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Unsupervised decomposition of static linear mixture model (SLMM) with ill-conditioned basis matrix and
statistically dependent sources is considered. Such situation arises when low-dimensional low-intensity
multi-spectral image of the tumour in the early stage of development is represented by the SLMM,
wherein tumour is spectrally similar to the surrounding tissue. The original contribution of this paper
is in proposing an algorithm for unsupervised decomposition of low-dimensional multi-spectral image
for high-contrast tumour visualisation. It combines nonlinear band generation (NBG) and dependent
component analysis (DCA) that itself combines linear pre-processing transform and independent compo-
nent analysis (ICA). NBG is necessary to improve conditioning of the extended mixing matrix in the
SLMM, while DCA is necessary to increase statistical independence between spectrally similar sources.
We demonstrate good performance of the method on both computational model and experimental
low-intensity red–green–blue fluorescent image of the surface tumour (basal cell carcinoma). We believe
that presented method can be of use in other multi-channel medical imaging systems.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Methods for tumour demarcation include examples with visual-
isation based on: fluorophores (Koenig et al., 2001; Bäumler et al.,
2003), green fluorescent protein gene tumour transduction system
(Hasegawa et al., 2000; Hoffman, 2002) or fluorescent nanoparti-
cles (Tréhin et al., 2006). In the case of fluorophores, contrast visu-
alisation is obtained under optimal combination of parameters
such as concentration of photo-synthesiser, duration of treatment
with photo-synthesiser and intensity of illuminating light. Under
these conditions a few well-established methods can be used for
tumour visualisation (Scott et al., 2000; Ericson et al., 2003; Fischer
et al., 2001). However, variability in some of the parameters will
cause fluctuation of the intensity level of the acquired fluorescent
image, causing predefined threshold constants not being optimal
any more. Here we propose a high-contrast tumour visualisation
algorithm that is based on unsupervised decomposition of a low-
dimensional multi-spectral fluorescent image. It exhibits a high le-
vel of robustness with respect to the fluctuation of the intensity le-
vel. That is achieved due to the unsupervised nature of the
algorithm and the scale invariance property of the independent
component analysis algorithm (ICA) (Jutten and Herault, 1991; Bell
and Sejnowski, 1995; Hyvärinen and Karhunen, 2001; Cichocki and
Amari, 2002) that forms the heart of the proposed method. How-
ll rights reserved.
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ever, spectral similarity between the tumour and surrounding tis-
sue causes an ill-conditioning of the basis matrix as well as
statistical dependence between the sources in the hypothetical lin-
ear mixture model of the fluorescent image. Therefore, ICA fails to
yield accurate demarcation. Here we show that by nonlinear band
generation (NBG), (Ren and Chang, 2000; Du et al., 2004), and
dependent component analysis (DCA), (Cichocki and Amari,
2002; Cichocki and Georgiev, 2003; Cichocki, 2007; Hyvärinen,
1998; Kopriva and Seršić, 2008), we can fix ill-conditioning prob-
lem and increase statistical independence between the sources,
hence creating an environment for the ICA to work more accu-
rately. This newly proposed method exhibits improved perfor-
mance over number of state-of-the-art multi-channel blind
decomposition algorithms on both computational and experimen-
tal multi-spectral images.

2. Methods

The unsupervised decomposition problem consists in finding
the basis matrix A 2 RN�M

þ and matrix of hidden components or
sources S 2 RM�T

þ given only the matrix of observed data X 2 RN�T
þ

such that the following static linear mixture model (SLMM) holds

X ¼ AS: ð1Þ

Each row of X and S is a signal or 1D image representation, N is the
number of observed signals, M is the number of hidden components
(sources) and T is the number of samples. Because we are concerned
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with an unsupervised image decomposition problem, we have as-
sumed X, A and S to be nonnegative.
2.1. Independent component analysis

The unsupervised decomposition problem (1), also known as a
static blind source separation problem, is efficiently solved by
ICA (Hyvärinen and Karhunen, 2001; Cichocki and Amari, 2002),
provided that the sources are statistically independent, at most
one source has Gaussian distribution, and the number of sources
M is less than or equal to the number of observed signals N. Then
a solution to the unsupervised decomposition problem (1) is ob-
tained with scale and permutation indeterminacy, i.e.,

Ŝ ¼WX ð2Þ

with WA = PK, where W represents the un-mixing matrix, P is a
general permutation matrix and K is a diagonal matrix. This implies
that ICA-based solution of the unsupervised decomposition prob-
lem is unique up to the ordering, scale and sign. Thus, ICA algo-
rithms possess a scale invariance property that makes them
attractive for use in tumour visualisation and demarcation from
the multi-spectral fluorescent image, when the level of the fluores-
cence may vary from measurement to measurement for the reasons
already discussed.

It is assumed by many ICA algorithms that sources are zero
mean as well as that data are whitened (spatially uncorrelated).
Most algorithms include mean removal and data whitening as a
first phase in the algorithm development. Mean removal is
achieved very simple through

fxn  xn � E½xn�gN
n¼1 ð3Þ

where xn denotes rows of X and E[xn] denotes mathematical expec-
tation of xn. Data whitening is achieved through

X K�1=2ETX ð4Þ

where K and E, respectively, stand for diagonal matrix of eigen-
values and matrix of eigenvectors of the sample data covariance
matrix RXX = E[XXT]. Since in the muti-spectral image decomposi-
tion problem source signals represent spatial maps of the materials
resident in the image, we have always rescaled extracted sources to
the [0,1] interval such that probability of the source being present
(that is maximally 1 and minimally 0) can be assigned at each pixel
level.

The strategy of the ICA algorithms in solving blind decomposi-
tion problem is to find linear transform W such that components
of Ŝ are as much statistically independent as possible. Depending
on available type of a priori information about the sources various
approaches are exploited by ICA algorithms. Number of ICA meth-
ods requires a priori information about the class of distributions to
which source signals belong (Bell and Sejnowski, 1995; Pham,
1997; Choi et al., 2000). Such information is however not readily
available. One alternation is to derive methods that are adaptive
to the unknown source distributions. The representatives of such
class of methods are kernel density methods (Xue et al., 2008; Prin-
cipe and Xu, 1999; Principe et al., 2000). Main disadvantage of the
kernel density-based ICA methods is their computational complex-
ity that is O(T2N2) where T represents number of samples. In appli-
cation domain considered in this paper T represents number of
pixels and can take value of even 107. Hence, the computational
complexity in such a case would be huge. It has been pointed out
recently (Xue et al., 2008) that computational complexity of the
kernel density methods can be reduced by fast Fourier transform
(Silverman, 1982). Other approaches to reduce computational
complexity of kernel density-based ICA methods were also pro-
posed (Pham, 2003; Schwartz et al., 2004) yielding, respectively,
computational complexity of O(3NT + N2T) and O(NTlogT + N2T). If
we consider multi-spectral image to be an RGB image, then N = 3.
Assuming T � 4 � 106 (that is today normal size of the RGB images
from commercial digital cameras) we arrive at still very large num-
bers for computational complexity of the kernel density-based ICA
methods. Due to computational complexity reasons we have relied
in this manuscript on ICA methods that are also source distribution
independent but solve blind decomposition problem through min-
imization of the statistical dependence between the sources up to
the fourth order (FO) (Cardoso and Soulomniac, 1993) or through
minimization of the statistical dependence between the sources
of the second order but for different lags (Belouchrani et al.,
1997; Stone, 2001).

Representative of the first group is FO cumulant based ICA algo-
rithm JADE (Cardoso and Soulomniac, 1993) that stands for Joint
Approximate Diagonalisation of the eigen-matrices, where statisti-
cal independence is achieved through minimization of the squares
of the FO cross-cumulants between the components ŝm

W ¼ arg min
X
i;j;k;l

offðWTĈ4ðŝi; ŝj; ŝk; ŝlÞWÞ ð5Þ

where off(A) is measure for the off-diagonality of a matrix defined
as offðAÞ ¼

P
16i–j6N jaijj2. Ĉ4ðŝi; ŝj; ŝk; ŝlÞ are sample estimates of the

related FO cross-cumulants (Mendel, 1991; McCullagh, 1995) i.e.

Ĉ4ðŝi; ŝj; ŝk; ŝlÞ ¼ E½ŝiŝjŝkŝl� � E½ŝiŝj�E½ŝkŝl� � E½ŝiŝk�E½ŝjŝl�
� E½ŝiŝl�E½ŝjŝk� ð6Þ

The additional advantage of using FO cumulants based ICA algo-
rithm is its capability to suppress additive Gaussian noise based on
the known property that FO cumulants are blind with respect to
Gaussian noise (Mendel, 1991). Disadvantage of the use of FO sta-
tistics based methods is their sensitivity to outliers as well as
requirement that FO cumulants for the source signals in consider-
ation must exist. On the other side SO statistics based methods are
more robust with respect to outliers. If the source signals have cer-
tain structure (temporal or spatial) it is possible to obtain demixing
matrix W as the solution of the following joint diagonalization
problem

JðWÞ ¼
X
s2S

offðW�Cs
sWTÞ ð7Þ

where �Cs
s are symmetrical one-lag covariance matrices of the

sources

�Cs
s ¼ EfSðtÞSðt � sÞTg þ EfSðt � sÞSðtÞTg

Since by assumption source signals are statistically independent it
applies that �Cs

s must be a diagonal matrix. Thus, it follows from
(7) that W is matrix of eigen-vectors that jointly diagonilize set of
matrices f�Cs

sgs2S. This is how the SOBI algorithm that stands for sec-
ond order blind identification is formulated (Belouchrani et al.,
1997).

For predictable signals it is further possible to obtain demixing
matrix W as the solution of the generalized eigen-decomposition
problem by maximizing predictability measure (Stone, 2001)

FðfsmðtkÞgÞ ¼ log
VðfsmðtkÞgÞ
UðfsmðtkÞgÞ

¼ log
Pkmax

k ð�smðtkÞ � smðtkÞÞ2Pkmax
k ð~smðtkÞ � smðtkÞÞ2

ð8Þ

where V reflects the extent to which sm(tk) is predicted by a long
term moving average �smðtkÞ and U reflects the extent to which sm(tk)
is predicted by a short term moving average ~smðtkÞ. Since source sig-
nals in the problem considered in this paper are predictable (pixel
values are locally correlated) we shall use this method, coined as
‘‘temporal” predictability maximization ICA algorithm, in blind
multi-spectral image decomposition problem.
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2.2. Dependent component analysis

The basic idea behind DCA (Cichocki and Amari, 2002; Cichocki
and Georgiev, 2003; Hyvärinen, 1998; Kopriva and Seršić, 2008) is
to find a linear transform H that can improve statistical indepen-
dence between the sources but leave the basis matrix unchanged,
i.e.,

HðXÞ ¼ HðASÞ ffi AHðSÞ ð9Þ

Since the sources in this new representation space will be less sta-
tistically dependent, any standard ICA algorithm can in principle be
used to learn the mixing matrix A or demixing matrix W. Once they
are estimated, the sources S can be recovered by applying W the
multi-spectral image X in (1). Examples of linear transforms that
have such a required invariance property and generate less depen-
dent sources in the new representation space include: high-pass fil-
tering (Cichocki and Georgiev, 2003), innovations (Hyvärinen, 1998)
and wavelet transforms (Kopriva and Seršić, 2008). However, to get
optimal performance out of DCA algorithm, chosen ICA algorithm
should be tuned to the chosen statistical independence enhance-
ment transform. One computationally efficient approach to solve
the blind separation problem with statistically dependent sources
is based on the use of innovations. The arguments for using innova-
tions are that they are more independent from each other and more
non-Gaussian than original processes. The innovation process is re-
ferred to as prediction error that is defined as:

~smðtÞ ¼ smðtÞ �
Xl

i¼1

bmismðt � iÞ; m ¼ 1; . . . ;M ð10Þ

where sm(t � i) is the ith sample of a source process sm(t) at location
(t � i) and bm is a vector of prediction coefficients. ~smðtÞ represents
the new information that sm(t) has but is not contained in the past l
samples. It has been proved in Hyvärinen (1998) that if X and S fol-
low the linear mixture model (1), their innovation processes ~X and ~S
(in matrix form) follow the same model as well, i.e.,

~X ¼ A~S ð11Þ

Because innovation basically removes predictable, or slow vary-
ing, part of the signal it is super-Gaussian and close to independent
and identically distributed (i.i.d.) signal. This is especially true if or-
der of the prediction error filter in (10) is high. Thus, FO cumulants
are expected to be well defined for when high-order innovations
are used. Therefore, it is justified in DCA algorithm to combine
JADE ICA algorithm with high-order innovations based linear
transform in order to achieve good performance. First order high
pass filter can be thought as the first order innovation of the signal.
In such a case significant part of the predictable signal component
will still remain in its innovation. Therefore, it is justified in DCA
algorithm to combine SOBI-like ICA algorithms (Molgedey and
Schuster, 1994; Ziehe et al., 1998) with low-order innovations
based linear transform to achieve good performance. Due to the
reasons discussed, we shall apply these two DCA algorithms in
the comparative performance analysis presented in Section 3. At
this place we would also like to explain why, by means of innova-
tions or high-pass filtering, removing statistical dependence be-
tween the source pixels also increases statistical independence
between the sources. Both high-pass filtering and innovations, they
can be viewed as source adaptive high-pass filtering, remove low-
frequency part of the source spectrum. It is low-frequency part of
the source spectrum that is a cause for eventual statistical depen-
dence among the sources. This empirical observation has been
brought out in Cichocki and Amari (2002), Cichocki and Georgiev
(2003) and Cichocki (2007). It represents basis for construction of
various DCA algorithms and explains why all of them are looking
for high-frequency part of the source spectrum in order to learn
a mixing matrix more accurately by applying ICA algorithms on
high-pass filtered version of the mixtures, see (9) and (11). Hence
by removing low-frequency part of the source spectrum innovation
process also removes eventual cause of statistical dependence
among the sources.

2.3. Nonnegative matrix factorization

Alternatives to the ICA or ICA-based DCA include algorithms for
nonnegative matrix factorisation (NMF), (Lee and Seung, 1999;
Zdunek and Cichocki, 2007; Cichocki et al., 2008), which are also
applicable to the SLMM (1) because the variables in the model
are nonnegative. Unlike ICA, the NMF algorithms do not impose
statistical independence and non-Gaussianity requirements on
the sources. However they do generally require N >> M, which
makes them not good candidate for unsupervised decomposition
problems when X represents a low-dimensional multi-spectral im-
age, such as a red–green–blue (RGB) image in which case N = 3 can
even be less than M. In addition to that, NMF algorithms are quite
sensitive to the choice of initial conditions that often yields subop-
timal performance. Various strategies are under investigation,
including even ICA algorithms, to estimate good initial points for
A and S. The basic approach to NMF, that is described in general
algorithmic form below, is alternating minimization of a chosen
cost function (Zdunek and Cichocki, 2007; Cichocki et al., 2008).

Set Randomly initialize: A(0), S(0),
For k = 1,2,. . ., until convergence do

Step 1: Sðkþ1Þ ¼ arg minsmtP0DðX AðkÞS
��� ÞSðkÞ

Step 2: Aðkþ1Þ ¼ arg minanmP0
~DðX ASðkþ1Þ

��� ÞAðkÞ
End

In general, the cost function DðX ASk Þ in Step 1 can be different
than the cost function ~DðX ASk Þ in Step 2, however, usually
DðX ASk Þ ¼ ~DðX ASk Þ. In Lee and Seung (1999) the algorithm was
first applied to two different cost functions: squared Euclidean dis-
tance (Frobenius norm) and Kullback–Leibler divergence. Using a
gradient descent approach to perform Steps 1 and 2, they obtained
multiplicative algorithms. However, the multiplicative algorithms
are known to be very slowly convergent and easily get stuck in lo-
cal minima. Therefore, in Zdunek and Cichocki (2007) an algorithm
was recently derived that is based on the use of second-order
terms, Hessian, in the Taylor expansion of a cost function to speed
up convergence. Specifically, the NMF algorithm used in the exper-
iments in the cited paper combines quasi-Newton optimisation for
basis matrix A and a fixed-point regularised least-square algorithm
for S, with computer code provided in the appendix in Zdunek and
Cichocki (2007). Excellent performance of this algorithm has been
demonstrated in Zdunek and Cichocki (2007) and Cichocki et al.
(2008). This algorithm will be used in the comparative perfor-
mance analysis in Section 3. We shall refer to this algorithm
through the rest of the paper as the SO NMF algorithm.
2.4. SLMM and multi-spectral imaging

The SLMM (1) is widely used in multi-spectral and hyper-spec-
tral remote sensing, (Adams et al., 1993; Settle and Drake, 1993;
Du et al., 2006; Du and Kopriva, 2008), where 3D image cube con-
tains co-registered spectral images of the same scene. Within this
application field, N represents the number of spectral bands; rows
fxngN

n¼1 of X represent spectral images, and columns of X represent
multi-spectral pixel vectors at particular spatial locations, t 6 T, in
the image; T represents the number of pixels in the image, while
column vectors famgM

m¼1 of the basis or mixing matrix represent
spectral responses of the corresponding sources fsmgM

m¼1 that
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themselves are rows of S that represent spatial distributions of the
sources. Assuming that X represents an RGB fluorescent image the
number of spectral bands N equals 3. In order to relate the SLMM
(1) to the tumour visualisation, we point out again that sources
sm represent spatial maps of the tumour, surrounding healthy tis-
sue and possibly some other material resident in the multi-spectral
fluorescent image, while corresponding column vectors am of the
basis or mixing matrix represent their spectral responses. Follow-
ing this interpretation we immediately see that spectral similarity
of the sources sm and sn will affect the condition number of the ba-
sis matrix, because the corresponding column vectors am and an

become close to collinear. This is elaborated in great details in
the appendix where effects of the NBG transform on the condition
number of the extended mixing matrix are evaluated analytically
and numerically. Simulation example in Section 3.1 based on the
computational model of the RGB image also demonstrates that
condition number of the mixing matrix is increasing from 11.7 to
117 when angle between two spectral vectors decreases from 10�
to 1�. In addition to deteriorate conditioning of the mixing matrix
spectral similarity between the sources makes them statistically
dependent. This is easily verified by assuming that sources sm

and sn are spectrally very similar. Then an ffi cam, where c repre-
sents the intensity scaling factor. The contribution of these two
sources at any pixel location t is amsmt + ansnt ffi amsmt + amcsnt,
implying that sm and csn are indistinguishable i.e. sm and sn are sta-
tistically dependent. Hence, two fundamental requirements im-
posed by the ICA algorithms on the SLMM fail when the sources
become spectrally highly similar. We point out that spectral simi-
larity among the sources also affects the performance of the NMF
algorithms due to the ill-conditioning of the basis matrix. It is
NBG transform that is necessary to improve conditioning of the ex-
tended basis matrix. However, as it will be demonstrated in Section
3, it is also DCA that is necessary to be used in combination with
NBG transform in order to account for statistical dependence in-
duced by spectral similarity between the sources.

2.5. New algorithm: NBG and DCA

Here we propose a novel solution for unsupervised decomposi-
tion of the SLMM (1) for the case of ill-conditioned basis matrix
and statistically dependent sources, by combining NBG transform
(Ren and Chang, 2000; Du et al., 2004), that increases the dimen-
sionality of the original multi-spectral image X and decreases the
condition number of the extended basis matrix, and DCA (Cichocki
and Georgiev, 2003; Hyvärinen, 1998; Kopriva and Seršić, 2008)
that increases the level of statistical independence between the
spectrally similar sources. This combined use of two transforms
is original contribution of this paper that is important for robust
blind decomposition of low-dimensional multi-spectral images
such as RGB image for example. It is demonstrated on computa-
tional model and experimental data that proposed algorithm yields
high-contrast tumour maps when intensity of the acquired fluores-
cent image is fluctuating more than 10 times causing increased
spectral similarity between tumour and surrounding tissue.

The NBG process was originally proposed in Ren and Chang
(2000) with the aim of increasing the accuracy of the orthogonal
subspace projection method in decomposition and classification
of the multi-spectral images and also used for the same purpose
in Du et al. (2004), when the number of sources M to be classified
exceeds the number of spectral bands N. The same limitation,
N P M, also applies to the ICA and DCA algorithms in unsupervised
decomposition of the SLMM (1). According to Ren and Chang
(2000) the basic idea behind the NBG approach arises from the fact
that a second-order random process is generally specified by its
first-order and second-order statistics. Looking at the original spec-
tral images fxngN

n¼1 as the first-order statistical images, a set of sec-
ond-order statistical spectral images can be generated by capturing
the correlation between the spectral bands. They provide useful
second-order statistical information about spectral bands that is
missing in the set of original spectral images. Theoretically, any
nonlinear function can be used to generate set of artificial images
with linearly independent spectral measurements. Previous exper-
imental studies (Du et al., 2004) have shown that nonlinear func-
tion that enlarges or emphasizes discrepancy between original
spectral measurements will help to improve classification perfor-
mance, since the technique applied here uses spectral information.
A simplest but effective choice is multiplication. When two original
spectral images are multiplied together a new artificial spectral
image is generated. Here, multiplication acts as matched filtering.
When multiplicant and multiplier are equal, the product is the
maximum. So multiplication can emphasize the spectral similarity
between two spectral measurements of the same pixel, which is
equivalent to emphasizing their dissimilarity or discrepancy. Mul-
tiplication can be also used for a single band. Then, it emphasizes a
single spectral measurement itself, which is also equivalent to
enlarging the spectral difference from other spectral measure-
ments of this pixel. Thus, second-order statistics, which include
auto-correlation, cross-correlation and nonlinear correlation, are
used to create nonlinearly correlated spectral images and increase
the dimensionality of the original image X. The set of auto-corre-
lated spectral images is obtained as fx2

ng
N
n¼1 while the set of

cross-correlated spectral images is obtained as fxnxmgN
m;n¼1;m–n.

The dimensionality of the original image X is extended from N to

2N + N
2

� �
. Thus the dimensionality of an RGB image is increased

from 3 to 9. Although dimensionality increase is important, espe-
cially when the number of spectral bands is small, there is another
important property of the NBG technique presented here for the
first time. Namely, the NBG technique causes the two angularly
close spectral vectors am and an to become more separated in the
band-expanded version of the original image. We denote the
band-expanded image as �X. This is achieved provided that the
two corresponding sources sm and sn do not have exactly the same
intensity. Detailed demonstrations for 2D and 3D problems with
cross-correlated and auto-correlated bands are presented in
Appendix. Thus the NBG technique significantly improves condi-
tioning of the original basis or mixing matrix caused by spectral
similarity between the sources. Since in a tumour demarcation
problem we are interested in spatial localisation of the tumour
class, we shall impose a special constraint on the sources in the
SLMM (1): sm � {0,1} i.e. we presume quasi-binary nature of the
spatial maps of the sources, where 1 indicates source presence
and 0 indicates source absence at the pixel level. However, the
truth is that sources are continuous and not binary. But if blind
decomposition is reasonably successful other sources present in
each extracted source spatial map will be suppressed significantly.
Thus, the extracted sources could be, at least as the first approxi-
mation, modeled as quasi-binary. This assumption is necessary to
make analytical and numerical quantification of the effects of
NBG transform mathematically tractable. The analysis itself is in
presented in the Appendix for 2D and 3D problems, where it is
demonstrated that NBG transform really improves conditioning
of the extended mixing matrix in relation to the original mixing
matrix. This is especially the case when the column vectors of
the original mixing matrix become close to collinear (the angular
separation between the column vectors is small), see Figs. 7–9.

Another assumption that is necessary to carry on analysis dis-
cussed above is that sources do not overlap in the spatial domain:
smtsnt = dmn, where t denotes pixel location and dmn represents Kro-
necker’s delta symbol. This helps to get rid out of the cross-terms
that show up in nonlinear band expansion process. This no-over-
lapping assumption is however not pure mathematical construct.



Fig. 1. RGB fluorescent image of the skin tumour acquired after illumination with
high-intensity light.
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It has justification in tumour demarcation problem due to the fact
that the pixel footprint is small, usually less than a square mm, and
it is highly unlikely that the tumour occupies the same pixel loca-
tion with some other source resident in the multi-spectral image.
Under these two assumptions (quasi-binary and no-overlapping
sources) it is straightforward to show that the NBG technique ap-
plied to the SLMM (1) produces the following result:

xmtxnt ffi
XM

k¼1

amkankskt

Thus in matrix notation model (1) is transformed into

�X ¼ �AS ð12Þ

Spectral similarity between the sources sm and sn makes them
also statistically dependent. A few approaches that deal with the
problem of statistically dependent sources are presented in Ci-
chocki and Amari (2002), Cichocki and Georgiev (2003), Hyvärinen
(1998), Kopriva and Seršić (2008) and Kopriva (2007) and refer-
ences cited therein. As elaborated in Section 2.2, the problem is
fixed by finding a linear operator H with the property

Hð�XÞ ¼ Hð�ASÞ ¼ �AHðSÞ ð13Þ

such that the transformed sources H(S) are more statistically inde-
pendent than the original sources S. We have been already dis-
cussed the reasons for choosing high-order innovations transform
with JADE ICA algorithm to form DCA algorithm, as well as to choos-
ing first order innovation transform (first order high-pass filter)
with the SOBI ICA algorithm to form another DCA algorithm. Coef-
ficients of prediction-error filter bm in (10) are efficiently estimated
by means of the Levinson algorithm (Orfanidis, 1988). The filter is
applied row-wise on the image �X and is obtained as an average of
the prediction-error filters estimated for each image f�xngN

n¼1.
Depending on the order of the prediction error filter used, either
JADE or SOBI ICA algorithms are applied to the SLMM (13) in order
to learn more accurately the extended basis matrix �A or its inverse
�W than would be possible from (12). Sources S are then recovered

by applying �W to the band-expanded image given by (12).
Before proceeding to the presentation of the results, we briefly

comment on two important remaining issues: estimation of the
unknown number of sources M, and prioritisation of the extracted
sources by the measure of information contained in them. Deter-
mination of the number of sources is a very old problem in mul-
tivariate data analysis, and is also known as intrinsic
dimensionality problem (Fukunaga and Olsen, 1971). Several
methods for estimating the number of sources in a hyper-spectral
image have been tested in Chang and Du (2004). Malinowski’s
method (Malinowski, 1977a,b) developed for determination of
the number of factors in absorption spectroscopy, mass spectra,
and chromatography has been demonstrated in Chang and Du
(2004) to give a good result in estimating the number of sources
resident in the hyper-spectral image. We have used this method
in estimating the number of sources in the band-expanded ver-
sion of the multi-spectral image given by (5). When dealing with
the original RGB image given by (1), estimating the number of
sources was not an issue, because a priori knowledge and the fact
that maximal number of sources is limited by the number of
spectral bands, that is 3, narrowed down the number of sources
to 1, 2 or 3. To prioritise the extracted sources we used the
high-order statistics-based approximation of the negentropy mea-
sure (Wang and Chang, 2006) and Eq. (5), p. 115 in Hyvärinen
and Karhunen (2001):

JðsmÞ ffi
1

12
½j3

m�
2 þ 1

48
½j4

m � 3�2 ð14Þ

where k3
m ¼ ð1=TÞ

PT
t¼1ðsmtÞ3 and k4

m ¼ ð1=TÞ
PT

t¼1ðsmtÞ4 are sample
means of third and fourth order statistics of sm.
3. Results

We now execute comparative performance evaluation of the
presented method on the computational model of an RGB fluores-
cent image of a surface tumour as well as on experimental RGB
fluorescent images of the surface tumour (basal cell carcinoma).
For this purpose two experiments have been carried out. In first
experiment we have recorded an image of a skin tumour after
being treated for 4 h with d-5-aminolaevulinic acid. This is a
photo-synthesiser that, through the process of biosynthesis, causes
formation of the fluorophore protoporphyrin IX (PpIX), (Koenig
et al., 2001). The tumour was illuminated with 405 nm light, which
induces fluorescence of the PpIX. The fluorescent image was re-
corded by a camera with an attached filter used to filter out the re-
flected 405 nm light. In order to simulate effects of variability of
the parameters such as concentration of the photo-synthesiser,
intensity of illumination light and duration of the treatment with
the photo-synthesiser, on the variation of the fluorescent image
intensity, we acquired a fluorescent RGB image after illumination
with high-intensity light as well as with light with a weak intensity
level. The high-intensity fluorescent image shown in Fig. 1 was
used to extract spatial binary maps of the tumour and surrounding
healthy tissue that served as a ground truth in the comparative
performance evaluation.

In second experiment, we have acquired a sequence of RGB
fluorescent images of the patient with histologically verified diag-
noses of superficial multicentric basal cell carcinoma in the lower
right part of the back. As before, skin of the tumour was treated
for 4 h with d-5-aminolaevulinic acid before images have been ac-
quired and the tumour was illuminated with 405 nm light. The
intensity of the illuminating light has been gradually varied over
10 times. Two RGB fluorescent images with illumination intensity
that differs 10.91 times are shown in Fig. 4a and b.

3.1. Simulation results

To carry out comparative performance analysis we have first
created a computational model of an RGB image based on (1) in or-
der to produce a synthetic fluorescent image with a controlled de-
gree of spectral similarity between the tumour and surrounding
healthy tissue. Thus, we have M = 2 sources and by convention
we choose source s1 to represent the tumour and source s2 to rep-
resent the surrounding healthy tissue. In the corresponding col-
umn vectors a1 and a2 we set the components that correspond
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with the blue colour to be equal. Projections of both vectors into
the red–green plane were separated by angle a, where the spectral
response of the healthy tissue was 21� apart from the green axis.
Thus by changing the angle a we were able to control the degree
of spectral similarity between tumour and healthy tissue. In addi-
tion to that, the intensity of the tumour was related to the intensity
of the healthy tissue through ja1j ¼ cja2j. The intensity of the ex-
tracted tumour map was rescaled to [0,1] interval such that inter-
pretation of probability could be assigned to it. As a figure of merit
we have selected probability margin, Dp, defined as the difference
between the minimal probability that the tumour is present in the
tumour region and the maximal probability that the tumour is
present in the surrounding healthy tissue region. As seen from
Fig. 2a, where Dp is plotted vs. a for signal-to-noise ratio (SNR)
equal 30 dB and c = 1.1, the proposed method (it combines NBG
and DCA with higher order innovations and JADE ICA algorithm)
exhibits high-contrast level even with extremely small values of
angle a (a = 0.01�) when the tumour and surrounding tissue are
spectrally practically the same. The condition number of the corre-
Fig. 2. Computational model of fluorescent RGB image. (a) Probability margin Dp vs. ang
the SO NMF method (red squares), by DCA (green circles) and by ‘‘temporal” predictability
Probability margin Dp vs. SNR for a = 10�. (c) Simulated RGB image for a = 1�, SNR = 30 dB
map extracted by the proposed algorithm from (c) with probability margin Dp = 0.866. (f
Dp = 0.4648. (For interpretation of the references to colour in this figure legend, the rea
sponding mixing matrix was 11708. We point out that even when
a = 0� and c = 1.01 the separation margin achieved by the proposed
algorithm was Dp = 0.8624 with SNR = 30 dB. All other state-of-
the-art methods under consideration failed due to the rank defi-
ciency problem of the basis matrix in the SLMM (1). We have also
applied DCA algorithm directly (it combines higher order innova-
tions and JADE ICA algorithm) to the original RGB image (1). The
‘‘temporal” predictability-based ICA algorithm (Stone, 2001) has
been also applied directly to the original RGB image. Finally, origi-
nal RGB image has been also decomposed by the SO NMF algorithm
(Zdunek and Cichocki, 2007). The performance of the SO NMF and
DCA algorithms is similar, and improves when the level of spectral
dissimilarity increases. Once innovations-based pre-processing has
increased statistical independence between the sources, ICA exhib-
its the same performance level as SO NMF, which is not sensitive to
statistical dependence between the sources. However, both meth-
ods are sensitive to the ill-conditioning of the basis matrix and that
is why proposed algorithm outperforms all other methods consid-
ered. Improved conditioning also gives the proposed algorithm a
le a for the tumour map extracted by the proposed method (light blue triangles), by
maximization ICA algorithm (dark blue stars). SNR at the sensor level was 30 dB. (b)

and c = 1.1. (d) Simulated RGB image for a = 10�, SNR = 30 dB and c = 1.1. (e) Tumour
) Tumour map extracted by the SO NMF algorithm from (c) with probability margin
der is referred to the web version of this article.)



Fig. 4. (a) RGB image with maximal intensity; (b) RGB image with 10.91 smaller intensity; (c) RGB image with manually marked tumour demarcation lines (red dots). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Experimental fluorescent image of skin tumour. (a) Low-intensity version of the RGB fluorescent image of the tumour shown in Fig. 1. (b) ROC curves with the legend
described for Fig. 2a. (c) Tumour map extracted by the proposed algorithm. (d) Tumour map extracted by the SO NMF algorithm. Assigned probabilities in the grey scale
colour are shown on vertical bars. (e) Tumour demarcation line calculated by Canny’s edge extraction method from (c). (f) Tumour demarcation line calculated by Canny’s
edge extraction method from (d). The threshold used in the edge-extraction algorithm was set to 0.5.

I. Kopriva, A. Peršin / Medical Image Analysis 13 (2009) 507–518 513
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higher robustness level against additive noise, which is demon-
strated in Fig. 2b where Dp is plotted vs. SNR for a = 10� and
c = 1.1. For the purpose of visual demonstration, Fig. 2c and d show
synthetic RGB images for a = 1� and a = 10�, respectively with
SNR = 30 dB and c = 1.1. The visual contrast is very poor in
Fig. 2c. Fig. 2e and f show tumour maps extracted from Fig. 2c by
the proposed algorithm and the SO NMF algorithm after 2000 iter-
ations, respectively. Note the very high-contrast in Fig. 2e with
Dp = 0.866, while for Fig. 2f Dp = 0.4648. The condition numbers
of the corresponding basis matrices were 117 and 11.7. For the
sake of comparison we mention that the condition numbers of
the mixing matrices in the benchmark experiments used to test
the SO NMF algorithm in Zdunek and Cichocki (2007) were be-
Fig. 5. Spatial maps of the BCC extracted by ‘temporal’ predictability-based ICA algorithm
and NBG algorithm with the first order high-pass filter-based preprocessing and SOBI (e a
and e) and by light with 10.91 times smaller intensity (b, d and f). Dark blue colour indica
is present with probability 1. (For interpretation of the references to colour in this figur
tween 4 and 10. It is noteworthy that computation time for
Fig. 2e was around 30 s, and for Fig. 2f around 330 s in a MATLAB
environment on a desktop computer with 3 GHz clock speed and
4 GB of RAM.

3.2. Results for experiment 1

We now present the results of the comparative performance
analysis for the low-intensity version of the RGB fluorescent image
shown in Fig. 1. The low-intensity image itself is shown in Fig. 3a.
The receiver-operating-characteristic (ROC) curves selected for this
experimental example as a figure of merit, that show probability of
detection vs. probability of false alarm, are shown in Fig. 3b for the
(a and b), NBG algorithm with innovations-based preprocessing and JADE (c and d)
nd f) from RGB fluorescent images illuminated by light with maximal intensity (a, c

tes that tumour is present with probability 0, while red colour indicates that tumour
e legend, the reader is referred to the web version of this article.)
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same algorithms as in Fig. 2. Note that the proposed algorithm
exhibits significantly better performance in the region of small
probability of false alarm than other methods in consideration.
DCA, SO NMF and ICA performed similarly. Performance of the
higher order statistics based ICA algorithms is inferior in relation
to the second order statistics based method used here (Stone,
2001). Fig. 3c and d show tumour maps extracted from Fig. 3a by
the proposed algorithm and by the SO NMF algorithm, respectively.
The contrast of the tumour map in Fig. 3c is much better. That is
confirmed in Fig. 3e and f, which show tumour demarcation lines
calculated from Fig. 3c and d by Canny’s edge extraction method
with threshold set to 0.5. In relation to the experimental image
shown in Fig. 3a, we make another comment: that its complexity
was artificially increased by adding a ruler in to the scene. Because
the ruler is not spectrally homogenous, it increased the number of
sources resident in the image, probably to four, which exceeded
the number of spectral bands of the original image. Despite that,
and despite the fact that intensity was low, the proposed method
performed well.

3.3. Results for experiment 2

In order to quantify robustness of the proposed algorithm
against intensity fluctuation we have acquired a sequence of RGB
fluorescent images of the patient with histologically verified diag-
noses of superficial multicentric basal cell carcinoma in the lower
right part of the back. The intensity of the illuminating light has
been gradually varied over 10 times. Two RGB fluorescent images
with illumination intensity that differs 10.91 times are shown in
Fig. 4a and b. Fig. 4c shows demarcation line of the tumour marked
manually by red dots. Through biopsy it has been verified that
there is no tumour outside of the region marked by red dots. Thus,
Fig. 4c can serve as a reference in comparative performance analy-
sis of the tumour demarcation methods. Three best results are cho-
sen and shown in Fig. 5. It shows extracted spatial maps of the
tumours rescaled to [0,1] interval in the pseudo colour scale,
where dark blue colour represents 0 (absence of the tumour) and
red colour represents 1 (presence of the tumour). First row shows
maps extracted by ‘‘temporal” predictability-based ICA algorithm.
Second row shows maps extracted by proposed algorithm where
DCA part was composed of tenth order innovation process and
Fig. 6. Length of the demarcation lines, in pixels, of the tumour spatial maps extracted
Horizontal axis from left to right represents ratio between maximal intensity and intensi
based ICA algorithm applied to band expanded RGB image; dark blue circles – ‘temporal’ p
ICA algorithm applied on first order high pass filter-based pre-processed band expanded R
processed band expanded RGB image. (For interpretation of the references to colour in
JADE ICA algorithm. Third row shows maps extracted by proposed
algorithm where DCA part was composed of first order high-pass
filtering and SOBI ICA algorithm. First column shows maps ex-
tracted from RGB image shown in Fig. 4a. Second column shows
maps extracted from RGB image shown in Fig. 4b, whereas inten-
sity of the illumination was 10.91 times less than in Fig. 4a. The
contrast between the tumour area and background area is the best
preserved by proposed method with DCA algorithm composed of
tenth order innovation process and JADE ICA algorithm. This state-
ment is further supported by Fig. 6, where length of the demarca-
tion line in pixels is shown as a function of the relative intensity of
the illuminating light. Relative intensity has been calculated as I0/In

where I0 represented maximal value of the intensity. Demarcation
lines were calculated after edges were extracted from tumour
maps by Canny’s edge extraction method with a threshold varying
in the interval [0.4,0.6]. This small deviation of the threshold from
the unbiased value of 0.5 was necessary to account for the quasi-
binary nature of the sources. Note that high quality binary spatial
maps of the tumour can be obtained from maps extracted by blind
decomposition methods if some reasonably advance clustering
algorithm is applied to them. Here we were applying Canny’s edge
extraction method with basically fixed threshold in order to
emphasize good and robust performance of the proposed method
against intensity fluctuation. Proposed method with DCA algo-
rithm composed of tenth order innovation process and JADE ICA
algorithm exhibited the best performance in term of the stability
of demarcation line. Standard deviation for this case was estimated
as 127.1 pixels. Version of the proposed algorithm when DCA was
composed of first order high-pass filtering and SOBI ICA method
yielded standard deviation of 263.8 pixels. ‘‘Temporal” predictabil-
ity-based ICA algorithm when applied to RGB image directly
yielded standard deviation of 327.8 pixels. When the same algo-
rithm was applied to band expanded image it yielded standard
deviation of 1157.6 pixels.

4. Discussion

We have presented an algorithm for high-contrast tumour
visualisation and demarcation through unsupervised decomposi-
tion of a low-intensity low-dimensional (RGB) multi-spectral
fluorescent image of the tumour. Coarse spectral resolution of
from RGB fluorescent images illuminated by light with different intensity levels.
ty of each particular illumination. Legend: sky blue stars – ‘temporal’ predictability-
redictability-based ICA algorithm applied on original RGB image; red squares – SOBI
GB image; green diamonds – JADE ICA algorithm applied on innovations-based pre-

this figure legend, the reader is referred to the web version of this article.)



Fig. 7. Condition numbers vs. mixing angle for: original 2 � 2 mixing matrix, Eq. (19), (blue circles); expanded 3 � 2 mixing matrix, Eq. (20), (green squares); expanded 5 � 2
mixing matrix, Eq. (21), (red diamonds). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the RGB-like images in combination with the low-intensity of the
fluorescence yields ill-conditioned SLMM with statistically
dependent sources. This represents a great challenge for many
state-of-the-art blind image decomposition algorithms. Proposed
Fig. 8. Condition numbers, according to the colour scheme on vertical colour bar,
for 3 � 2 mixing matrix, Eq. (22), as a function of elevation and azimuth mixing
angles. The mixing angles were varied in the 2� grid to avoid infinite condition
number that would occur at 45� of azimuth and elevation.

Fig. 9. Condition numbers, according to the colour scheme on vertical colour bar,
for 9 � 2 mixing matrix, Eq. (23), as a function of elevation and azimuth mixing
angles.
method is composed of two algorithms: NBG transform that im-
proves conditioning of the extended basis matrix and DCA that
increases statistical independence between the sources. We have
demonstrated good performance of this method on experimental
RGB fluorescent images of the BCC. High-contrast tumour maps
were extracted when the intensity of the illuminating light was
varied more than 10 times causing spectral similarity between
the tumour and surrounding tissue. There are various situations
in clinical practice that could benefit from these results: (i) con-
centration of the photo- synthesiser can be reduced; (ii) duration
of treatment with the photo-synthesiser can be reduced; (iii)
intensity of the illumination light can be reduced; (iv) tumour
detection in the early stage of development should be possible.
Reduced intensity of the illuminating light could be important,
for example in surgery on brain tumours, which can last for sev-
eral hours, and where high intensity of the illuminating light can
cause damage to healthy tissue. Although the method is demon-
strated for the visualisation and demarcation of a surface tu-
mour, it ought to be equally applicable to visualisation and
demarcation of other types of tumours, for example tumours at
the cell level, where fluorescent nanoparticle markers are used
to label the tumour cells (Tréhin et al., 2006), or where visualisa-
tion is based on a green fluorescent protein gene tumour trans-
duction system (Hasegawa et al., 2000; Hoffman, 2002).
Extraction of the tumour map from the spectrally similar sur-
rounding tissue can efficiently be executed by the ICA algorithms
alone and hyper-spectral imaging technology. However,
achieving that with RGB images acquired by cheap commercial
digital cameras is important from the affordability viewpoint. It
should enable easier dissemination of the tumour visualisation
technology presented herein. Application of the proposed method
for real time tumour demarcation is straightforward and it is
only a matter of the hardware platform chosen for the algorithm
implementation. Finally, we note that the general unsupervised
decomposition method described above in the tumour
demarcation and multi-spectral imaging context should be appli-
cable to other types of the multi-channel medical imaging
systems.
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Appendix A. NBGP applied to 2D and 3D problems of spectrally
identical sources

Let us assume that the SLMM (1) is specified by two spectral
bands, N = 2, and two sources, M = 2. Let us also assume that the
sources are spectrally identical and differ only in the intensity of
their spatial distribution by some scale factor c. Under these
assumptions the model (1) becomes

x1

x2

� �
¼

a11 ca11

a21 ca21

� �
s1

s2

� �
ð15Þ

Clearly the rank of the basis matrix in (15) is 1, and the unsuper-
vised decomposition problem does not have a solution. Let us now
assume that the cross-correlated band has been generated. Under
the quasi-binary constraint and no-overlapping assumption, the
NBGP model (12) becomes

x1

x2

x1x2

2
64

3
75 ¼

a11 ca11

a21 ca21

a11a21 c2a11a21

2
64

3
75 s1

s2

� �
ð16Þ

The cosine of the angle, b, between the two column vectors in (16) is
given by

cos b ¼ a2
11 þ a2

21 þ ca2
11a2

21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

11 þ a2
21 þ a2

11a2
21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

11 þ a2
21 þ c2a2

11a2
21

q ¼ p
q

ð17Þ

After some elementary algebra we arrive at the following identity

q2 � p2 ¼ ðc � 1Þ2ða2
11 þ a2

21Þa2
11a2

21 ð18Þ

Evidently q = p, implying that column vectors remain collinear,
occurs only when c = 1. That is a trivial case where sources are not
only spectrally identical but also have the same intensity level. In
fact there is only one source in such a case. Otherwise, for c – 1
it follows that q – p and cosb – 1, implying that the two spectral
vectors are not collinear any more.
�A ¼ 1 1
ffiffiffi
2
p

1
ffiffiffi
2
p

� � �
ffiffiffi
2
p

1 1 2
cos u sin h sinu sin h cos h cos u sin h sin2 h cos u sin h cos h � � � sin u sin h cos h cos2 u sin2 h sin2 u sin2 h cos2 h

" #T

ð23Þ
The algebraic complexity of the analytical expressions grows
very fast with the increase of the dimensionality of both original
and expanded mixing matrices. Therefore, we continue to demon-
strate numerically improvement of the conditioning of the ex-
tended mixing matrix through NBG transform for more complex
2D and 3D problems. We first consider 2 � 2 SLMM with the mix-
ing matrix as follows

A ¼
1 cos u
0 sin u

� �
ð19Þ

Here u is the mixing angle that defines position of the mixing
vector in 2D space (plane). Obviously, when / = 0� the two column
(also called mixing) vectors are collinear, in which case the mixing
matrix is singular and the condition number is infinite. Let us now
assume that the cross-correlated band has been generated. Under
the quasi-binary constraint and no-overlapping assumption, the
NBGP model (12) becomes of the form (16) with the extended mix-
ing matrix as follows
�A ¼
1 cos u
0 sin u
0 cos u sin u

2
64

3
75 ð20Þ

Let us now assume that in addition to the cross-correlated spec-
tral band the two auto-correlated spectral bands have been also
generated. Under the quasi-binary constraint and no-overlapping
assumption the extended mixing matrix becomes

�A ¼
1 0 0 0 0

cos u sin u cos u sin u cos2 u sin2 u

� �T

ð21Þ

We show in Fig. 7 condition numbers of the three matrices gi-
ven by (19), (20) and (21) as a function of the mixing angle / .
The last transform resulting in 5 � 2 extended mixing matrix
(21) yields small condition number even when mixing angle /
= 0� in which case original mixing matrix (19) is singular with infi-
nite condition number. It is equivalent to say that NBG transform
separated two column vectors in the 5D space even though their
projections on 2D subspace were collinear. We now carry on this
numerical demonstration for the 3D problem that corresponds
with the RGB multispectral imaging case elaborated experimen-
tally in Section 3. The mixing matrix of the 3 � 2 problem is given
as follows

A ¼
1 cos u sin h

1 sinu sin hffiffiffi
2
p

cos h

2
64

3
75 ð22Þ

In this case two mixing angles: azimuth / and elevation h are
necessary to define position of the mixing vector in the 3D space.
When the two mixing angles are / = h = 45� the two column vec-
tors will be collinear and the condition number will be infinite.
Let us now assume that three cross-correlated spectral bands and
three auto-correlated spectral bands have been generated. Under
the quasi-binary constraint and no-overlapping assumption the
extended mixing matrix becomes
We show in Fig. 8 condition numbers of the 3 � 2 mixing matrix
given by (22) as function of the mixing angles / and h . Two avoid
infinite condition number that occurs at / = h = 45� mixing angles
were varied with the resolution of 2� in the interval [30�,60�]. Con-
dition numbers are denoted according the colour scheme on verti-
cal colour bar. Fig. 9 shows condition numbers for extended 9 � 2
mixing matrix (23). They are more than 10 times less than it is
the case with the original mixing matrix (22). Even at the position
/ = h = 45� condition number of the extended mixing matrix (23)
remains small. We can again conclude that NBG transform sepa-
rated two column vectors in the 9D space even though their projec-
tions on 3D subspace were collinear. The above analysis could be in
principle carried on for higher-than-3D problems wherein hyper-
spherical coordinate system can be used to define position of the
mixing (column) vectors in higher dimensional space. However,
as already discussed we are especially interested in low-dimen-
sional multispectral imaging technology where, due to the coarse
spectral resolution, the problems associated with the spectrally
similar materials are expected to be present more often.
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