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a b s t r a c t

Sparse component analysis (SCA) is demonstrated for blind extraction of three pure component spectra
from only two measured mixed spectra in 13C and 1H nuclear magnetic resonance (NMR) spectroscopy.
This appears to be the first time to report such results and that is the first novelty of the paper. Presented
concept is general and directly applicable to experimental scenarios that possibly would require use of
more than two mixtures. However, it is important to emphasize that number of required mixtures is
always less than number of components present in these mixtures. The second novelty is formulation
of blind NMR spectra decomposition exploiting sparseness of the pure components in the wavelet basis
defined by either Morlet or Mexican hat wavelet. This enabled accurate estimation of the concentration
matrix and number of pure components by means of data clustering algorithm and pure components
spectra by means of linear programming with constraints from both 1H and 13C NMR experimental
data. The third novelty is capability of proposed method to estimate number of pure components in
demanding underdetermined blind source separation (uBSS) scenario. This is in contrast to majority of
the BSS algorithms that assume this information to be known in advance. Presented results are important
for the NMR spectroscopy-associated data analysis in pharmaceutical industry, medicine diagnostics and
natural products research.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

NMR spectroscopy is of undoubted importance in pharma-
ceutical and natural products research. It is widely used for the
structure elucidation, identification and quantification of impu-
rities or metabolites. NMR spectroscopy is a powerful tool in
drug discovery, especially in fragment-based drug design as an
alternative to high-throughput screening [1], and in instrumental
diagnostics, one of the most developing areas of current medicine
[2]. It is clear that NMR spectroscopy represents a forefront of
progress in post-genomic era. Particularly, 1H NMR spectroscopy
is used for the structure determination of complex molecules and
for the quantitative analysis of the most important biological fluids
(urine, blood plasma, cerebrospinal fluid, bile, tears, etc.) [2]. The
1H NMR spectrum of any biological fluid is a superposition of the
spectra of great number of compounds. Quantification and identi-
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fication of the components present in the mixture is a traditional
problem not only in NMR spectroscopy [3–5] but also in infrared
(IR) spectroscopy [6,12], EPR spectroscopy [7,8], mass spectrom-
etry [9,10,12], Raman spectroscopy [11], etc. Identification of the
spectra of mixtures proceeds in majority of the cases by matching
the mixture’s spectra with a library reference compounds [3,6–8].
This approach is ineffective with the accuracy strongly dependent
on the library’s content of the pure component spectra. Provided
that available number of linearly independent mixtures is equal or
greater than the number of components, it is possible to separate
mixture’s spectra into component spectra using only the measure-
ments of the mixture’s spectra. This problem is generally known
as blind source separation (BSS) and is for described case (more
measured mixture’s spectra than component spectra) solved by
algorithms of independent component analysis (ICA) [11–18]. ICA
assumes that pure components are statistically independent and
that at most one is normally distributed. The two requirements: to
have more linearly independent mixtures than pure components
and to have statistically independent pure components seem to be
most critical for the success of the BSS approach to blind extraction
of the pure components [6,8,9,12]. Significant amount of efforts has
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been devoted to relax statistical independence assumption: (i) raw
data preprocessing technique by first or second order derivative has
been proposed in [6,12] to reduce level of statistical dependence
among pure components. This technique belongs to the general-
ization of the ICA known as dependent component analysis (DCA)
[16,21–23]; (ii) an algorithm for blind decomposition of EPR spectra
has been derived in [8] minimizing contrast function that exploits
sparseness rather than statistical independence among the pure
components; (iii) the so called mean field ICA has been proposed
in [9] to cope with statistically dependent components. However,
all discussed algorithms still require the number of linearly inde-
pendent measurements to be greater or equal to the unknown
number of pure components. Linear independence requirement
can be found questionable because it implies concentrations of the
pure components to be different in different mixtures. This does not
have to be always fulfilled. Thus, a BSS method capable to extract
pure components from reduced number of mixtures (that is less
than the number of pure components) appears to be of great impor-
tance. This leads to underdetermined BSS (uBSS) problem that is
not solvable under standard ICA assumptions [24–27]. Additional
a priori information about pure components such as sparseness is
required to solve it. Here, we propose a sparse component analysis
(SCA) approach to solve related uBSS problem by having at disposal
two mixtures only [24–27]. It combines geometric approach known
as clustering in wavelet domain to estimate concentration or mix-
ing matrix and linear programming in Fourier/frequency domain
to estimate pure components. As opposed to the majority of the
ICA/SCA-based BSS algorithms, no a priori information about the
number of pure components is required because it is also estimated
from data during the clustering phase in the time-scale domain.
The algorithm assumes that in average only one pure component
exist at the each time-scale. This assumption is satisfied with high
probability for both 1H and 13C NMR spectra when either Morlet of
Mexican hat wavelet is chosen as the basis function. Therefore, it is
believed that proposed SCA-based approach to blind extraction of
the pure components is practically important.

2. Theory

2.1. Underdetermined blind source separation

The time domain BSS problem is modeled as

X = AS (1)

where X ∈ RN×T represents matrix of N measured mixtures across T
variables, A ∈ RN×M represents the matrix of basis vectors also called
the mixing matrix and matrix S ∈ RM×T contains M pure compo-
nents. We have neglected the additive noise term in (1) due to the
fact that used experimental NMR data contain low noise as well as
that they were de-noised before blind spectra decomposition is per-
formed. For this purpose we have multiplied recorded time domain
NMR data with an exponentially decaying window which is a stan-
dard procedure used for de-noising of NMR data [3,35]. In related
problem of blind NMR spectra decomposition mixing matrix A
is also called concentration matrix. That is because coefficients
{anm}Nn=1 represent amount of concentration of the pure compo-
nent sm in the mixtures {Xn}Nn=1, where Xn denotes row vector of X.
Note that number of pure components M is in principle unknown
although many ICA/SCA algorithms assume that it is either known
in advance or can be easily estimated. This does not seem to be
true in practice. Here, we shall treat M as unknown parameter
that will be estimated together with the concentration matrix in
wavelet domain by data clustering algorithm. The BSS problem
consists of finding the pure component matrix S using mixtures
matrix X only, i.e., mixing matrix A is assumed to be unknown. ICA

algorithms solve the BSS problem provided that source signals or
pure components are statistically independent and non-Gaussian,
as well as that N ≥ M [14–20]. Then, a solution of the unsupervised
decomposition problem (1) is obtained with scale and permutation
indeterminacy:

Ŝ = WX (2)

with WA = P�, where W represents the de-mixing matrix, P is a
general permutation matrix and � is a diagonal matrix. This implies
that ICA-based solution of the unsupervised decomposition prob-
lem is unique up to the ordering, scale and sign. ICA algorithms
find de-mixing matrix W though minimization or maximization
of the related contrast function I(W,X) that represent statistical
(in)dependence measure between {ŝm}Mm=1. Thus, learning of W
is achieved by minimizing mutual information between {ŝm}Mm=1.
We recommend [15,16] for detailed description of how the ICA
algorithms are constructed. Brief description of the ICA algorithms
commonly used in analytical chemistry is also given in [12]. When
N < M the BSS problem is underdetermined because there are less
measured mixtures N available than unknown pure components
M. In order to solve the uBSS problem additional a priori infor-
mation about the pure components must be available [24–27]. A
priori information that is used most often is sparseness of the source
signals in suitably chosen basis [24–27].

2.2. Sparse component analysis

SCA exploits sparseness of the pure components in some a priori
basis or representation domain. A sparse signal is a signal whose
most samples are nearly zero, and just few percent take signifi-
cant values. While NMR data are not sparse in time domain they
are sparse in frequency (Fourier) domain or time-scale domain. For
example if pure component would be harmonic (sine or cosine)
signal with frequency ω it would contain many non-zero values in
time domain but would be perfectly sparse in frequency domain,
i.e., there would be only one non-zero component at frequency ω.
Signal that has at least k � T zero components is called k-sparse.
For the solution of related uBSS problem it is however important
that pure component signals sm are mutually sparse. This assump-
tion is satisfied with high probability when each pure component
signal is sparse for itself i.e. in such situation it is very likely that
only few (one or two) pure component signals will be active (non-
zero) at each coordinate in the chosen representation domain. Thus,
pure components with no (or only very few) overlaps in spectral
domain are considered sparse enough to enable solution of related
uBSS problem: blind extraction of pure components from smaller
number of mixtures. The SCA approach proposed here differs from
the SCA method proposed in [8] by the fact that it maximally
exploits redundancy of the linear data model (1) in the chosen basis.
The SCA method in [8] solves BSS problem by finding de-mixing
matrix W by minimizing cost function that measures sparseness
of the sources, however it still requires N = M. On the other side
the SCA approach used here, and referred in [24–27], breaks down
BSS problem into two separate problems: estimation of the mix-
ing or concentration matrix A using geometric concept known as
data clustering [24–29], and estimation of the magnitude spectra
of the pure components (based on estimated A) by solving result-
ing underdetermined system of linear equations through linear
programming [24,25,30,31], �1-regularized least square problem
[32,33] or�2-regularized linear problem [34]. In the case of the NMR
spectroscopy it is customary to assume that Fourier basis yields
sparse representation, however wavelet basis with properly cho-
sen wavelet function can yield even sparser representation. This
is because the time domain NMR signals are not pure sinusoids
but harmonic signals with amplitude decaying exponentially with
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some time constant � [35]. The real part of the time domain NMR
signal can be written as

s(t) ∼= sin(ωt + ϕ)e−t/� (3)

where ϕ represents some arbitrary phase. Provided that wavelet
function can be found to resemble structure of the time domain
NMR signal (3), real continuous wavelet transform (CWT) [36], at
the proper scale a and time shift b

S(a, b) = 1√
a

∫ ∞
−∞ s(t) 

(
t−b
a

)
dt (4)

will yield sparser representation of the NMR signal than Fourier
transform. It is the Morlet wavelet that has this property. The real
part of the Morlet mother wavelet (defined at scale a = 1 and shift
b = 0) is of the form [36]

 (t) = 1
�1/4

cos(ωt)e−t2/2 = 1
�1/4

sin(ωt + (�/2))e−t2/2 (5)

The other wavelet that resembles the structure of the NMR sig-
nal (3) is the Mexican hat wavelet [36]

 (t) = (1 − t2) e−t2/2 (6)

To support statement that Morlet wavelet resembles waveform
structure of the time-domain NMR signal and yields its sparse
representation we show in Fig. 1a real part of the time domain
experimental 1H NMR signal that represents one pure component.
Fig. 1b shows Morlet wavelet at the scale that corresponds with the
time domain 1H NMR signal shown in Fig. 1a. Fig. 1c and d shows
absolute value of the wavelet coefficients in the time-scale domain,
scaled by 104, obtained by transforming time domain 1H NMR sig-
nal shown in Fig. 1a by means of CWT and Morlet wavelet. Fig. 1c

shows wavelet coefficients as a function of scale a for the time shift
index set to b = 0. The resolution level or scale a* at which CWT
yields maximally sparse representation is determined by finding
the maximal absolute value of the wavelet coefficients at the time
shift value frozen to b = 0. This yields scale value of a* ≈ 110. The
CWT of the same pure component shown in Fig. 1a with the resolu-
tion level frozen to a* yields a transform that is very sparse in time
shift, b, domain, i.e. only few coefficients are non-zero when time
shift index b is close to zero. That is shown in Fig. 1d. We would like
to point out that we have checked many other types of wavelets
in blind extraction of pure components. However, the basis with
Morlet and Mexican hat wavelet was the only one that enabled
successful extraction of three pure components from two mixtures
of 1H NMR spectra in demanding experiment reported in Section
4.

Model (1) is written in time-scale domain as

x (a, b) = As (a, b) (7)

where x(a,b) and s(a,b) denote column vectors comprised of trans-
formed individual components {xn(t)}Nn=1 and {sm(t)}Mm=1. For the
solution of the related uBSS problem with N < M, majority of cluster-
ing algorithms require that signal s(a,b) is (M − N + 1)-sparse with
M − N + 1 zero components or with no more than N/2 non-zero com-
ponents. By setting the number of mixtures to be N = 2 this implies
k = M − 1, i.e., the assumption is that pure components do not over-
lap in transformed time-scale domain. This assumption is recently
relaxed by a concept known as k-plane clustering [28,29]. Robust-
ness with respect to noise and outliers is achieved by assuming
that pure components are in average (M − N + 1)-sparse. Hence, it
is allowed that pure components at certain number of time-scale
coordinates violate (M − N + 1)-sparseness assumption. We shall

Fig. 1. (a) Real part of the experimental time domain 1H NMR signal that represents one pure component; (b) Morlet wavelet at the scale that corresponds with the time
domain 1H NMR signal shown in a; (c) absolute value of the wavelet coefficients, scaled by 104, as a function of scale a, obtained by transforming time domain 1H NMR signal
by means of CWT and Morlet wavelet and time shift index set to b = 0. Maximal value occurs at resolution level a* = 110; (d) absolute value of the wavelet coefficients, scaled
by 104, as a function of time shift b, obtained by transforming time domain 1H NMR signal by means of CWT and Morlet wavelet and scale set to a* = 110. The abscissa is in
logarithmic scale.
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assume that pure components in transformed time-scale domain
are in average k = M − 1 sparse. This implies that at the majority
of time-scale coordinates (a,b) only one pure component sm(a,b)
out of M will be non-zero. It is however important to say that
k = M − 1 sparseness assumption will probably be violated when
pure components represent complex chemical compounds with
high degree of similarity, such as biomolecules from proteomic
research or isolated from natural sources or structurally related
compounds usually obtained during natural product synthesis. In
such scenarios it will be necessary to increase number of mixtures N
from two to three or more. This number depends on level of overlap
between pure components in the representation (wavelet) domain.
For example, if J ≤ M pure components are non-zero at the major-
ity of (a,b) coordinates, than the number of mixtures should satisfy:
N = J + 1. Nevertheless, it will be demonstrated on demanding exper-
imental problem that k = M − 1 sparseness-based concept works not
only for 13C NMR data but also for the 1H NMR data. Because the
number of coordinates in time-scale domain that deviates from the
k = M − 1 sparseness assumption was reasonably small, in compar-
ison to the overall number of coordinates, it did not significantly
influence accuracy of the clustering-based estimation of the mixing
matrix.

2.3. Data clustering algorithm

By assuming the average number of active sources to be 1 (i.e.
that in majority of time-scale coordinates only one out of M pure
components is non-zero), estimation of the mixing matrix A can
be organized in K-means clustering fashion [37]. Provided that at
each time-scale coordinate only one pure component is non-zero
the following applies:

x(a, b) = amsm(a, b) (8)

where am represents the column vector of the mixing matrix that
corresponds with the concentration profiles of the pure component
sm across the N mixtures. Hence, if we assume that column vectors
am are normalized to �2-unit norm they can be estimated from
mixtures data. K-means clustering algorithm assumes that number
of clusters M in data set (this corresponds with the number of pure
components) is known. It is also assumed that initial values of M
cluster centers am are given. Then set of binary indicators rtm ∈ {0,
1} is assigned to each data point xt in accordance with:

rtm =
{

1 if m = argminj||xt − aj||2
0 otherwise.

(9)

The cluster centers am are updated according to

am =
∑

trtmxt∑
trtm

(10)

The two phases (9) and (10) of re-assigning data points to clus-
ters and re-computing the cluster means are repeated until there
is no further change in the assignment or some predefined number
of iterations is exceeded.

However, in the sequel we shall adopt clustering algorithm
described in [28] due to its robustness to outliers (data points
that violate k = M − 1 sparseness assumption) and small number of
a priori information required by the algorithm. Because we have
discussed that solution of the BSS problem by means of ICA algo-
rithms is characterized by scale indeterminacy we shall assume the
unit norm constraint (in the sense of �2 norm) on the columns of
the mixing matrix A, i.e., {|am|2 = 1}Mm=1. Since we have assumed
the number of mixtures to be N = 2 the normalized mixing vectors
{am}Mm=1 lie in a plane on the unit circle, i.e., they are parameterized
as am = [cos(ϕm)sin(ϕm)]T. The clustering algorithm is outlined by
the following steps:

(1) In the time-scale domain we find scale a* that yields the maxi-
mal amplitude of the coefficients. We transform data with the
fixed scale a* along the time shift index b.

(2) We remove all data points close to the origin for which applies:
|x(a*,b)|2 ≤ ε, where ε represents some predefined threshold.
This corresponds with the case when all pure components are
close to zero i.e. when no pure component exists. It is clear
from (8) that such points are irregular from the point of view of
determination of the vector of concentration profiles because it
would imply pure component is not contained in any mixture
at all. It is evident that proper setting of ε requires some a priori
information related to signal-to-noise ratio. Thus, de-noising of
recorded NMR data enables to reduce ε and not to loose weak
pure components. Hence, a priori information about the ratio
between strongest and weakest pure component contained in
the mixture is also useful for proper setting of ε. It is however
also possible to look at the elimination of small data points as
de-noising procedure itself.

(3) Normalize to unit �2 norm remaining data points x(a*,b), i.e.,
x(a*,b) → x(a*,b)/|x(a*,b)|2. This step does not influence the
quality of the results due to the fact that in any BSS problem
uniqueness of the estimation of the mixing matrix and pure
components is possible up to the scale only.

(4) Calculate function f(a), a = [cos(ϕ) sin(ϕ)]T

f (a) =
T̄∑
t=1

exp

(
−d

2(x(a∗, bt) × a)
2�2

)
(11)

where d(x(a∗, bt),a) =
√

1 − (x(a∗, bt) × a)2 and (x(a*, bt)×a)
denotes inner product. T̄ ≤ T denote number of data points that
are remained after elimination process in step 2. Parameter� in
(11) is called dispersion. If set to sufficiently small value, in our
experiments this turned out to be�≈ 0.05, the value of the func-
tion f(a) will approximately equal the number of data points
close to a. Thus by varying mixing angle 0 ≤ϕ≤ �/2 we effec-
tively cluster data. The mixing angle is confined in the interval
[0, �/2] due to the fact that mixing vectors have chemical inter-
pretation as concentration that is a positive quantity. Thus, they
must stay in the first quadrant.

(5) Number of peaks of the function f(a) on interval [0, �/2] cor-
responds with the estimated number of pure components M̂.
Locations of the peaks correspond with the estimates of the

mixing angles {ϕ̂m}M̂m=1, i.e., mixing vectors {âm}M̂m=1, where
âm = [cos(ϕ̂m) sin(ϕ̂m)]T . The hat sign introduced here is used to
denote estimate of the related quantity. Given statements are
based on the fact that mixing vectors are actually cluster centers
(see description given previously for the application of K-means
data clustering algorithm to estimation of the mixing matrix).
Parameterization of the mixing vector in terms of mixing angle
helps to determine the positions of local maxima of the clus-
tering function (11). In order for this approach to estimation of
mixing matrix and number of pure components to work it is
understood that: (i) all pure components are presents in each
mixture in some amount; (ii) there are no two pure components
with the same concentration profiles because in such situation
the two corresponding mixing vectors would be parallel and
the two pure components would be indistinguishable i.e. they
would be represented by their linear combination.

Hence, at the end of data clustering phase estimated number
of pure components M̂ is obtained. This is an important contri-
bution because estimation of the number of pure components is
very complex issue and it is related to what in computer science is
known as intrinsic dimensionality problem [38]. Several methods
for estimating the number of pure components exist [39–41]. How-
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ever, all of them assume N ≥ M. Thus, they are not (at least directly)
applicable to uBSS problem considered here. To estimate number of
pure components robustly we used the root-mean-squared-error
(RMSE) criterion between original and reconstructed data [9,10,12]

RMSE(M̂) =

√√√√∑N
n=1

∑T
t=1

(
xn(t) −

∑M̂
m=1ânmŝm(t)

)2

NT
(12)

where ânm denotes estimated coefficient of the mixing matrix and
ŝm denotes estimated pure component. Thus, by slightly varying
dispersion parameter � in (11) we obtain different values for the
estimated number of pure components. We have to allow that some
of them will not correspond with the true components but can be
outliers caused by chemical noise or other types of imperfections
that exist in experimental world. Hence, we propose information-
theoretic criteria called negentropy [15], to measure information
content of to be estimated pure components and rank them accord-
ing to estimated negentropy measure. Negentropy is differential
entropy defined relatively to the entropy of the Gaussian process.
Approximation of negentropy for random process x is obtained as

J(x) ≈ (C3(x))2

12
+ (C4(x))2

48
(13)

where C3(x) and C4(x) are third order and fourth order cumulants
of the random process x [42]. Because we shall calculate negen-
tropy of the magnitude spectra of the estimated pure components

in frequency domain we use the definition for the cumulants for
the non-zero mean random process x

C3(x) = E[x3] − 3E[x]E[x2] + 2E3[x]

C4(x) = E[x4] − 4E[x]E[x3] + 12E2[x]E[x2] − 6E4[x]
(14)

where E[x] in (14) denotes mathematical expectation of x. The
Gaussian random process is the least informative among the ran-
dom processes with unbounded support and has highest entropy.
Hence, random processes that are informative are non-Gaussian
with the non-zero negentropy measure. We intuitively expect that
pure components are informative. Thus, the estimated pure com-
ponents that correspond to the true pure components are expected
to have significantly larger negentropy than the negentropy of the
outliers.

2.4. Linear programming-based solution of the underdetermined
system of linear equations

Unlike the case of even- or over-determined BSS problems
that are solved by finding the mixing matrix A by means of ICA
algorithms, solution of the uBSS problems is considerably more
difficult. The reason is that even when A is known solution of
the linear system of Eqs. (1) or (7) is not unique, because there
are more unknowns (M) than equations (N). If pure components
are (M − N + 1)-sparse, a unique solution is obtained at the min-
imum of the �1 norm of s [24–27,30–34]. We could formulate

Fig. 2. (a–c) 13C NMR magnitude spectra of the true pure components.



Author's personal copy

148 I. Kopriva et al. / Analytica Chimica Acta 653 (2009) 143–153

linear programming-based solution in the time-scale basis (7).
However, the results of the NMR data analysis are customary pre-
sented in frequency domain in which case the pure components
estimated in the time-scale basis ought to be inverse-transformed
back to time domain and then to frequency domain. In order to
reduce computational complexity of the proposed blind spectra
decomposition algorithm we take advantage of the result pre-
sented in [30] and estimate the pure components directly in
frequency domain. The result in [30] states that minimum of the
�1 norm yields accurate solution of the uBSS problem even if
pure components are (M − N)-sparse. It means that it is allowed
that two pure components (or N pure components in the gen-
eral case) can co-exist at each frequency. We now write model
(1) in frequency domain because it is of actual interest in the
NMR data analysis. Provided that at the majority of frequen-
cies only one pure component is present the following relation
between magnitude spectrum of the mixtures and pure compo-
nents holds

xa(ω) = Asa(ω) (15)

where xa(ω) = [|x1(ω)|2. . .|xN(ω)|2]T, sa(ω) = [|s1(ω)|2. . .|sM(ω)|2]T

and |x|2 denotes �2 norm of ‘x’. Assuming A is estimated
in time-scale domain by means of described data clustering
algorithm we obtain sa(ω) in (15) as the solution of linear

program

ŝa(ω) = argmin
sa(ω)

∑M̂

m=1
sm(ω) s.t. Âsa(ω) = xa(ω)

sa(ω) ≥ 0
(16)

Problem (16) can be solved by several methods but linear
programming is known to yield unique solution due to the con-
vexity of the linear program [24,25]. Algorithms were suggested in
[26,30,33,34] as substitutes for the linear programming in the case
of large scale problems or when the noise can not be neglected.
Representative for such a case is �1-regularized least square prob-
lem:

ŝa(ω) = argmin
sa(ω)

1
2

||Âsa(ω) − xa(ω)||22 + 	||sa(t)||1 (17)

that can be solved by interior point method [33]. We have tested
both linear programming method (16) and interior point method
used to solve (17). The two algorithms yielded results with basically
similar quality implying that noise level in de-noised experimen-
tal data was low. Therefore, reported experimental results were
obtained by means of linear programming.

As explained in the concluding paragraph in Section 2.2 the
assumption that only one out of M pure components is present
at each frequency will probably be violated when pure compo-
nents represent complex chemical compounds. In such scenarios

Fig. 3. (a–c) 1H NMR magnitude spectra of the true pure components.
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it will be necessary to increase number of mixtures N from two
to three or more. This number depends on how many pure com-
ponents are expected to co-exist at the majority of frequency
coordinates. In such situation the relation (15) between magni-
tude frequency responses does not hold any more. When multiple
pure components occupy each frequency point ω we notice rela-
tion between real and imaginary part of x as: R{x(ω)}= AR{s(ω)}
and I{x(ω)}= AI{s(ω)}. Written in matrix formulation it reads as[
R{x(ω)}
I{x(ω)}

]
=

[
A 0

0 A

][
R{s(ω)}
I{s(ω)}

]
(18a)

or

x̄(ω) = Ās̄(ω) (18b)

To satisfy nonnegativity constraints on variables that is required
by linear program we introduce dummy variables u, v ≥ 0 such that

s̄ = u − v, z =
(

u
v

)
and Ã = [Ā − Ā]. Linear programming-based

solution with equality constrains, that is equivalence of (16) when
pure components do not overlap, is obtained as

ẑ(ω) = argmin
z(ω)

∑2M

m=1
zm(ω) s.t. Ãz(ω) = x̄(ω)

z(ω) ≥ 0
(19)

Pure components are obtained from the solution of linear pro-
gram (19) as s̄(ω) = u(ω) − v(ω). Equivalent formulation of the
noise robust solution (17) is obtained as:

ẑ(ω) = argmin
z(ω)

1
2

||Ãz(ω) − x̄(ω)||22 + 	||z(ω)||1 (20)

3. Experimental

3.1. Software environment

Described SCA-based approach for blind decomposition of 1H
and 13C NMR spectra that includes data clustering and linear pro-
gramming algorithm was tested using custom scripts in MATLAB
programming language (version 7.1; The MathWorks, Natick, MA).
The linear programming part of the SCA algorithm has been imple-
mented using linprog command from the Optimization toolbox.
Continuous wavelet transform, Eqs. (4)–(7), were implemented
using cwt command from the Wavelet toolbox. All programs were
executed on desktop personal computer running under the Win-
dows XP operating system using Intel Core 2 Quad Processor Q6600
operating with clock speed of 2.4 GHz and 4GB of RAM installed.

3.2. NMR measurements

Compounds Boc2-Tyr-NH2 (pure component 1), Boc-Phe-NH2
(pure component 2) and Boc-Phe-NH–CH2–C CH (pure compo-
nent 3) were used for the preparation of two mixtures: X1
(1:2:3 = 20 mg:20 mg:7 mg) and X2 (1:2:3 = 10 mg:25 mg:15 mg).
Mixtures were dissolved in 600 �L of DMSO-d6. NMR experiments
were carried out on a Bruker AV600 spectrometer equipped with a
5 mm BBO probe with z-gradient. The liquid-state 1H and 13C NMR
spectra (600.13 MHz for 1H and 150.90 MHz for 13C) were mea-
sured in DMSO-d6 at 298 K using standard 1H and APT techniques.
Assignments of the NMR spectra of pure components 1–3 are given
bellow.

3.2.1. Boc2-Tyr-NH2 (pure component 1)
13C NMR (Fig. 2a): 27.2 (CH3 OBoc), 28.1 (CH3 NHBoc), 36.8 (�

Tyr), 55.5 (� Tyr), 77.9 (C NHBoc), 82.9 (C OBoc), 120.8 (� Tyr), 130.1

Fig. 4. (a) 13C NMR magnitude spectra of the mixture X1; (b) 13C NMR magnitude
spectra of the mixture X2.

(� Tyr), 135.9 (� Tyr), 149.1 151.3 (CO Boc), 155.2 (	 Tyr), 173.5 (CO
Tyr).

1H NMR (Fig. 3a): 1.31 (s, 9H, CH3 NHBoc), 1.48 (s, 9H, CH3
OBoc), 2.74, 2.95 (dd, 2H, �,�′ Tyr, 3J�,� = 10.4 Hz, 3J�,�′ = 4.3 Hz,
2J�,�′ = 13.8 Hz), 4.08 (m, 1H, � Tyr), 6.81 (d, 1H, NH Tyr,
3J�,NH = 8.9 Hz), 7.01, 7.38 (br s, 2H, NH2 Tyr), 7.07 (d, 2H, � Tyr,
3J�,� = 8.4 Hz), 7.28 (d, 2H, � Tyr, 3J�,� = 8.4 Hz).

Fig. 5. Clustering function in the mixing angle domain for 13C NMR mixtures.
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3.2.2. Boc-Phe-NH2 (pure component 2)
13C NMR (Fig. 2b): 28.1 (CH3 Boc), 37.5 (� Phe), 55.5 (� he), 77.9

(C Boc), 126.1 (	 Phe), 127.9 (� Phe), 129.1 (� Phe), 138.3 (� Phe),
149.1, 151.3 (CO Boc), 173.6 (CO Phe).

1H NMR (Fig. 3b): 1.30 (s, 9H, CH3 Boc), 2.74, 2.96 (dd, 2H, �,�′

Phe, 3J�,� = 10.3 Hz, 3J�,�′ = 4.1 Hz, 2J�,�′ = 13.6 Hz), 4.10 (m, 1H, �
Phe), 6.78 (d, 1H, NH Phe, 3J�,NH = 8.7 Hz), 7.01, 7.36 (br s, 2H, NH2
Phe), 7.25 (m, 5H, arom Phe).

3.2.3. Boc-Phe-NH–CH2–C CH (pure component 3)
13C NMR (Fig. 2c): 28.0 (CH2 propargyl), 28.1 (CH3 Boc), 37.5

(� Phe), 55.5 (� Phe), 73.0 (CH propargyl), 77.9 (C Boc), 81.0 (C
propargyl), 126.1 (	 Phe), 127.9 (� Phe), 129.2 (� Phe), 138.0 (�
Phe), 155.2 (CO Boc), 171.4 (CO Phe).

1H NMR (Fig. 3c): 1.29 (s, 9H, CH3 Boc), 2.72, 2.93 (dd, 2H, �,�′

Phe, 3J�,� = 10.3 Hz, 3J�,�′ = 4.2 Hz, 2J�,�′ = 13.6 Hz), 3.12 (t, 1H, CH
propargyl, 4JH,H = 2.4 Hz), 3.87 (m, 2H, CH2 propargyl), 4.14 (m, 1H,
� Phe), 6.90 (d, 1H, NH Phe, 3J�,NH = 9.1 Hz), 7.25 (m, 5H, arom Phe),
8.38 (t, 1H, NH propargyl, 3JNH,H = 5.2 Hz).

4. Results and discussion

To test the above described approach, structurally similar
amino acid derivatives Boc2-Tyr-NH2 (pure component 1), Boc-
Phe-NH2 (pure component 2) and Boc-Phe-NH–CH2–C CH (pure
component 3) were chosen in this study. Although 13C NMR spec-

tra, shown in Fig. 2a–c, are relatively easy to distinguish, there
are certain overlapping present in the region 20–40 ppm and
120–140 ppm (see also assignments in the Section 3.2). As clearly
seen in Fig. 3a–c 1H NMR spectra reflect high degree of similar-
ity, thus providing sufficiently challenging experimental ground
for mathematical algorithm. Both 13C and 1H NMR spectra were
included in the experimental performance evaluation to demon-
strate versatility of the approach proposed for blind decomposition
of the NMR spectra.

4.1. Case 1: 13C NMR spectra

Mathematically less demanding case of 13C NMR spectra was
carried out first. 13C NMR spectra of the three pure components are
shown in Fig. 2a–c. Fig. 4a and b show 13C NMR spectra of the two
mixtures, Eq. (15). Mixtures were designed to fulfill requirements
important from both experimental (chemistry/spectroscopy) and
mathematical point of view. First, one component (3 in X1) is
present in low concentration, while two are equally distributed
and second, all three components are present in nearly the same
concentration (X2). Presence of component in low concentration
is often the case in NMR analysis of mixtures obtained by chem-
ical synthesis. Separation of pure components that are present in
the similar concentrations in the mixtures is a challenge for blind
decomposition algorithms due to the fact that unknown concen-
tration matrix becomes ill-conditioned. It is evident that region

Fig. 6. 13C NMR magnitude spectra of the estimated pure components: (a) PC1; (b) PC2; (c) PC3.
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around 30 ppm (Boc groups) and aromatic region (120–140 ppm)
are the most “signal crowded” parts of the spectra. Fig. 5 shows
clustering function, Eq. (11), in the mixing angle domain, wherein
continuous wavelet transform, Eq. (4), with the Morlet wavelet, Eq.
(5), has been used to transform mixtures from time to time-scale
domain. When dispersion factor is set to � = 0.0425 the number of
the pure components is estimated as 3 with the data reconstruction
error, Eq. (9), RMSE = 2.5. The clustering function shown in Fig. 5
illustrates this case. Two peaks that are well distinguished corre-
sponds with the pure components 1 and 2 that were present in
higher concentration in the mixtures, while less distinguished peak
corresponds with the pure component 3 that is present in the lower
concentration in the mixture. Numbers at the ordinate indicate the
overall number of (a*,b) points clustered at each of the peaks. Evi-
dently, this number is more than four times greater for the pure
components 1 and 2 than pure component 3. The magnitude spec-
tra of the estimated pure components that correspond to the three
true pure components (Fig. 2a–c) are shown in Fig. 6a–c. Compar-
ison with spectra of true pure components proves high degree of
matching. Larger discrepancy is only found between the true third
pure component, Fig. 2c, and its estimate, Fig. 6c. This is a con-
sequence of high spectral similarity between the second and the
third pure component but also of significantly lower concentration
of the third pure component in the mixture X1. Normalized cor-
relation coefficients between true and estimated pure components
spectra are respectively given as 0.871, 0.954 and 0.819. Clearly, the
accuracy of the estimation of pure components would be improved
if three instead of two mixtures would be used. This would how-
ever increase the computational and experimental complexity of
blind decomposition procedure. Nevertheless, quality of the results
obtained from two mixtures only, as indicated by the values of nor-
malized correlation coefficients, can be considered satisfactorily.

4.2. Case 2: 1H NMR spectra

Blind decomposition of the 1H NMR spectra has not been con-
sidered as experimental ground for BSS analysis so far, owing to
the significant overlapping between the pure components spectra.
Therefore, we assume that blind decomposition of more than two
pure components that are structurally similar from two mixtures
only should be of great practical importance in 1H NMR spec-
troscopy. 1H NMR magnitude spectra of the three pure components
are shown in Fig. 3a–c. Negentropy measures, Eq. (13) and (14),
calculated on the magnitude spectra of the three pure components
were: 1.955 × 1017, 2.793 × 1016 and 2.627 × 1016. The magnitude
spectra of the two mixtures, Eq. (15), are shown in Fig. 7a and
b. Fig. 8 shows clustering function, Eq. (11), in the mixing angle
domain wherein continuous wavelet transform, Eq. (4), with the
Mexican hat wavelet, Eq. (6), has been used to transform two mix-
tures from time to time-scale domain. When dispersion factor is
set to � = 0.04 the number of the pure components is estimated as
4 with the data reconstruction error, Eq. (9), RMSE = 1.32 × 10−11.
When dispersion factor is set to � = 0.035 the number of the pure
components is estimated as 5 with the data reconstruction error
RMSE = 8.1 × 10−13. The clustering function shown in Fig. 8 illus-
trates this later case. In direct comparison with Fig. 5, that shows
the clustering function for 13C NMR spectra, it is evident that it
becomes more difficult to distinguish peaks in the case of 1H NMR
spectra. The reason for this is more often violation of the k = M − 1
sparseness assumption on pure components in the wavelet domain
i.e. 1H spectra of the pure components overlap more often than 13C
spectra. This influences directly accuracy of data clustering meth-
ods described in Section 2.3. Again, accuracy of data clustering could
be increased by using three or four mixtures instead of two only.
That, however, would increase experimental and computational
complexity of blind spectra decomposition process. Nevertheless,

Fig. 7. 1H NMR magnitude spectra of the two mixtures: (a) X1 and (b) X2.

results obtained for estimation of the pure components spectra,
as indicated by the values of normalized correlation coefficients,
can be considered satisfactorily. The magnitude spectra of the esti-
mated pure components that correspond to the three true pure
components are shown in Fig. 9a–c. Again, despite of the struc-
tural similarities and NMR peak overlapping, estimated 1H spectra
of three pure components exhibit good matching with the true
component spectra. Normalized correlation coefficients between

Fig. 8. Clustering function in the mixing angle domain for 1H NMR mixtures.
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Fig. 9. 1H NMR magnitude spectra of the estimated pure components: (a) PC1; (b) PC2; (c) PC3 and two outliers: (d and e).

true and estimated pure components spectra are respectively given
as 0.906, 0.938 and 0.818. In addition to violation of the k = M − 1
sparseness assumption, artifacts present in the experimental data,
including chemical noise, will contribute to the presence of arti-
ficial or dummy peaks in the clustering function. This problem is
especially emphasized when some of the pure components are con-
tained in the low concentration in the mixtures. Thus it becomes
very difficult to choose the proper value of dispersion constant � in
the clustering function (11) and presence of dummy peaks in the

clustering function is very likely to occur. As already mentioned,
such case is illustrated in Fig. 8. Therefore, selection criterion such
as information-theoretic one called negentropy, is of great impor-
tance to distinguish estimated pure components that correspond
to the true ones from those that correspond to artifacts. We call
these later pure components the outliers. Negentropy measures,
Eqs. (13) and (14), calculated on the magnitude spectra of the esti-
mated pure components shown in Fig. 9a–c were: 1.542 × 1016,
6.602 × 1016 and 1.379 × 1012. Fig. 9d and e show magnitude spec-
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tra of two components that are classified as outliers. As it is seen
their magnitudes are between one and two orders of magnitudes
smaller than magnitudes of the estimates of the true pure compo-
nents. More importantly, their negentropies were: 1.536 × 106 and
1.89 and that is 10 orders of magnitude or more different that the
negentropies of the estimated pure components that correspond to
the true pure components. Thus, negentropy criterion can serve as
a basis to discriminate estimates that correspond to the true pure
components from those that ought to be classified as outliers. Note
also relatively large discrepancy like in 13C spectra between the
third true pure component, Fig. 3c, and its estimate, Fig. 9c. This
can be rationalized by the same wording like for 13C spectra.

5. Conclusions

SCA-based approach has been proposed for blind extraction of
more than two pure components spectra in 1H and 13C NMR spec-
troscopy measuring two mixtures only. However, presented concept
is general and directly applicable to experimental scenarios that
possibly would require use of more than two mixtures. This appears
to be the first time to report such results, because other blind
decomposition methods require the number of mixtures to be equal
or greater than the unknown number of pure components. Pro-
posed SCA-based approach solves the resulting underdetermined
BSS problem by splitting it into two problems: blind estimation
of the number of pure components and the mixing or concentra-
tion matrix by means of data clustering in the time-scale domain,
and estimation of the magnitude pure components spectra in fre-
quency domain by means of linear programming. This is enabled
by exploiting sparseness among the pure components in time-
scale domain that is achieved owing to the use of CWT with the
Morlet and Mexican hat wavelets as the basis functions. To cope
with the presence of outliers caused by chemical noise or other
types of imperfections that exist in experimental data, information-
theoretic based criteria called negenetropy has been introduced to
rank the estimated pure components in term of their information
content. Having in mind the importance of NMR spectroscopy for
structure determination in natural products research as well as for
quantification in pharmaceutical industry and medicine diagnos-
tics, reported results present considerable contribution to further
development of data analysis approaches in many areas of natural
sciences.
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