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Abstract. We propose a novel approach to blind signal deconvolution. It is 
based on the approximation of the source signal by Taylor series expansion and 
use of a filter bank-like transform to obtain multichannel representation of the 
observed signal. Currently, as an ad hoc choice a wavelet packets filter bank 
has been used for that purpose. This leads to multi-channel instantaneous linear 
mixture model (LMM) of the observed signal and its temporal derivatives 
converting single channel blind deconvolution (BD) problem into instantaneous 
blind source separation (BSS) problem with statistically dependent sources. The 
source signal is recovered provided it is a non-Gaussian, non-stationary and 
non- independent identically distributed (i.i.d.) process. The important property 
of the proposed approach is that order of the channel filter does not have to be 
known or estimated. We demonstrate viability of the proposed concept by blind 
deconvolution of the speech and music signals passed through a linear low-pass 
channel.  

Keywords: Blind deconvolution, Blind source separation, Independent 
component analysis, Instantaneous mixture model, Statistically dependent 
sources. 

1   Introduction 

The problem of single channel BD is to reconstruct the original signal from its filtered 
version also termed observed signal, where only observed signal is available. 
Neglecting the noise term the process is modeled as a convolution of the unknown 
causal channel impulse response h(t) with an original source signal s(t) as: 

   ( ) ( ) ( )0
Tx t h s tτ ττ= −∑ =         (1) 

where T denotes the order of the channel filter. Standard algorithms for blind 
deconvolution are capable of recovering source signal s(t) based on the observed 
signal x(t) only, provided that s(t) is a non-Gaussian i.i.d. process, [1]. We shall 
demonstrate here that proposed concept is capable of blind deconvolution of signals 
with colored statistics such as speech. The original signal s(t-τ) can be approximated 
by Taylor series expansion around s(t) giving: 
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where ( ) ( )ns t  denotes n-th order temporal derivative of s(t) and H.O.T. denotes 

higher-order-terms. It is assumed that (0) ( ) ( )s t s t= . Inserting (2) into (1) yields: 
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of the approximations (2) and (3) depends on the number of terms in the Taylor series 
expansion of the source signal s(t). However, x(t) in (3) can be also obtained as an 
inverse Fourier transform of the expression ( ) ( )H j S jω ω  where ( )H jω  and 

( )S jω respectively represent Fourier transforms of the channel impulse response and 
source signal. Owing to the fact that h(t) is an aperiodic sequence ( )H jω  is obtained 
as 
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that yields 
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Evidently, number of terms in the expansions (4) and (5) depends on the property of 
the channel: size of the support T of the impulse response h(t), but also on the 
property of the signal: size of its support Ω in the frequency domain i.e. ( ) 0S jω ≅  

for ω >Ω . For example, for either T=0 or Ω =0 relation (3) and inverse Fourier 

transform of (5) yield the same result. Thus, channels with the maximal delay that is 
small relative to the coherence time of the signal, i.e. T<<(2π/ Ω), will demand small 
number of terms, N, in the approximation (3) and vice versa.  

Taylor series expansion has already been used in [2]-[7] to convert multichannel 
convolutive BSS problem into instantaneous BSS problem. Two cases can be 
distinguished. In [2]-[5] authors assumed sensor array that is smallest than the shortest 
wavelength of the sources. This allows to keep only the first order derivative in the 
Taylor series expansion in Eq.(2). This is due to the fact that delay is defined relative 
to the center of the array and is therefore always smaller than the coherence time of 
the sources. Under this assumption another array that calculates spatial gradients of 
the observed signal converts the convolutive BSS problem into instantaneous BSS 
problem with the first order temporal derivatives of the source signals acting as 
sources. Once they are recovered by instantaneous ICA, the true sources are obtained 
by their temporal integration. In [6] and [7] Taylor series expansion is also used to 
convert multichannel convolutive BSS problem into instantaneous BSS problem. In 
[6] it is assumed that delay T is smaller than the coherence time of the source signals 
which allows to use only first order temporal derivative in the Taylor series expansion 
Eq.(2). Assuming that signal and its first order derivative are statistically independent, 
that is actually proven for stationary signals only [8][9], the instantaneous BSS 
problem is solved by some of the standard ICA methods. However, assumption that 
delay is smaller than the coherence time of the source signals is too restrictive for 
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realistic reverberant environments. That was realized in [7]. In that case higher order 
temporal derivatives exist in the Taylor series expansion Eq.(2), and they are 
statistically dependent. An algorithm is derived in [7] for grouping dependent sources 
and extracting source signals from each group.  

The algorithm proposed here solves single channel BD problem by converting it 
into instantaneous BSS problem with statistically dependent sources. No special 
assumption is made on the amount of delay. Thus, higher order derivatives in the 
Taylor series expansion are allowed. The problem of their statistical dependence is 
solved by means of independence enhancement technique, which is based on 
innovations of the multichannel version of the observed signal. However, another 
transform such as high-pass filtering, [10], may be used for independence 
enhancement purpose as well.  

A BD capable of recovering temporally dependent signals is derived in [11]. It is 
based on the measure of temporal predictability and argumentation that an output of 
the low-pass channel is smoother and therefore more predictable than the input to the 
channel. Thus, the BD problem is formulated as temporal predictability minimization 
problem and numerically solved as general eigenvalue problem. Equivalent solution 
of the instantaneous BSS problem by looking for maximum of the temporal 
predictability is defined in [12]. In relation to the proposed Taylor series expansion 
BD method, the temporal predictability approach suffers from the fact that order of 
the deconvolution filter has to be defined based on some a priori knowledge. Because 
the order of the generalized eigenvalue problem equals the order of the deconvolution 
filter the temporal predictability based algorithm can become numerically very 
demanding. Temporal predictability itself is defined for deconvolved signal 
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where V reflects the extent to which y(t) is predicted by long term moving average 
( )y t  and U reflects the extent to which y(t) is predicted by short term moving average 
( )y t% , [12][11].  

2   Formulation of the Instantaneous Linear Mixture Model 

We now apply a filter bank-like transform on (3) in order to obtain a multichannel 
representation, x, of the observed signal x(t). It is the matter of further analysis to find 
out which type of the transform is optimal. Here, in order to illustrate the concept, as 
an ad hoc choice we have used a non-decimated wavelet packets filter bank with two 
decomposition levels that results in L=6 filters. In order to have clear notation let us 
introduce x1(t)=x(t). When filters are applied on observed signal x(t) we obtain: 
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sents convolution of the appropriate l-th filter with h(t), T = T + M + 2  and M is an 
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order of the filter. Observed signal and its filtered versions can be represented in a 
form of the following instantaneous LMM: 

11 12 13 1, 1 (1)1
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where ( 1)L K+ ×∈x , ( 1) ( 1)L N+ × +∈A , ( 1)N K+ ×∈s , K represents number of samples and N 

represents an unknown number of temporal derivatives of the source signal. We have 
used inspection of the singular values of the sample data covariance 
matrix ( ) Tˆ 1 K=xxR xx  to estimate overall number of sources, N+1. ICA algorithms can 

be applied to the LMM given by Eq. (8) in order to extract the source signal s(t), with 
the benefits that the order T of the channel impulse response h(t) is absorbed in the 
mixing matrix A and does not have to be known or estimated. The source signals 
have to be non-Gaussain and statistically independent but not i.i.d. This has important 
practical consequence because BD of signals with colored statistics is possible. This is 
demonstrated in the section 4 where simulation results are presented.   

3   Statistical Properties of the Source Signal: Implications to 
Deconvolution Results 

We reproduce here results and conditions from [8][14] necessary for the stochastic 
differentiability of the random source signal s(t). We emphasize that conclusions 
drawn from this analysis can in principle be generalized to blind image deconvolution 
problem due to the existence of the space filling curves (Peano-Hillbert curves) that 
enable 2D to 1D mapping and vice versa by preserving local or neighborhood 
statistics [13]. First we present two important results that relate (non-)stationarity and 
linear signal representation. If the signal s(t) is stationary it can be represented by the 
linear time invariant generative model: 
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where ε(t) is an i.i.d. driving signal. If the signal s(t) is non-stationary the linear signal 
model becomes time variant: 
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First order derivative (1) ( )s t of the stationary signal s(t) is defined if the first order 

derivative of the autocorrelation function at the time lag zero is zero i.e. (1) (0) 0sρ = , 

[8]. (1) (0)sρ  is always zero for non-i.i.d. process due to symmetry of ( )sρ τ . According 

to [8] the stronger condition for the existence of (1) ( )s t  is (2) (0) 0sρ ≠ . If this is true then 

from [9] it is also true (2) ( ) 0,sρ τ τ≠ ∀ . Analogously, condition for existence of (2) ( )s t  

R R R
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assumes (3) (0) 0sρ ≠ . If the first order derivative of the stationary signal s(t) exists  

then [8]: 

   (1)( ) ( ) 0E s t s t⎡ ⎤ =⎣ ⎦        (11) 

where E represents mathematical expectation. We now interpret these results for the 
three types of the source signal s(t).  

Source signal is a stationary i.i.d. process. In this case a condition (1) (0) 0sρ =  is not 

fulfilled. The reason is that autocorrelation function of the i.i.d. process is delta function 
i.e. 2( )s s τρ τ σ δ= . Therefore, Taylor series expansion (2) for such a signal does not exist. 

Consequently, the LMM model (8) also does not exist. Thus, i.i.d. signals can not be 
blindly deconvolved by the proposed algorithm. However, this is not a drawback since a 
number of blind deconvolution methods solve this problem, [1][15].  

Source signal is a stationary non-i.i.d. process. As it has been said such signal has 
first order derivative. Under previously defined conditions second order derivative 
also exists. However, we have to emphasize that stationary signals, that are 
represented by linear time invariant generative signal model (9), can also not be 
blindly deconvoloved by the proposed algorithm. Assuming that b(t) represents 
impulse response of the linear time invariant signal generative model, it is impossible 
to distinguish the channel filter h(t) from the linear convolution of the channel filter 
and modeling filter h(t)*b(t). Thus, proposed algorithm will deconvolve the i.i.d. 
driving sequence ε(t), i.e. the algorithm will have the whitening effect on the 
stationary non-i.i.d. signal. 

Source signal is a non-stationary and non-i.i.d. process. Although, conditions 
required for stochastic differentiability are derived for stationary signals only we can 
use the linear generative model of the non-stationary signal (10) and derive 
derivatives of the non-stationary signal s(t) provided that time varying filter b(t,ν) is 
stationary with respect to the independent variable t. In such a case we define:  
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where ( )( )( ) ( , ) ,m m mb t d b t dtν ν= . Thus, Taylor series expansion (2) and the LMM (8) 

do exist. However, we can not make conclusion regarding statistical independence 
between s(t), (1) ( )s t , (2) ( )s t , etc, as it was the case with a stationary signal, (11). Thus, 
it is justified to use some of the methods derived to enhance statistical independence 
between the hidden variables in the LMM (8). One of them that is computationally 
efficient is based on innovations, [16]. It is known that innovations are more non-
Gaussian and more statistically independent than original processes. These conditions 
are of essential importance for the success of the ICA algorithms. Innovation process 
of the hidden components of s is  

  { }(1) (2)( ) ( ) ( ) , ( 1), ( 2),... , , ,...n n n n n ns t s t E s t t s t s t s s s s⎡ ⎤= − − − ∈⎣ ⎦%    (13) 

where the second term in Eq.(13) represents conditional expectation. If both sides of 
(13) are multiplied by the unknown basis matrix A we obtain 

    ( ) ( )t t=x As%%       (14) 
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Eq.(14) implies that innovations preserve the basis matrix A. The innovations based 
multichannel model (14) enables more accurate estimation of the mixing matrix A by 
means of ICA algorithms, than when ICA algorithms are applied directly on the 
LMM (8). The expectation is in practice replaced by the autoregressive (AR) model 
of the finite order yielding: 

 
0

( ) ( )
J

l j lj
x t g x t j

=
= −∑%       (15) 

where J represents order of the AR model and g0=1. The coefficients of the 
prediction-error filter gj are efficiently estimated by means of Levinson’s algorithm, 
[17]. We identify for the LMM model (8) L+1 filters and obtain the prediction-error 
filter in (15) as an average of all identified filters. Hidden variables are then recovered 
by applying the Moor-Penrose pseudoinverse A† on the originally observed process x. 
The temporal predictability measure Eq.(6) could be used as a criteria for the 
selection of the recovered source signal ˆ( )s t after solution of BSS problem (8).  

4   Simulation Results 

We have conducted the following experiments: BD of the female speech signal and 
BD of the choir singing passed through a lowpass channels. 2nd order Butterworth 
lowpass filter has been used to model the channel response. Figure 1 shows one 
hundred time points of the true female speech source signal, signal recovered by 
temporal predictability based algorithm, [12] and signal recovered by the proposed 
algorithm. For temporal predictability based algorithm we have shown the best result 
obtained after experimenting with several values for the order of the deconvolution 
filter. Normalized correlation coefficients between the source and mixed signal, 
source signal and signal recovered by the proposed algorithm, and source signal and 
 

 

Fig. 1. One hundred time samples of the source signal (solid), signal recovered by temporal 
predictability based algorithm (dashed), [12], and proposed algorithm based on the Taylor 
series expansion (dotted) 
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Fig. 2. From top to bottom: spectrograms of the source signal, observed signal, signal 
recovered by temporal predictability based algorithm, [12], and signal recovered by the 
proposed algorithm 

signal recovered by algorithm [12] are respectively: 0.71774, 0.88658 and 0.75476. 
Spectrograms of these signals are shown in Figure 2. Regarding the choir-singing 
signal the normalized correlation coefficients in the same order as before were 
0.5276, 0.86152 and 0.84015. 

5   Conclusion 

Novel single channel BD algorithm has been formulated. It is based on the 
approximation of the source signal by Taylor series expansion and use of a filter 
bank-like transform to yield a multichannel representation of the observed single-
sensor signal. This yields instantaneous LMM and converts the single channel BD 
problem into instantaneous BSS problem with statistically dependent sources with the 
important property that channel order does not have to be known. It has been shown 
that signal amenable for BD by proposed method must be non-stationary and non-
i.i.d. non-Gaussian process. As yet unresolved issues remain: optimality of the linear 
transforms used to yield a multivariate representation of the observed signal and 
efficiency of the linear transforms used to enhance statistical independence among 
hidden variables of the LMM. The later issue might affect performance of the 
proposed algorithm when degradations are strong as it can be expected for real 
acoustic channels.  
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