be arbitrarily large, what is not the 

s = w y  (2) 

case with the cumulant based solution. The potential 
problems with neural networks arise when input signals 
are nonstationary. It becomes problematic to determine 
the values of the convergence control factors. By using 
cumulants the nonstatioinary case can be easier handled by 
computing estimates of the input sample cumulants all the 
time. The cumulant based solution is obtained by equating 
all three fourth-order o'utput cross-cumulants with zero. 
Unfortunately, it has been shown in [3,5] that the 
cumulant based analytical solution is impossible to be 
found for the number of signals n > 2. 

II. THE CUMULANT EIASED SOLUTION OF THE N O  
SIGNALS SEPARATION PROBLEM 

The k-th order cumulant of the random variable xJ is 
defined as the k-th coefficient of the Taylor series 
expansion of the second characteristic function [1,2]: 

K ( o )  = In @(w) = In E eJmx I 
where o=[o 1...02], and @(a) is characteristic function of 
x. Let the a,, and wg , (i,j=l,2) are elements of the matrices 
A and W in accordance with (1) and (2). It is usually 
assumed that the separation signals s1 and s2 represent the 
source signals XI and x2 up to the scale factors. The sl and 
s2 are considered to be: separated when mutual higher 
order statistics is zero. In practice the fourth-order 
statistics is required to ble zero. The third order statistics is 
avoiding since most of the real world signals, because of 
their symmetrical distribution, have the third order 
statistics nearly zero. The fourth-order cumulants are used 
instead of moments since their linearity property, [ 1,2], let 
us work with them easily as operators. According to [l] 
the zero-lag fourth order cumulant of the random process 
x, is defined as: 

and is expressed in terms of moments [1,2]: 
c'p, = cot,, x, 2 XI, x, 1 (3.1) 

C,X, = E(x4) - 3E2(x2) (3.2) 
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Consequently, the three zero-lag fourth-order output 
cross-cumulants of model (2) are defined as: 

and in terms of moments as: 

(4.1) 

Applying linearity and multiplying by constant properties 
of the cumulants as operators, [I], on the system of 
equations (2) the following is obtained: 

where y40 and yo4 are the zero-lag input sample cumulants 
defined as: 

Y40 = C(Y12 Y1, yl3 yl) 

YO4 = ‘(Y2 2 YZ, Y2, Y2 ) 

The same definition of the fourth-order cumulants was 
also used in [4], while in [3,5] the fourth-order output 
cross-cumulants were used according to: 

ru = cumi+, (s:,  si ) i, j E {1,2,3} (6) 

Applying such defined cross-cumulants on the separation 
model based on the orthogonal transformation matrix 
defined as, [3 ,5] , :  

It is evident that three fourth-order input sample cross- 
cumulants have to be estimated to get solution eo. 
To find wi from (5) all three equations must be equated 
with zero. Expressing wZ1 from (5.2) and inserting it in 
(5.1) and (5.3) the following is obtained: 

It follows from (9.1): 

WIZ = W 1 1 4  -. i::: 
and from (9.2): 

(10.1) 

(10.2) 

wll and wz2 are chosen arbitrarily but from (2) it is clear 
that they are not allowed to be zero. Without loss of 
generality it can be adopted: wll=l.O, wz2=1.0. Then for 
n=2 signals the following solutions are obtained : 

0 if the source signals have the same sign of kurtosis: 

7 7 

WIZ = 4 -, WZ1 = -4 - i::: 4;:: (11.1) 

0 if the source signals have different sign of kurtosis: 

r------ I 

W12 = 4  --, WZ1 = - 4  -- d ::: d ;:: (11.2) 

1 w = c [ l g q  c=- 
JTT.3 

the set of three polynomial equations is obtained. By using 
certain properties of input cumulants the solution is: 

Compared with (8) it is evident that only two input 
sample cumulants are required to be estimated. This can 
be important when the signal separation problem is 
implemented in real time and the source signals are 
nonstationary. Compared to [9], the separation matrix is 
obtained as a solution. In [9] the direct solution for the 
coefficients of the mixing matrix is given for the case of 
non-Gaussian sources. The mixing matrix is obtained by 
rooting fourth-degree polynomial equation. Four fourth- 
order input cumulants: Go, Co4, CI3 and Cz2 are required 
to be estimated in order to obtain the mixing matrix. From 

Q, = - sign(p)Jpz/4+1 
(8) 

2 
Y l 3  - Y31 

P =  
Yzz 
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the real time implementation point of view this solution 
appears to be very impractical. The input cumulants can 
be effectively computed by using recursive relations: 

y40 (k  + 1) = (k  + 1) - 3MZ0 (k  + 1) 

yo4 (k  + 1) = Mo4 (k  + 1) - 3M;. ( k  + 1) 
(13) 

where: 

1 
N 
1 

N 

MdO(k + 1) = -[ yp( k + 1)- yp(k - N + l)] ( k )  

M.0 ( k  + 1) = -[ y: ( k  + 1) - y: ( k  - N + l)] + M&) 

where N is the length of data record. Mo4 and are 
defined analogously. By using recursive relations (13) the 
input sample cumulants can be estimated accurately 
enough with long data records without affecting the 
computational complexity. Actually, the computational 
complexity is invariant of the data record length N. 

III. EXPERIMENTAL RESULTS 

The analytical solutions (11) have been testing on the 
separation of two linearly mixed frequency modulated 
(FM) signals produced by an electrooptical system that 
uses FM type of modulation to encode the space position 
of the light source. The first signal has 4kHz deviation, 
and the second one 1kHz. The photodiode signals were 
digitally recorded with the sampling frequency of 100 
ksamples and then mixed with matrix A according to (1): 

1 1.0 9.9e - 6 
A = [  1.0 9.8e - 6 

with detA = -le-7. On that way signal x2 has been made 
extremely weak. To ensure the source signals to have zero 
mean they had to be digitally bandpass filtered in order to 
suppress as the DC so the spurious components. The 
spectrum of two signals on the second sensor is shown in 
figure 1. Figure 2. shows the result of the separation 
process on the second sensor by using neural network 
separator proposed in [7]. It was not able to recover the 
source signal XZ.. Figures 3. and 4. show the separation 
results by using cumulant based separation algorithms 
according to the proposed solution (1 1) and to the solution 
given in [3,5], respectively. The length of the data record 
the input sample cumulants were estimated on was 
N=730. The proposed algorithm gives the same separation 
quality as the algorithm given in [3,5]. The three 
separators were coded in the assembly language of the 
digital signal processor TMS320C40, [lo]. It is the latest 

generation of the very powerfid and advanced DSP. 
Practically all instructions are single cycled. When 
implementing the neural network separator the problem 
arises in determining the amount of the convergence 
control factors. The liirge values of them ensure fast but 
very oscillatory Convergence, while the small values 
ensure slow but smooth convergence. That becomes 
especially serious problem when the source signals xj and 
x2 are nonstationary. In the context of this paper they were 
assumed to be stationary and convergence control factors 
were changed in four discrete steps. The results are given 
in table 1. The maximal sampling frequency is computed 
as the inverse of the total time for each algorithm, 
assuming that single cycle time is 40 ns. 

TABLE 1. 

I No. ofcycles I FS [&I 
126 I 198 
126 I 198 
89 I 280 

Spectrum ot the FM signa!s on me second sensor 
-20, 

Figure 1. 

Spectrum of the separal:ed signal on the second sensor after [7] 

......... .................... ......... 4 .......... 4 .......... ; ......... 

. . .  ......... i ........ ......... i... ....... !... ..... .... 

Frequency [Ibh] 

Figure 2. 
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Spect" of the separated signal on the second sensor after proposed algorithn 
10 1 
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Figure 3. 

Spectrum of the separated signal on the first sensor after [3,5] 
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Figure 4. 

IV. CONCLUSION AND FUTURE WORK 

The paper presents the alternative analytical solution of 
the two signals scparation problem based on canceling all 
thrcc fourth-order output cross-cumulants. In comparison 
with solution given in [3,5] the proposed solution requires 
that only two, instead of three, input sample cumulants 
have to be estimated. The proposed algorithm has the 
same quality of separation as algorithm proposed in [3,5] , 
having at the same time 30% less computational 
complexity. When the source separation problem is 
implemented in real time this feature can be significant. It 
has been also shown that for extremely badly scaled 
signals neural network separators, contrary to the 
cumulant based separators, fail to separate the source 
signals. The future work will be directed toward 
experimental research related to the construction of the 
electrooptical system for space localization of two light 
sources by using blind signal separation theory. 
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