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Abstract. A novel approach to single frame multichannel blind image
deconvolution is formulated recently as non-negative matrix factoriza-
tion (NMF) problem with sparseness constraint imposed on the unknown
mixing vector. Unlike most of the blind image deconvolution algorithms,
the NMF approach requires no a priori knowledge about the blurring
kernel and original image. The experimental performance evaluation of
the NMF algorithm is presented with the degraded image by the out-of-
focus blur. The NMF algorithm is compared to the state-of-the-art single
frame blind image deconvolution algorithm: blind Richardson-Lucy al-
gorithm and single frame multichannel independent component analysis
based algorithm. It has been demonstrated that NMF approach outper-
forms mentioned blind image deconvolution methods.

1 Introduction

The goal of image deconvolution is to reconstruct the original image from an
observation degraded by spatially invariant blurring process and noise. Neglect-
ing the noise term the process is modeled as a convolution of a blurring kernel
h(s, t) with an original source image f(x, y) as:

g(x, y) =
K∑

s=−K

K∑

t=−K

h(s, t)f(x + s, y + t) (1)

where K denotes the size of the blurring kernel. If the blurring kernel is known,
many so-called non-blind algorithms are available to reconstruct original image
f(x, y) [1]. However it is not always possible to measure or obtain information
about blurring kernel, which is why blind deconvolution (BD) algorithms are im-
portant. Comprehensive comparison of BD algorithms is given in [1]. They can be
divided into those that estimate the blurring kernel h(s, t) first and then restore
original image by some of the non-blind methods [1], and those that estimate the
original image f(x, y) and blurring kernel simultaneously. In order to estimate
the blurring kernel, a support size has to be given or estimated. Also, quite often
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a priori knowledge about the nature of the blurring process is assumed to be
available in order to use appropriate parametric model of the blurring process
[2]. It is not always possible to know the characteristic of the blurring process.
Methods that estimate blurring kernel and original image simultaneously use
either statistical or deterministic prior on the original image, the blurring kernel
and the noise [2]. This leads to a computationally expensive maximum likeli-
hood estimation usually implemented by expectation maximization algorithm.
In addition to that, exact distributions of the original image required by maxi-
mum likelihood algorithm are usually unknown. One of the most representative
algorithms from this class is the blind Richardson-Lucy (R-L) algorithm. It has
been originally derived for non-blind deconvolution of astronomical images in [3]
and [4]. Later on, it was formulated in [5] for BD and then modified by iterative
restoration algorithm in [6]. This version of blind R-L algorithm is implemented
in MATLAB command ’deconvblind ’. It will be used in the section 3 for the
comparison purpose during experimental performance evaluation of the NMF
based blind image deconvolution method [7].

In order to overcome difficulties associated with ’standard’ BD algorithms
an approach was proposed in [8] based on quasi maximum likelihood with an
approximate of the probability density function. It however assumed that origi-
nal image has sparse or super-Gaussian distribution. This is generally not true
because image distributions are mostly sub-Gaussian. To overcome that diffi-
culty it was proposed in [8] to apply sparsifying transform to blurred image.
However, design of such a transform requires knowledge of at least the typical
class of images to which original image belongs. In such a case, training data
can be used to design sparsifying transform. Multivariate data analysis meth-
ods such as independent component analysis (ICA) [9] might be used to solve
BD problem as a blind source separation (BSS) problem. The unknown blurring
process is absorbed into what is known as a mixing matrix. The advantage of
the ICA approach would be that no a priori knowledge about the origin and size
of the support of the blurring kernel is required. However, multi-channel image
required by ICA is not always available. Even if it is, it would require the blur-
ring kernel to be non-stationary, which is true for blur caused by atmospheric
turbulence, but it is not true for out-of-focus blur for example. Therefore, an ap-
proach to single frame multi-channel blind deconvolution that requires minimum
of a priori information about blurring process and original image would be of
great interest.

Single frame multi-channel representation was proposed in [10]. It was based
on a bank of 2 − D Gabor filters [11] used due to their ability to realize multi-
channel filtering. ICA algorithms have been applied in [10] to multichannel image
in order to extract the source image and two spatial derivatives along x and y
directions. There is however critical condition that source image and their spa-
tial derivatives must be statistically independent. In general this is not true as
already observed in [11]. Consequently, quality of the image restoration by pro-
posed single frame multi-channel approach depends on how well each particular
image satisfies statistical independence assumption. Therefore, an extension of
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the ICA approach formulated in [10] is given in [7] where it has been shown
that single frame multichannel BD can be formulated as NMF problem with
sparseness constraint imposed on the unknown mixing vector. Consequently, no
a priori knowledge about either the origin or the size of the blurring process is
required. Because NMF is deterministic approach no a priori information about
the statistical nature of the source image is required as well. The rest of the pa-
per is organized as follows. We briefly introduce in section 2 blind R-L algorithm
[5][6], ICA approach to single frame multichannel BD [10] and NMF approach
to single frame multichannel BD with sparseness constraint [7]. Comparative
experimental performance evaluation is given in section 3 for images degraded
by out-of-focus blurring process. Conclusion is presented in section 4.

2 Basic Overview of the Compared Blind Image
Deconvolution Algorithms

Before proceeding to description of non-bind and blind image deconvolution
algorithms, we shall rewrite image observation model given in Eq.1 in the lexi-
cographical notation:

g = Hf (2)

where g, fεZMN
0+ , HεRMNxMN

0+ assuming image dimensionality of MxN pixels.

Observed image vector g and original image vector f are obtained by the row
stacking procedure. The matrix H is block-circulant matrix, [13], and it absorbs
into itself the blurring kernel h(s, t) assuming at least size of it, K, to be known.

2.1 Blind Richardson-Lucy Algorithm

The blind R-L method [5] [6] follows from the non-blind version of the R-L
method [3] [4] which itself follows from Bayesian paradigm approach to statisti-
cal inference which dictates that inference about true image f should be based
on conditional probability P (f/g) given by the Bayes rule. The prior knowl-
edge about image degradation process is incorporated in conditional probability
P (g/f) and prior probability P (f). In low light level imaging such as in as-
tronomy, microscopy and the night vision imaging, the appropriate choice for
P (g/f) is Poisson distribution [14]. In the high-brightness conditions the Pois-
son prior should be replaced by the Gaussian one. The R-L algorithm follows
when non-informative prior is chosen for P (f) i.e. P (f) ≺ const. The algorithm
is obtained through the maximization of the log-likelihood function:

f̂ = argmax(logP (g/f)) (3)

The EM algorithm is employed to solve problem in Eq.3 yielding numerically
efficient multiplicative iterative algorithm known as blind R-L algorithm [5]:

Ĥ
(k)
i+1 = [(f (k−1))T (gØ(Ĥ(k)

i f (k−1)))]Ĥ(k)
i (4)



Non-negative Matrix Factorization Approach to Blind Image Deconvolution 969

f̂
(k+1)
i+1 = [(f (k))T

⊗
(HT (gØ(Hf̂

(k)
i f (k−1)))]Ø(ĤT 1) (5)

where index i is used to denote internal iteration of the blind R-L algorithm and
k denotes main iteration index and 1 denotes a column vector with all entries
equal to 1. In Eq.4, symbol ′Ø′ denotes component-wise division, and in Eq.5
symbol ′ ⊗′ denotes component-wise multiplication.

Multiplicative update rules in Eq.4 and Eq.5, ensure positivity of both blurring
kernel and reconstructed image automatically. Problem with blind R-L algorithm
is that support size K of the blurring kernel must be known or estimated by some
method. This knowledge is not always available a priori. This is especially true
for non-stationary degradation process such as atmospheric turbulence where
the strength of the turbulence, measured by the parameter called scintillation
index, will strongly influence the size of the blur.

2.2 ICA Approach to Single Frame Multichannel BD (SFMICA)

Single frame multi-channel representation was proposed in [10]. It was based on
a bank of 2-D Gabor filters [11] used due to their ability to realize multi-channel
filtering and decomposing an input image into sparse images containing intensity
variation over narrow range of frequency and orientation. Multichannel version
of degraded image is shown to be [10]:

G =

⎛

⎜⎜⎝

gT

gT
1
...
gT

L

⎞

⎟⎟⎠ ∼=

⎛

⎜⎜⎝

a01 a02 a03
a11 a12 a13
... ... ...

aL1 aL2 aL3

⎞

⎟⎟⎠

⎛

⎝
fT

fT
x

fT
y

⎞

⎠ = AF (6)

where images gl, l = 1, .., L, are produced by Gabor filters, f represents source
image and fx and fy represent spatial derivatives along x and y directions re-
spectively.

The used Gabor filters had the following real and imaginary respectively:

R(x, y) = G(x, y) ∗ cos(
π

σ
ϕ(x, y))

I(x, y) = G(x, y) ∗ sin(
π

σ
ϕ(x, y))

where

G(x, y) = exp

(
−x2 + y2

2σ2

)
(7)

ϕ(x, y) = x.cos(
π

4
k) + y.sin(

π

4
k) with k = 0, 1, 2, 3. (8)

The parameter k regulates one of the four spatial orientations. The parameter
σ =

√
2n with n = 1, 2 regulates one of the two spatial frequencies. Consequently,

in SFMICA and later on SFMNMF BD algorithms 16 Gabor filters ( 8 for real
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and 8 for imaginary part with 4 spatial orientations and 2 spatial frequencies )
were used to obtain multichannel version of the observed image.

The unknown elements alm of the mixing matrix absorb the blurring kernel
assuming no a priori information about it including its size. The ICA algorithm
has been applied in [10] to image model Eq.6 in order to extract the source image
f . There is however critical condition for the source image that must hold in order
to ICA algorithm to work. Image f and its spatial derivatives fx and fy must
be statistically independent. This is in general not true as already observed in
[12]. Consequently, quality of the restored image by proposed single frame multi-
channel approach depends on how well each particular image satisfies statistical
independence assumption.

2.3 NMF Approach to Single Frame Multichannel BD (SFMNMF)

It was further shown in [7] that single frame multichannel blind deconvolution
can be represented as:

G =

⎛

⎜⎜⎝

gT

gT
1
...
gT

L

⎞

⎟⎟⎠ ∼=

⎛

⎜⎜⎝

ã01
ã11
...

ãL1

⎞

⎟⎟⎠
(
fT

)
= ãfT (9)

where images gl, l = 1, ..., L, were again produced by Gabor filters. Coefficients of
the unknown blurring kernel were absorbed into coefficients ãlm of the unknown
mixing vector ã. Image model Eq.9 suggests the existence of only one source
image f in the linear image observation model. Spatially oriented Gabor filters
produce images with sparse (super-Gaussian) distributions. If the source image
f is sub-Gaussian, which is the case for natural images, an unknown mixing
vector must be sparse. Because ã and f are non-negative, this enabled in [7]
to formulate blind deconvolution problem as an NMF problem with sparseness
constraint imposed on the mixing vector [15]:

(̂̃a, f̂) = argmin ‖ G − ̂̃af̂T ‖2

subject to sparseness(ã) = Sa
(10)

where ’hat’ denotes estimate and the measure of sparseness Sa is number between
0 and 1, with 1 meaning that all components of vector ã are small and 0 meaning
the opposite [15].

A sparseness constraint Sa must be defined for NMF algorithm. In order to
obtain truly unsupervised image restoration algorithm, Sa is estimated from
the multichannel image G as a ratio between number of sparse images Ls and
overall number of images L + 1. To estimate Ls, kurtosis of each image in G is
estimated. Image gl is considered to be sparse if κ(gl) > δ. In our experiments
we set δ = 0.2.

The SFMNMF algorithm is defined without using any a priori information
about the blurring process or original image. Because this is a deterministic
approach, no assumption about statistical nature of either blur or source image
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is required. Only sparseness constraint must be imposed on the unknown mixing
vector ã. First coefficient in ã can initially be approximated by 1, because it
represents original blurring process. The rest of the coefficients can initially be
set to 0 because they correspond to sparse images. Therefore initial value of the
unknown mixing vector is set to ã(0) = [1 0 0 ... 0]T .

The SFNMF approach to BD does not have to perform source separation
due to the fact that multichannel version G of the observed image g can be
approximated by the product of the unknown mixing vector and source image
f as shown by Eq.9. Because there is only source image present in the observed
image model, there is no need for source separation. This is the main difference
with respect to the approach proposed in [10] and by Eq.6. However, it is still
not clear at the moment how to apply NMF approach to BD when source image
f is sparse. Because the multichannel image G is sparse and original image f
is also sparse, it is not obvious in this case whether sparseness constraint must
be imposed on the source image f only or it should be imposed on both source
image f and unknown mixing vector.

3 Experimental Results

Fig.1 left shows blurred image obtained by digital camera in manually de-focused
mode. Fig.1 right shows image reconstructed by SFNMF algorithm. Image recon-
structed by SFMICA algorithm is shown in Fig.2 left, where FastICA algorithm
with tanh nonlinearity was used. Fig.2 right shows image restored by the blind R-
L algorithm after 5 iterations with the circular blurring kernel and radius of R = 3
pixels. Because the blurred image, Fig.1, was not highly de-focused blind R-L al-
gorithm with kernel size of R = 3 pixels produced good result but still inferior to
this produced by SFMNMF algorithm shown in Fig. 1 right. Because the size of
the blurring kernel must be known a priori for R-L algorithm, the algorithm had
to be run several times with the various values for the radius R and then the value

Fig. 1. (left) Image degraded by out-of-focus blur obtained by digital camera in man-
ually de-focused mode; (right) Image reconstructed by SFMNMF algorithm
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Fig. 2. (left) Image reconstructed by SFMICA algorithm; (right) Image reconstructed
by blind Richardson-Lucy algorithm after 5 iterations with the circular blurring kernel
with radius of R = 3

that corresponded to the best quality of the restored image was chosen. This was
very time consuming process. In addition to that, it is known that either underes-
timate or overestimate of the size of the blurring kernel leads to severe distortions
of the images reconstructed by blind R-L algorithm and other blind algorithms
of the similar type [1]. There are no such problem with the SFMNMF algorithm.
Image restored by the SFMICA algorithm has poor quality due to the fact that
assumption about statistical independence between source image f and its spatial
derivatives fx and fy does not hold. The SFMNMF algorithm eliminates all these
problems due to the fact that no a priori knowledge about the size of the blurring
kernel or statistical nature of the source image is required.

4 Conclusion

An experimental comparative performance evaluation between novel single frame
multichannel blind deconvolution algorithm based on non-negative matrix fac-
torization with sparseness constraint (SFMNMF) and other representative blind
image deconvolution algorithms was presented. Image deconvolution methods
were compared on image degraded by out-of-focus blur. It has been demonstrated
that novel blind image deconvolution algorithm outperforms other methods. We
suggest that this result is due to the characteristic of the SFMNMF algorithm
which does not require any a priori information about the blurring kernel and
original image.
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