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ABSTRACT 
Tensor decomposition approach to feature extraction from 

one-dimensional data samples is presented. One-

dimensional data samples are transformed into matrices of 

appropriate dimensions that are further concatenated into 

a third order tensor. This tensor is factorized according to 

the Tucker-2 model by means of the higher-order-

orthogonal iteration (HOOI) algorithm. Derived method is 

validated on publicly available and well known datasets 

comprised of low-resolution mass spectra of cancerous 

and non-cancerous samples related to ovarian and prostate 

cancers. The method  respectively achieved, in 200 

independent two-fold cross-validations, average 

sensitivity of 96.8% (sd 2.9%) and 99.6% (sd 1.2%) and 

average specificity of 95.4% (sd 3.5%) and 98.7% (sd 

2.9%). Due to the widespread significance of mass 

spectrometry for monitoring protein expression levels and 

cancer prediction it is conjectured that presented feature 

extraction scheme can be of practical importance. 

 

 

KEY WORDS 

Cancer prediction, mass spectrometry, feature extraction, 

tensor decomposition, pattern recognition. 

 

 

1. INTRODUCTION 

 

Feature extraction and selection are essential problems in 

the analysis of datasets with a large number of variables. 

Typical areas in which given problems arise include text 

mining in internet documents, combinatorial chemistry, 

proteomics, genomics and computational biology [1]. 

Extraction of suitable features is considered to have a 

major effect on classification performance, and matter 

more than the classifier used [2]. Problem of data 

overfitting arises when a large number of features and a 

relatively small number of samples are available for 

learning from data, since the classifier tunes to the 

idiosyncrasies of the training set. In this case perfect 

results can be obtained on the training data, but the trained 

classifier will generally not perform well on the test data, 

i.e. classifier exhibits poor generalization for unseen data 

samples. Decreasing number of features remedies the 

problem of data overfitting, while simultaneously 

reducing memory requirements and time needed for data 

analysis. Even training techniques that utilize 

regularization to prevent overfitting, such as support 

vector machines (SVM), benefit from dimensionality 

reduction [3]. Methods for dimensionality reduction by 

feature extraction are commonly divided into two 

approaches: feature selection and feature transformation 

[4]. Methods for feature selection do not alter original 

data, but merely select subset of the original large-scale 

dataset. Depending on the criteria used for selection, they 

can be divided into three different categories: filter, 

wrapper and embedded methods [1]. Transformation 

methods construct reduced feature set as a linear or 

nonlinear transformation of the original data. In both 

approaches, classifier is trained on the reduced feature set. 

In this paper we propose general method for feature 

extraction, based on the linear transformation constructed 

by tensor decomposition. 

 Multimodal or multi-way datasets with high 

dimensionality are often used in modern applications. Due 

to the multi-way structure, tensors are natural way for 

representing such data. Hence, tensor decompositions are 

appropriate tools for analysis of such higher-dimensional 

datasets [5], [6]. Methods for tensor decomposition are 

used in various areas, especially for supervised and 

unsupervised dimensionality reduction, classification and 

multi-way clustering [5], [6], but  also in the analysis of 

multi-spectral [7], [8], and hyper-spectral images [9]. 

Various tensor decompositions for model reduction and 

feature extraction are used for classification of different 

types of multi-way data, such as images of objects, 

handwritten digits and multi-channel EEG data [10], [11], 

as well as music genre classification [12]. 

 Original contribution of this paper is application of 

tensor representation for analysis of one-dimensional 

(one-way) data, more specific for protein expression 

patterns of cancerous and non-cancerous samples 
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acquired by the low resolution surface-enhanced laser 

desorption ionization time-of-flight (SELDI-TOF) mass 

spectrometry. For this type of data each sample is 

represented as a single vector (one-way data sample), 

containing large number (typically 5000 to 20000) mass 

to charge m/z ratios representing features or variables. 

Each sample corresponds to a single patient, so the 

number of available samples is typically rather small, 

being several orders of magnitude smaller than the 

number of variables. Thus, a method for dimensionality 

reduction is needed to obtain efficient classification on 

small number of discriminative features. Use of tensor 

decomposition for feature extraction requires one-way 

sample (vector) to be transformed onto multi-way 

structure, e.g. matrix or higher-order tensor. Standard 

approach in analysis of multispectral image using matrix 

factorization is to transform a two-way image to a vector. 

This procedure is commonly known as vectorization [13]. 

Here we use reverse procedure known as matricization to 

transform vector to matrix. Method for feature extraction 

from one-way data is demonstrated on prediction of 

prostate and ovarian cancers from mass spectra of 

biological samples. Low resolution SELDI-TOF mass 

spectra available at [14] are used for this purpose. This 

type of data has previously been used, with results 

reported in literature, so our method can be compared 

with others. Several papers address the problem of sample 

classification by the analysis of low-resolution SELDI-

TOF data, including [15], [16], [17] for prostate cancer, 

and [17]-[21] for ovarian cancer prediction. 

 

 

2. METHODS 

 

This section presents basics of the tensor notation. Brief 

overview of the Tucker model is also given followed by 

algorithms for tensor decomposition, and transformation 

of one-way samples to the format appropriate for tensor- 

based analysis. 

 

2.1 Basics of tensor algebra, Tucker model and HOOI 

algorithm 

 

Tensor or multi-way array is a generalization of the 

concepts of vector and matrix. For example, vector is a 

one-way tensor and matrix is a two-way tensor. 

Throughout this paper a vector with I elements will be 

denoted as Ia  and matrix with I1 rows and I2 columns 

as 1 2

21 2, , ,
I I

I

   A a a a . N-way tensor will be 

denoted as 1 2 NI I I  
X  with elements 

 
1 2

1 2
1 2

, , ,

, , , 1

N

N
N

I I I

i i i
i i i

x


. Each index in tensor is called way or 

mode and number of levels on certain mode is called 

dimension in that mode. This is the standard notation 

adopted in multi-way analysis [22]. Subtensor can also be 

defined as a subset of the original tensor, obtained by 

fixing certain indices. For example, for third-order tensor 

1 2 3I I I 
X  frontal, lateral and horizontal slices are 

defined as 
1 1i ::iX X , 

2:i :X  and 
1i ::X  (respectively), 

where each slice is a second order tensor, i.e. matrix. The 

product of tensor 1 2 NI I I  
X  and a matrix n nJ I

A  

along the mode-n is denoted as: 

 

1 1 1n n n NI I J I I

n
     

  Y X A  

 

which on component level is defined as: 

 

1 2 1 1 1 2

1

n

n n n N N n n

n

I

i i i j i i i i i j i

i

y x a
 



  . 

 

Multiplication of tensor and a matrix can be successively 

applied in several distinct modes ( m n ) and it can be 

shown to be commutative: 

 

   n m m n n m       X A B X B A X A B  

 

where matrices A and B have appropriate dimensions 

according to dimension of modes m and n in tensor. 

Repeated mode-n product can be expressed as: 

 

   n n n    X A B X B A  

 

where matrices A and B have appropriate dimensions. 

Multiplication of tensor X  in all modes (n=1,2,...,N) by a 

set of matrices A
(n)

 is denoted as: 

 

  (1) (2) ( )

1 2

N

N    X A X A A A  

 

and can be expressed in matrix form as: 

 

 
( )

T
( ) ( ) ( 1) ( 1) (1)

( )

n

n N n n

n

 

   

       

X A

A X A A A A
 

 

where  denotes Kronecker product and [.](n) is 

matricization of tensor in mode n [5]. 

 Basic model for decomposition of N-way tensor is 

Tucker model, that in general form can be expressed as 

[5]: 

 

 

 

1 2

1 2 1 2

1 2

(1) (2) ( )

1 1 1

(1) (2) ( )

1 2

ˆ

N

N N

N

JJ J
N

j j j j j j

j j j

N

N

g
  

 

    

    

 X a a a E

G A A A E

G A E X E

   (1) 

 

where  denotes outer product of vectors. In (1) 

1 2 NI I I  
X  denotes data tensor, 1 2 NJ J J  

G  is the 

core tensor of model with reduced dimension in each 
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mode, and ( ) ( ) ( ) ( )

1 2, , , n n

n

I Jn n n n

J

   A a a a , 

(n=1,2,...,N), are factor matrices for each mode. Tensor 

X̂  is approximation of the original data tensor X , while 

E  denotes the approximation error. For three-way tensor 

X , Tucker-3 model is represented by three factors A
(1)

, 

A
(2)

, A
(3)

, and the core tensor G  as: 

 
(1) (2) (3)

1 2 3   X G A A A .                 (2) 

 

This model can be reduced to Tucker-2 model by 

incorporating one of the factors into the core tensor, for 

example: 

 
(1) (2)

1 2  X F A A                        (3) 

 

where new core tensor is (3)

3 F G A . In this scenario 

dimensionality reduction is not performed in mode 3. 

Analogous reduction of Tucker-N to Tucker-(N-1) model 

can be done for higher order tensors by including one of 

the factors into the core tensor. Throughout this paper we 

will assume that dimensions of the core tensor are all 

equal, i.e. J1=J2=…=Jn=J, where  1min , , NJ I I , and 

only third-order tensors and their corresponding Tucker-2 

model will be used for experiments. 

 Decomposition of an N-way tensor according to the 

Tucker model (1) is in general  not unique. Therefore, it is 

necessary to impose additional constraints on the factor 

matrices and the core tensor of the model. Typically, 

tensor decomposition algorithms are obtained by 

minimizing cost function equal to some  of divergences 

between original tensor X  and its approximation by 

model tensor X̂ . By adding regularization term to the 

cost function constraints on the core tensor and the factor 

matrices can be enforced. Sparseness, nonnegativity or 

orthogonality constraints narrow down solution space and 

that often results in decomposition that is virtually unique 

[5]. Type of algorithm that can be used for decomposition  

depends on the properties of the given data tensor X , for 

example, it is meaningful to decompose data tensor 

according to Tucker model using nonnegativity 

constraints only if the elements of the data tensor are 

nonnegative. Here, decomposition according to the 

Tucker model is performed using the higher order 

orthogonal iteration (HOOI) algorithm [23]. The HOOI 

algorithm minimizes Euclidean distance between the data 

tensor X  and its Tucker model X̂ : 

 
2

ˆ ˆ
F

D    
 
X X X X  

 

where orthogonality constraints are imposed on the factor 

matrices A
(n)

 and all-orthogonality and ordering 

constraints on the corresponding core tensor in the model 

(1). Restriction to all-orthogonal core tensor means that 

all subtensors 
nj kG  and 

nj lG  must be orthogonal for all 

n, k, and l (k≠l), while ordering implies 

1 2 ...
n n n nj j j J

F F F
    G G G  for all n=1,2,...,N. 

Experimental results in section 3 were obtained using the 

implementation of the HOOI algorithm provided through 

tucker function made available as a part of N-way toolbox 

for MATLAB [24], [25]. Above mentioned 

implementation allows to fix a single mode during  

decomposition, thus enabling to decompose N-way tensor 

according to Tucker-(N-1) model. As an example, in our 

case three-way tensor can be decomposed according to 

Tucker-2 model. 

 After decomposition of the third-order data tensor, 

approximation of core tensor is calculated from the data 

X . Orthogonality of the factors obtained by HOOI 

algorithm enables calculation of the core tensor as: 

 
(1)T (2)T (3)T

1 2 3
ˆ    G X A A A                (4) 

 

in case of the Tucker-3 model (2), or as: 

 
(1)T (2)T

1 2
ˆ   F X A A                      (5) 

 

in case of the Tucker-2 model (3) that is used herein for 

decomposition of mass spectra of cancerous and non-

cancerous samples.  

 

 

2.2 Feature extraction 

 

Herein we present basic concept for feature extraction 

from two-way samples as in [10]. Let 1 2( ) I Ik 
X , 

k=1,..,K, be K given data matrices (two-way samples) 

with dimensions I1 and I2, with associated class labels 

 
1

K

k k
c


. Without loss of generality, we can assume binary 

classification problem, e.g. class labels ck are equal to 1 or 

-1. In order to construct reduced feature set for each 

sample and to reduce dimensionality joint matrix 

factorization is performed [10]: 

 
( ) (1) ( ) (2)k k TX A F A  

 

for all k. Matrices 1(1) I J
A  and 2(2) I J

A , 
nJ I , 

are two common factors used for obtaining reduced 

feature set by linear transformation of the given data 

matrices X
(k)

. Matrix ( )k J JF  represents a feature 

matrix, containing features extracted from the k-th 

training sample. It is obvious that the given I1I2 features 

are reduced to J
2
 extracted features, with typically 

J
2
I1I2. Note that, because of simplicity, we assumed 

that matrix F
(k)

 is square, although that is not necessary 

condition. Joint matrix factorization is equivalent to 

tensor decomposition of three-way tensor 1 2I I K 
X  

according to the Tucker-2 model (3) as: 
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(1) (2)

1 2  X F A A . 

 

Data matrices X
(k)

 are combined into three-way tensor X  

so that each sample X
(k)

 corresponds to k-th frontal slice 

of X . The core tensor J J K F  is composed of K 

feature matrices, where k-th frontal slice matches F
(k)

. 

After HOOI-based decomposition of tensor X  to its 

Tucker-2 model, we obtain orthogonal factor matrices A
(1)

 

and A
(2)

. Approximation of the core tensor can be 

calculated directly from the data tensor as in (5). 

Extracted features  
2( )

1

ˆ
K

k J

k
f  for each of the K 

training data samples X
(k)

 are obtained by transforming 

frontal slices ( )ˆ ˆ k

k F F  to vector representation. This 

yields set     (1) ( )

1
ˆ ˆ, , , ,K

KS c c f f  containing 

extracted features paired with labels for K training 

samples. The set S is used for training of the selected 

classifier. 

 The factor matrices A
(1)

 and A
(2)

 obtained by 

decomposition are used to extract features from unseen 

data samples that are used to validate classification 

performance. Lets us denote two-way test samples as 
1 2( ) I Im

test


X , m=1,..,M. By concatenation we form tensor 

1 2I I M

test

 
X  containing each of the M test samples as 

single frontal slice. Using orthogonal factors obtained by 

decomposition of the training data, core tensor for the test 

data is calculated as in (5): 

 
(1)T (2)T

1 2
ˆ

test test  F X A A . 

 

Vectorization of the frontal slices yields a set of extracted 

features used to validate previously trained classifier. 

 If available data samples are one-way, i.e. vectors, a 

transformation is necessary before described feature 

extraction procedure can be applied. We propose to use 

matricization to form two-way data samples. Let 
1 2( ) I Ik x  be vector for k-th sample. Then sample matrix 
1 2( ) I Ik 

X  can be formed by rearranging the elements 

of vector x
(k)

, as shown on  an example in Figure 1. 

 

 
 

Figure 1. Example of transformation of vector to matrix 

 

Mapping pattern presented in Figure 1 is not specific for 

the feature extraction scheme presented in the paper i.e. 

other arrangement of the indices in matricized version of 

the data sample are possible as well. 

 

 

3. EXPERIMENTS 

 

Previously described method for feature extraction from 

one-way data samples is demonstrated on prediction of 

prostate and ovarian cancer from mass spectrometry data 

[14]. Features obtained by proposed procedure are used to 

train and test several classifiers, whereas performance is 

estimated in a statistically rigorous manner, using ten- and 

two-fold cross-validation (CV). All computations were 

performed in MATLAB environment (version 7.11), on 

desktop computer with 2.4GHz clocked quad-core 

processor and 4GB of RAM. 

 

3.1 Description of data 

 

Low-dimensional mass spectroscopy data samples, 

available at [14], are obtained by analysis of proteins in 

serum samples of different patients. Appropriate classes 

are assigned to the samples in dataset, describing each 

sample as a control or disease. In this way each set of data 

samples is divided into two populations: one 

corresponding to healthy individuals (controls) and other 

to patients with biopsy confirmed cancer. Prostate cancer 

dataset consists of 69 disease samples and 63 control 

samples. Another 100 disease data samples and 100 

controls are available for ovarian cancer dataset (labeled 

Ovarian 4-3-02 Study set). In both datasets each sample is 

represented by a vector containing T0=15154 elements, 

representing intensity level for all m/z ratios in range 

available by used mass spectrometer. Before transforming 

each one-way sample from vector to matrix, last 25 

elements (corresponding to the highest m/z ratios) were 

truncated. Number of removed elements is negligible in 

relation to the total number of elements in a sample, and 

thus does not affect final performance. In this way, each 

sample is represented as a square matrix with dimensions 

I1=I2=123. It is also important to emphasize that the 

original samples were preprocessed by hand and the 

baseline was subtracted, creating the negative intensities 

seen for some values [14]. This is the reason why 

nonnegative tensor decompositions are not appropriate for 

analysis of this data, and, thus, only HOOI algorithm was 

used herein. 

 

3.2 Results 

 

Classification performance is evaluated by estimating 

sensitivity and specificity through ten-fold and two-fold 

cross-validation with 200 random partitions. Several 

classifiers were used: k-nearest neighbor (kNN), linear 

support vector machine (linSVM), and nonlinear support 

vector machine with polynomial kernel (polySVM) and 
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Gaussian radial basis function kernel (rbfSVM). 

Classification and cross-validation have been carried out 

using MATLAB functions svmtrain, svmclassify, 

knnclassify, and classperf. 

 Parameters of the kNN and nonlinear SVM classifiers 

were optimized by cross-validation (number of neighbors 

from 2 to 12; width of Gaussian kernel from 0.8 to 20, 

with the step size of 0.2; order of polynomial kernel from 

2 to 7). Feature extraction was performed using HOOI-

based tensor decomposition according to the Tucker-2 

model. The core tensors with dimension in modes 1 and 2 

equal to J = {6, 10, 16, 20, 25} were extracted, yielding J
2
 

= {36, 100, 256, 400, 625} extracted features per data 

sample. The results for prediction of prostate cancer in 

terms of mean values of sensitivity and specificity and 

their standard deviations are shown in Table 1, while 

Table 2 presents prostate cancer prediction results 

reported in the literature. Results for detection of ovarian 

cancer obtained herein are shown in Table 3, while results 

reported in literature are presented in Table 4. 

Performance of prostate and ovarian cancer prediction 

obtained on publicly available datasets shows that 

presented method is comparable with the ones reported in 

the literature. Additionally, for some of the results from 

literature, shown in Tables 2 and 4, there is no 

information about used CV method, or CV is not used at 

all, while our result is obtained under rigorous CV 

procedure. Effect of the selected CV method on the final 

result is not negligible, which can be seen from Tables 1 

and 3, where estimation of sensitivity and specificity 

based on ten-fold CV yields too optimistic impression 

about performance. Results of cancer prediction can also 

be over- or underestimated if only one random partition 

was used. Because of that, we believe that results reported 

herein for the two-fold CV are realistic. 

 

 

4. CONCLUSION 

 

Extraction of features is of vital importance for accurate 

class prediction in many application areas. While tensor 

decompositions are useful tools in analysis of multi-way 

large-scale datasets, they operate exclusively on higher-

order data. Here we propose a method for tensor-based 

feature extraction from one-way datasets such as mass 

spectra of biological samples. Proposed feature extraction 

scheme is validated on prediction of prostate and ovarian 

cancers from publicly available and known datasets. 

Obtained results imply that described approach is of 

practical importance for prediction of carcinoma through 

analysis of mass spectra of biological samples. Presented 

method is not limited for use solely on proteomic 

expression profiles. It is conjectured that it can also be 

useful in analysis of other types of data such as gene 

expression levels acquired by DNA microarrays. 
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Table 1 

Prediction of prostate cancer 
 J2 kNN linSVM polySVM rbfSVM 

1
0

-f
o
ld

 

36 

88.8±11.3 / 

88.3±11.7 

k=4 

95.1±8.8 / 

94.7±8.2 

 

97.5±6.0 / 

89.9±11.8 

d=3 

96.1±7.2 / 

91.3±10.9 

σ=3.2 

100 

94.6±8.3 / 

88.7±11.6 

k=3 

99.3±3.5 / 

96.9±7.2 

 

99.6±2.7 / 

93.1±9.3 

d=3 

98.3±5.1 / 

93.1±9.9 

σ=6.8 

256 

96.4±6.7 / 

92.2±10.5 

k=4 

99.9±1.0 / 

97.7±5.6 

 

99.7±2.1 / 

93.7±9.9 

d=3 

99.8±1.7 / 

93.0±10.0 

σ=13 

400 

95.4±8.1 / 

93.7±9.2 

k=3 

100±0 /  

100±0 

 

99.6±2.5 / 

94.0±10.1 

d=2 

99.8±2.3 / 

93.2±9.7 

σ=15.6 

625 

96.0±7.2 / 

94.6±8.9 

k=3 

100±0 /  

100±0 

 

100±0 / 

94.4±9.6 

d=2 

100±0 / 

93.8±9.4 

σ=19.8 
2

-f
o
ld

 

36 

85.4±7.1 / 

85.1±5.6 

k=4 

91.9±5.6 / 

91.4±4.8 

 

94.4±4.7 / 

89.0±5.9 

d=3 

93.2±5.1 / 

89.7±5.1 

σ=3.2 

100 

89.3±5.4 / 

86.7±5.3 

k=2 

98.2±2.8 / 

95.6±3.6 

 

98.3±2.7 / 

89.2±5.5 

d=3 

94.6±5.2 / 

90.3±4.7 

σ=6.6 

256 

90.2±5.4 / 

89.7±5.1 

k=4 

98.8±2.2 / 

96.5±3.4 

 

97.0±3.3 / 

90.0±5.4. 

d=2 

96.2±3.9 / 

91.0±4.9 

σ=12.6 

400 

92.6±4.6 / 

90.1±4.2 

k=2 

99.3±1.6 / 

97.8±3.3 

 

98.2±2.7 / 

90.7±5.9 

d=2 

96.4±4.3 / 

91.5±4.8 

σ=13.2 

625 

93.0±4.9 / 

91.8±4.6 

k=2 

99.6±1.2 / 

98.7±2.9 

 

98.9±2.1 / 

91.4±5.1 

d=2 

98.0±3.2 / 

93.2±4.5 

σ=19 

 

Sensitivity and specificity in % (mean values ± standard deviation) 

estimated by two-fold and ten-fold CV. Optimal values of the classifier 

parameters  are given in the table, where 'k' denotes number of neighbors 

of the kNN classifier, σ denotes standard deviation of the Gaussian 

kernel of the radial basis function (RBF) SVM classifier and 'd' denotes 

degree of the polynomial of the polynomial SVM classifier. 

 

 

Table 2 

Prostate cancer prediction results reported in the literature 

Petricoin et al.[15] 

sensitivity: 94.7%; specificity: 75.9%; 253 

benign and 69 cancers. CV details not 

reported 

Xu et al. [16] 

sensitivity: 97.1%; specificity: 96.8%; 253 

benign and 69 cancers. CV details not 

reported 

Yang et al. [17] 
Average error rate of 28.97 on four class 

problem with 3-fold CV. 
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Table 3 

Prediction of ovarian cancer 
 J2 kNN linSVM polySVM rbfSVM 

1
0

-f
o
ld

 

36 

72.4±13.6 / 

63.9±15.1 

k=4 

88.1±9.9 / 

84.6±10.4 

 

86.1±10.7 / 

85.8±12.1 

d=3 

88.4±9.3 / 

81.1±11.7 

σ=4.2 

100 

87.0±10.4 / 

65.0±14.1 

k=6 

92.8±8.4 / 

89.4±9.2 

 

93.1±8.5 / 

88.6±10.2 

d=3 

93.9±7.7 / 

87.9±10.2 

σ=6 

256 

87.4±10.8 / 

69.8±14.2 

k=4 

95.3±6.4 / 

95.4±7.4 

 

94.5±7.0 / 

90.0±11.1 

d=3 

95.2±6.6 / 

91.1±9.3 

σ=12.2 

400 

90.2±10.2 / 

71.0±14.7 

k=6 

96.8±5.5 / 

95.0±6.4 

 

94.8±7.4 / 

91.5±9.3 

d=2 

95.9±6.4 / 

92.5±8.8 

σ=14.4 

625 

93.8±7.5 / 

71.0±14.2 

k=8 

97.9±4.9 / 

97.9±4.8 

 

96.5±5.9 / 

95.2±6.6 

d=2 

96.3±6.1 / 

94.5±7.5 

σ=19.4 

2
-f

o
ld

 

36 

66.7±8.4 / 

64.7±7.2 

k=12 

84.3±6.1 / 

81.4±5.9 

 

83.4±6.5 / 

79.8±7.2 

d=3 

84.6±5.6 / 

77.3±6.7 

σ=4.4 

100 

77.0±7.0 / 

64.6±6.7 

k=4 

91.1±4.6 / 

87.7±5.0 

 

90.7±4.5 / 

82.7±6.4 

d=3 

92.1±4.2 / 

84.5±5.4 

σ=8.2 

256 

82.7±6.2 / 

67.7±6.5 

k=4 

93.6±3.7 / 

91.9±4.1 

 

93.6±3.5 / 

85.1±5.8 

d=3 

93.9±3.0 / 

87.7±4.8 

σ=14.2 

400 

85.4±5.7 / 

67.2±7.3 

k=4 

95.5±3.2 / 

93.4±3.6 

 

93.4±3.6 / 

85.4±5.5 

d=2 

95.1±2.7 / 

90.1±4.4 

σ=17.4 

625 

87.8±5.3 / 

68.7±6.2 

k=4 

96.8±2.9 / 

95.4±3.5 

 

94.2±3.4 / 

87.1±5.7 

d=2 

95.0±2.7 / 

91.9±4.1 

σ=18.6 

 

Sensitivity and specificity in % (mean values ± standard deviation) 

estimated by two-fold and ten-fold CV. Optimal values of the classifier 

parameters  are given in the table, where 'k' denotes number of neighbors 

of the kNN classifier, σ denotes standard deviation of the Gaussian 

kernel of the radial basis function (RBF) SVM classifier and 'd' denotes 

degree of the polynomial of the polynomial SVM classifier. 

 

 

Table 4 

Ovarian cancer prediction results reported in the literature 

Petricoin et al. [18] 

sensitivity: 100%; specificity: 95% 

(one partition only: 50/50 training; 66/50 

test). 

Assareh et al. [19] 
accuracy averaged over ten 10-fold partitions: 

98-99% (SD: 0.3-0.8) 

Li et al. [20] 
sensitivity: 98%; specificity: 95% 

(2-fold CV with 100 partitions) 

Qiu et al. [21] 97.63% accuracy (other details not specified) 

Yang et al. [17] average error rate of  4.1 % with 3-fold CV. 
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