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Abstract

A method is proposed for unsupervised 3D (volumegnsentation of registered multichannel
medical images. To this end, multichannel imagetrémated as 4D tensor represented by a
multilinear mixture model, i.e. the image is modelas weighted linear combination of 3D
intensity distributions of organs (tissues) preserihe image. Interpretation of this model suggest
that 3D segmentation of organs (tissues) can bdemmgnted through sparseness constrained
factorization of the nonnegative matrix obtained rbgde-4 unfolding of the 4D image tensor.
Sparseness constraint implies that only one orgjasug) is dominantly present at each pixel or
voxel element. The method is preliminary validatedierm of Dice's coefficient, on extraction of
brain tumor from synthetic multispectral magnetsanance image obtained from the TumorSim
database.
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1INTRODUCTION
The purpose of this paper is development of spassenonstrained nonnegative matrix factorizatioMBN method
for unsupervised (a.k.a. blind or automatic) 3Dlfuee) segmentation of registered multichannel meddinages. That
is in contrast to existing matrix or tensor factation based methods that perform unsupervised esgigiion of the
multichannel image on a slice-by-slice basis, [IL, Proposed 3D segmentation approach is expectdchpoove
accuracy when compared against slice-by-slice a@mproThat is explained by multilinear mixture mo¢leLMM) of
the multi-sliced multichannel 4D image tensor whaiede-4 matrix stands for what in blind source safi@n (BSS) is
known as a mixing matrix, [3, 4], and that is tlng for all the slices. As opposed to that, imb#ir mixture model
(bLMM), that is characteristic for slice-by-slicgp@oach to image segmentation, mixing matrix iseslilependent.
Here, we propose a novel approach to 3D segment#tiough sparseness constrained factorizatioronhegative
matrix obtained by mode-4 unfolding of the muliesl multichannel image tensor. Sparseness constsanecessary
to ensure uniqueness of related matrix factorinapimblem i.e. to limit, otherwise infinite, numbefrindeterminacies
characteristic for BSS to permutation and scalimdeterminacies only. Sparseness constraint imghigisonly small
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number (possibly even one) of the overall numbesrghins (tissues) in the image is dominantly preaerach pixel

or voxel element. While proposed method is dematestr herein on segmentation of brain tumor fronslides of
synthetic multispectral magnetic resonance (mMMRRgen downloaded from the TumorSim database, [5], its
applicability is more general. That is, the metlsad be applied to 3D segmentation of organs (t&suem registered
multichannel images acquired in other medical imggmodalities. Few examples include multi-phase maed
tomography (CT), diffusion tensor, multispectrafieyspectral and/or optical coherence tomographgésa

2MATERIALSAND METHODS
For the purpose of unsupervised 3D segmentatioisteegd multichannel image is represented in a fofnthe
mLMM:

X=Gx AV x, A®x A®x AW (1)

where )_(DR'Olf'ZX'Sx"‘ represents multichannel image consisting,afhannel imaged, slices and I, pixel (voxel)

elements per slice, i.e. multichannel image is diisor.RR ,, is a real manifold with nonnegative elements. mLNMM

4
(1) is also known as Tucker4 model, [6, 7], whéé] ]RéfJZXJ3XJ“ is known as core tenso{'A(“) DR:;XJ"} 1are
n=.

factor matrices andk, denotes--mode product of a tensor with a matA%’. In model (1) factor matrices associated
with the first three modes represent directionakisaalong first three dimensions of ten¥or Hence, they can be used

to model a source tensor:

T
§:QX1A(1) XZA(Z)X3A(3):)_(X4(A(4)) (2)

§DR'O£X'2X'3” contains 3D intensity distributions of tesources (organs or tissues) present in the imagerhe

symbol in (2) denotes the Moore-Penrose pseuddseventerpretation of the mode-4 matd? in (1) and (2)
depends on the imaging modality at consideratianmulti-phase CT imaging its column vectors repnesiensity
profiles of the organs. In multispectral imaging @olumn vectors represent spectral profiles oftikmues. We can
unfold or matricize tensor (1) along any mode. Mddanfolding yields:

X =AYG , [AQDADDAO] =AUS, 3)

(4)

JxJ°

where X, € Ri&"'#: stands for mode-4 unfolded image tensoy Gy DRy stands for mode-4 unfolded core

(4)

tensorG, S,

important to notice that, from the perspectivehef matrix factorization method proposed herein,pirap X — X ,, is
arbitrary as long as it is used consistently insteisation of the factorization results implied (8), i.e. S, — S.
Eq.(3) is structurally similar to bLMM in instantaous linear BSS commonly used in unsupervised chaltinel
image segmentation on a slice-by-slice basis. Hewefundamental difference is that in the laterecaach slice

{>—(i3 0 Rgix'zx"'}:is, after mode-3 unfolding, represented by a bLMM:

I3

ORYM= stands for mode-4 unfolded source tenSoand O stands for Kronecker's product. It is

~A® @ O 2 A ®
Xi3(3) ~Ai3 Gi3(3) I:Aia 0 Aiz ] _Aiz S

o D=1, (4)



where X, , € R is unfolded slice tensoX, , G ORYY is mode-3 unfolded core tensor of the related

15(3)
. 3 .
Tucker3 tensor model of the slice tensgy , {Ai(”’ € R'O"IJ} (are factors of the same Tucker3 model &, is
3 n=.

mode-3 unfolded source tens8r . Hence, 3D intensity distributions of tdesources present in the image can be

obtained either by NMF oX(4) in (3) or by{)(,a(g)}_lg_1 matrices in (4). The former case yields unfoldedsionSy of
the source tenso® and, thus, solves 3D segmentation problem. Thetese yields unfolded versmﬁ , (3)}I3 of the

source tensor{;g },3 land, thus, solves 2D segmentation problems orce-Bij-slice basis. However, while in (3) one
3] ;=

mixing matrix, that isA®, is common for all the slices 1 tg in (4) each slice is characterized by its ownintjx

matrix {A“)}_ g This suggests that 3D segmentation can be nomgae due to the fact that specific source (organ
i3=

or tissue) is forced to retain the same profil@asrall the slices. The BSS problem (3), resp.i¢4)-posed due to the
fact that matrix factorization implied by it suféefrom indeterminaciesX , =A“S, =A“B 'BS,, for some

square invertible matriXB. Hence, (3) has an infinite number of possibleutsmhs. Meaningful solutions are
characterized by the permutation and scaling imdetecies in which casB=PA, whereP represents permutation and
A represents diagonal scaling matrix. Constraintshasessary to be imposed Aff’ and/orSy to obtain solution of
(3), resp. (4), unique up to permutation and sgallieterminacies. To this end, sparseness comistsaimposed on

3

S in (3), resp.{ 8,3(3):}: .

in (4). It is justified by an assumption that osiyall number (possibly even one) source is

I1.15,15
dominantly present at each location in the ma«g;e[b(,1 i, }

g ig=1

3 SPARSENESS CONSTRAINED NMF

Sparseness constramed NMF algorithms |Né)rands(4 from X4 in (3) by minimizing difference between data,
and modeA® 8(4)such that sparseness constrained is mposéﬁhpﬁ'hls is usually achieved through alternatingtieas
square (ALS) methodology [7, 8]. The local or hiehacal ALS-based NMF, the HALS NMF, algorithm [8]capable
of solving underdetermined BSS problem (4) such tiia number of organk present in the imag¥ 4, is allowed to
be greater than number of measurements (physieainels)l,. This capability is of great practical importarfoe low-
dimensional imaging modalities such as MR or CT nehmumber of channels is small (3 or 4) and nunolbergans or
tissue types can be up t010. The HALS NMF methaosl been demonstrated previously for sparsenessraovest
unsuperxgsed decomposition of RGB image in [9]. @lyorithm minimizes global cost function to esttm#éhe mixing
matrix A*":

D(Xw|A“S,)= _||X<4>‘A(4)S<4>||i

and set of local cost functions to estimate intgrdistributions of the t|ssue{$ } , i.e. row vectors 08y
D (Xl [as,) = ||x ~as | +aldg(s) Oj=1...d
@ ||&;S;: @ TS| TAsIs(Sp) L =400

J 4) i — _ Iy |2|3
Here {aj}j:1 represent columns oA™ , X, =X, z a;s., Js(s,)= Z _.Sii, TEPresentssparseness

izj 1 ig,ip,iz=

constraint (the(,-norm ofs.) , whereata/! stands for regularization constant. Optimal séecbf regularization



N
constants aS’ } lis what makes the HALS NMF somewhat complicatedgply in truly unsupervised scenarios, i.e.

when no ground truth information is available telgpcross-validation and tune the reguIanzauonstants{asJ }1—1

To this end, we have implemented sparseness cowstrdlMF by nonnegative matrix underapproximatidiv)
algorithm, [10]. In addition to nonnegativity corsins imposed o and Sy), the NMU algorithm minimizes the

cost functiorD(XW ||A(4’S(4)):||X(4)—A(4)S by imposing an underapproximation constrait!’s, <X, .

2
(4)||F- (4)
Underapproximation constraint yields more localizearts-based decomposition where different bastnehts
describe disjoint parts of the input dafa,. Since multispectral MR image is composed of dijparts (intensity
distribution of the tissues present in the image,NMU algorithm represented a logical choicefémtorization of (3)
to perform 3D segmentation of MR image. Accordingtheorem 1 in [10], it is important property oettNMU

algorithm to perform factorization such tha(A(4))+s(S(4))2s(X(4)), where (Sz)) measures sparseness S

defined ass(Sy))=#zeros§y)/(Ix14l,l3) O [0,1]. S(A®) ands(X4) are defined analogously. Hence, NMU yields sparse
factorization ofX4) in (3). The NMU method is implemented through mmiization of the Lagrangiah(A(4),S(4),A):

L(A®,S,.A) =%H(x(4) ~A)-A®S

2 1
(4) (4>”F B _2||A||i

whereA stands for matrix of Lagrange multipliers. Colunufi\® and rows o5y are alternatively estimated one at a

time by means of the HALS NMF algorithm [8], minizimig “(X —A) -A¥s , Whereat no sparseness constraint

2
) (4>HF

are imposed orSy. Matrix of Lagrange multipliers is updated a&w—max( 0A— ;fk(x(4)—A(4)S(4’)). Unlike

HALS NMF method, there are no regularization comtstaassociated with the NMU algorithm. Like HALS WM
algorithm, the NMU algorithm is also capable toveolnderdetermined BSS problems. The MATLAB codetfie
NMU algorithm can be downloaded from [11]. The ugdailes of the NMU algorithm are summarized below:

J
C; _lel,lxja-jd”

1. column-wise update @f(: a; = max O; g Vi=1..
i
whereC = (X(4) - A) S,y andD =SS, .
J
e.— fs.
2. row-wise update @y s, = max| 0— Loiaies IS Vi=1..J

f

i

whereE = AW" (X(A) - A) andF=A®TA®,

3. update of the matrix of Lagrange multipli&sA < max

O’A_%(xw —A<4)S(4))]

wherek stands for iteration index.



4RESULTS
We demonstrate proposed 3D segmentation methodktoacton of brain tumor from synthetic mMMR imagEehe
image is obtained from TumorSim database of thén @anter for Neuroimage Analysis, [5]. In relatimnstandard
mMR image comprised of T1, T2 and PD images, theiR@ge has been replaced by T1-weighted image raddai
after administration gadolinium contrast agent. Ndee applied proposed 3D segmentation method dessbO to 70
of the TumoSimData_004 dataset. Thys21 slices were segmented jointly. Each slice #x256 pixels. Thus the

image tensor was of the si2¢ [ zfe( 2625 71, T2 and T1_GAD images for every second dfiom 52 to 68 are

shown in Figure 1. Figure 2 shows results obtaibgdoroposed 3D segmentation method, while Figurgh@ws
corresponding ground truth results. Results of tjtaive performance analysis are reported in Tdble term of
Dice's coefficient. They are compared favorablyiagiathose based on T1 weighted image only andishabtained
after administration gadolinium contrast agent. ésl of Dice's coefficient are relatively low due simall visible
presence of non-tumor tissues in extracted tumompoment. This will be improved in future work bying nonlinear
version of proposed method in the spirit of nordinmultispectral image segmentation method predentf 2].

Table 1. Segmentation results in term of Dice's coefficientslices 50 to 70.

Slice number 50 51 52 53 54 55 56 57 58 59 60
3D Segmentation 0532 | 0575 0.627, 0637 0.647 0.639 0.600 0.514 5704 0.423 | 0.367
T1 GAD image 0.017 | 0.019] 0.021 0.022 0.024 0.024 0.029 0.037 440.0 0.047 | 0.050
Slice number 61 62 63 64 65 66 67 68 69 70

3D Segmentation 0.427 | 0.451| 0.473  0.48( 0439 0.343 0.369 0.305 240.2 0.218

T1 GAD image 0.052 | 0.054] 0.055 0.05Y 0.059 0.060 0.061 0.061 6100 0.060




Figure 1. Every second slice from 52 to 70 of mMR of the braith a tumor: T1 image (top two rows), T2 imagard and fourth
row) and T1_GAD image (last two rows).




Figure 3. Tumor ground truth for every second slice from&Z®.

5 CONCLUSION
Methodology for unsupervised 3D segmentation ohogg(tissues) from registered multichannel imaggzoposed.
The methodology treats the multislice multichanimehge as 4D tensor that is represented by muléitimaixture
model, i.e. the image is modeled by a weightedalirm®mbination of 3D intensities of the objectsserd in the image.
3D segmentation problem is solved by sparsenesstragmed factorization of nonnegative matrix obegiby mode-4
unfolding of the 4D image tensor. Proposed methogreliminary demonstrated on extraction of braimar from
synthetic mMR image. It is however understood thaan be applied to 3D segmentation of organsssués from
images acquired by different multichannel medicainaging modalities such as multi-phase CT,
multispectral/hyperspectral, diffusion tensor anafptical coherence tomography images.
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