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Abstract. We propose a method for solving linear space-time variant blind 
source separation (BSS) problem with additive noise, x=As+n, on the “pixel-
by-pixel” basis i.e. assuming that unknown mixing matrix is different for every 
space or time location. Solution corresponds with the isothermal-To equilibrium 

of the free energy H =U-ToS contrast function where U represents the in-

put/output energy exchange and S represents the Shannon entropy. Solution of 
the inhomogeneous equation (data model with additive noise) is obtained by 
augmenting inhomogeneous equation into homogeneous “noise free” equation. 
Consequently, data model with additive noise can be solved by algorithm for 
the noise free space-time variant BSS problems, [1],[2]. We demonstrate the al-
gorithm capability to perfectly recover images from the space variant mixture of 
two images with additive noise. 

1   Introduction 

The BSS problem with additive noise and positivity constraints is defined with 

( ) ( ) ( ) ( )r r r r= +x A s n  (1) 

where r is generalized coordinate and N N N, R , R ×∈ ∈x s,n A  represent data vector, 
source vector, additive noise vector and mixing matrix respectively, N represents 
problem dimension and R is a set of real numbers. We have presented in [1], [2], [3], 
[4] algorithm that solves the BSS problem without additive noise on the “pixel-by- 
pixel” basis. Hence, we may assume unknown mixing matrix to be space variant. In 
this paper we formulate an extension of the algorithm presented in [1],[2] to treat the 
BSS problems with additive noise. Because we have focused our attention on imaging 
applications the positivity constraints were imposed on the data vector, source vector, 

noise vector and mixing matrix as N N N
0 0, R , R+ + ×∈ ∈x s,n A  where 0R+  is a set of 

positive real numbers including zero. In real world applications such as telescope 
images in astronomy or remotely sensed images the pixel values correspond to inten-
sities and must be positive, [1],[2],[3],[9],[10],[11]. Also mixing matrix itself must be 
positive if it for example represents point spread function of an imaging system, [13] 
[16], or spectral reflectance matrix in remote sensing, [3],[11]. Standard BSS ap-
proaches, [5],[6],[7],[8], do not take into account these positivity constraints and that 
can lead to reconstructed images that have areas of negative intensity. The so-called 
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non-negative ICA methods that explicitly take into account positivity constraints are 
described in [9],[10]. Like other ICA methods they are probabilistic methods and rely 
on the priors for the source pixels to be mixture of Laplacians with high probability 
for positive values around zero and zero probability for the negative values. These 
probabilistic assumptions implicitly assume that unknown mixing matrix is space 
invariant. We will show how it is possible to apply the same BSS “single-pixel” de-
terministic method developed for noise free data model, [1],[2] to treat the model with 
additive noise (1) by augmenting dimensionality of the data model twice. Conse-
quently deterministic algorithm can be used for solving blind space-time variant linear 
imaging problem with additive noise by selecting among multiple possible solutions 
the one at the isothermal-To equilibrium of the free energy H = U - To S where U 
represents the input/output energy exchange and S represents the Shannon entropy. 
Derivation of the algorithm is given in Section 2. We demonstrate the algorithm ca-
pability to perfectly recover images from the synthetic space variant linear mixture of 
two images with additive noise in Section 3. Conclusion is given in Section 4. 

2   The Algorithm  

The inhomogeneous BSS problem is defined by (1). Note that such formulation al-
lows the mixing matrix A(r) to be space-time variant. The generalized coordinate r 
can for example represent pixel location r(p,q) in the case of multispectral image 
[2],[4] or image sequence [16]. We shall keep argument r in the subsequent deriva-
tions in order to indicate that BSS problem is formulated on the “pixel-by-pixel” ba-
sis.  In order to illustrate how to treat space (time)-variant BSS problem with additive 
noise (1) we shall assume that n(r) varies extremely rapidly compared with the varia-
tions of both A(r) and s(r) i.e.  

( , ) ( , )
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Eq.(2) is usual assumption in solving Langevin’s equation that describes the 
Brownian motion of a free particle, [17]. Under assumptions (2) data model (1) can be 
written in the augmented form that assumes two time measurements as 
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where I is N-dimensional identity matrix and ( , , )r t t∆D is a diagonal matrix defined 

with 
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and t and t+∆t denote two time points at which the measurements are taken. In order 
to ensure that two sets of measurements are linearly independent the following must 
hold 

( , )
2

( , ) ( , , )

r t
rank N

r t r t t

  
=  ∆  

A I
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(5a) 

which is fulfilled when  

i in ( , ) n ( , ) 1, ...,r t t r t i N+ ∆ ≠ =
 

(5b) 

i.e. noise realizations must be different which is consistent with assumptions (2). In 
order to fulfill conditions (5) the second measurement at each data vector component 
at the time point t+∆t must be repeated until the following condition is satisfied  

( , ) ( , ) 1,..,i ix r t x r t t i N≠ + ∆ =  (5c) 

because by assumption both mixing matrix and source vector remain constant during 
measurements and according to the augmented data model (3) the only contribution 
that can change data vector component ( , )ix r t t+ ∆ can come from the correspond-

ing noise component ( )in t t+ ∆ . If due to the positivity reasons the mixing matrix is 
parameterized in terms of the mixing angles [1],[2],[3],[4] the augmented data model 
(3) can be rewritten on the component level for the 2-dimensional case as 
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In order to be consistent with data model (1)/(3) the following must hold 
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The augmented data model (3)/(6) can now be solved using the algorithm developed 
for the noise free model [1],[2]. The price that has to be paid to solve the problem 
with additive noise is the increased number of unknowns. We show on Fig. 1 the 
vector diagram representation of the data model with additive noise (1) where the 

mixing matrix column vectors are T
1 11 11[cos ( , ) sin ( , )]r t r tθ θ=a  and 

T
2 12 12[cos ( , ) sin ( , )]r t r tθ θ=a and x� represents the noise free part of the data 

vector (1). 
It has been shown in [1],[2] that solution of the noise free blind space-variant im-

aging problem can be found from the minimum of the Helmholtz free energy contrast 
function 

( )T , , , ,
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= =
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(9) 

where S in (9) represents Shannon entropy approximated by 
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Fig. 1. Vector diagram representation of the 2-D data model (1). 

where KB represents Boltzmann’s constant and T0 represents temperature. They are 

introduced in (9) due to the dimensionality reasons. Also in (9) s  represents L1 norm 

of the source vector s , ,
i is s= s is the i-th component of the normalized source 

vector and W is NxN matrix that approximates inverse of the mixing matrix i.e. 
1−≅W A and is the vector of Lagrange multipliers. T ,U  = − �� � �  in (9) 

represents a linear error energy term and enables generalization of the Shannon 
maximum entropy S of the closed system to an open system having non-zero input-
output energy exchange U. To solve the BSS imaging problem with the positivity 
constraints we formulate an algorithm, [14],[1],[15], that looks for the global mini-
mum of the error energy function 

( ) ( ) ( )T** , ,, arg min= − −W s Wx s s Wx s s
 

(11) 

Either deterministic search or stochastic simulated annealing based search, 
[1],[14],[15], over the phase space could be used in solving optimization problem 

(11). For a given doublet ( )(l)( ) ,lW s , where l denotes iteration index in a solution of 

problem (11), the MaxEnt-like algorithm, [1],[2], computes the most probable solu-

tion for the vector of source probabilities, ,( )ls  
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with the Lagrange multipliers learning rule given with [2] as 
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where k stands for the iteration index related to the Lagrange multipliers learning rule, 
l stands for the iteration index related to the iterative solution of the optimization 
problem (11) and iw represents the i-th row of the de-mixing matrix W. 

3   Simulation Results 

To model positivity constraints we have parameterized mixing matrix in terms of the 
mixing angles as in (6), [1],[2],[3],[4]. Such parameterization reduces a search in 
higher dimensional parameter space to the first quadrant only and in that sense is an 
economical representation from the computational complexity standpoint. We illus-
trate deterministic BSS algorithm on the N=2 example of (3). If according to (6) we 
choose for the particular single pixel case the mixing angles to be θ11=50, θ12=10, 

θ13=690, θ14=600 the model (6) becomes 

 350.7711 540.9962 0.9998 1 0

 100.3941 0.0872 0.0175 0 1 154

0.9962 0.9998 2.6051 0 268.4710 143

0.0872 0.0175 0 1.7321 107.1244 43

    
    
    =
    
    
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(14) 

Fig. 2 shows logarithm of the inverse of the error energy function (11) as a function of 
angles 11 14,θ θ for the given model (14) when the mixing angles 12θ and 13θ were kept 
at the true values. Note the very sharp peak that correspond with the true solution 

0 0
11 145 , 60θ θ= = .   

 
Fig. 2. 2-D plot of the logarithm of the inverse of the error energy (11) in the θ11 - θ14 domain 

for data model (14). The other two mixing angles 12θ and 13θ were assumed to be known.  

We now mix two images by mixing matrix that has been changed from pixel to 
pixel in order to simulate the space variant imaging problem with additive noise, (1). 
Angles 11θ  and 12θ are changed column wise according to Fig. 3 i.e. for every column 

index angles were changed for 10 and mutual distance between them was 40. Accord-
ing to the augmented data model (3)/(6) two measurements per each data channel 
were assumed to be performed. The angles 13θ and 14θ , that model the additive noise 
contribution, were generated randomly. On that way realization of the noise vector at 
time t t+ ∆ was independent from the realization at time t.  
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Fig. 3. Change of the mixing angles vs. column index. Solid line – the angle 11θ ; dashed line – 

the angle 12θ for the mixture given on Fig. 4. 

Fig. 4 shows from left to right: two source images, two mixed images without addi-
tive noise, two mixed images with additive noise at the time point t, two mixed im-
ages with additive noise at the time point t t+ ∆ and two separated images obtained 
by using the deterministic BSS algorithm (9)-(13) and the augmented data model 
(3)/(6). Thanks to the fact that presented algorithm solves the augmented BSS prob-
lem on the “pixel-by-pixel” basis the recovery was perfect although the mixing matrix 
was space variant and the additive noise was present in the model. Results shown on 
Fig. 4 are obtained by employing exhaustive search in the mixing angle parameter 
domain. However, another computationally more efficient strategy would be to em-
ploy simulated annealing optimization, [1],[14],[15], to look for global minimum of 
the error energy function (11). We compare our result with two representative ICA 
methods that were applied on the same mixture shown on Fig. 4. Fig. 5 shows from 
left to right separation results obtained by the Infomax algorithm, [6], and by the 
fourth-order cumulant based JADE algorithm. Due to the space variant nature of the 
mixing matrix both algorithms fail to recover the original images. 

 

Fig. 4. From left to right: two source images, two mixed images without additive noise, two 
mixed images with additive noise at the time point t, two mixed images with additive noise at 
the time point t t+ ∆  and two separated images obtained by using the deterministic BSS algo-
rithm (9)-(13) and the augmented data model (3)/(6).  
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Fig. 5. Source images recovered from the space variant mixture shown on Fig. 4. by the In-
fomax algorithm, [6], (left) and by the JADE algorithm, [8], (right).  

4   Conclusion 

The algorithm capable of solving blind linear space-time variant imaging problem 
with additive noise on the “pixel-by-pixel” basis has been presented. This is accom-
plished by seeking the global minimum of the free energy contrast function and com-
puting for each pixel the most probable value of the source vector under given macro-
scopic constraints defined by the data vector. In order to cope with additive noise 
standard N-dimensional data model has been augmented by one additional measure-
ment per each dimension of the data vector generating the 2N-dimenisonal “noise 
free” data model where the additive noise is treated as a source in the extended source 
vector. It is shown how multiple measurements can be made linearly independent by 
repeating measurement per each data channel until data channel has different values 
at the two corresponding time points. The algorithm performance has been demon-
strated on the perfect recovery of images from synthetic space variant linear mixture 
of two images with additive noise. Due to the space variant nature of the mixing ma-
trix the standard ICA algorithms failed to recover the unknown source images. 
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