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The paper presents flexible component analysis-based blind decomposition of the mixtures of Fourier
transform of infrared spectral (FT-IR) data into pure components, wherein the number of mixtures is less
than number of pure components. The novelty of the proposed approach to blind FT-IR spectra
decomposition is in use of hierarchical or local alternating least square nonnegative matrix factorization
(HALS NMF) method with smoothness and sparseness constraints simultaneously imposed on the pure
components. In contrast to many existing blind decomposition methods no a priori information about the
number of pure components is required. It is estimated from the mixtures using robust data clustering
algorithm in the wavelet domain. The HALS NMF method is compared favorably against three sparse
component analysis algorithms on experimental data with the known pure component spectra. Proposed
methodology can be implemented as a part of software packages used for the analysis of FT-IR spectra and
identification of chemical compounds.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction
Extraction of the pure component spectra from the mixtures of
their linear combinations is of great interest in many applications.
Classical approach to extraction of the spectra of pure components is
to match the mixture's spectra with a library of reference compounds.
This approach is ineffective with the accuracy strongly dependent on
the library's content of the pure component spectra and cannot reflect
the variation of the spectral profile due to environmental changes.
Alternatives to library matching approach are blind decomposition
methods, wherein pure components' spectra are extracted using
mixtures spectra only. Blind approaches to pure components spectra
extraction have been reported in NMR spectroscopy [1], infrared (IR)
[2–4] and near infrared (NIR) spectroscopy [4–6], EPR spectroscopy
[7,8], mass spectrometry [1,4,9,10] Raman spectroscopy [11,12] etc. In a
majority of blind decomposition schemes independent component
analysis (ICA) [13–15] is employed to solve related blind source
separation (BSS) problem. ICA assumes that: (i) pure components are
statistically independent, (ii) at most one is normally distributed and
(iii) number of mixtures is greater than or equal to the unknown
number of pure components. The two requirements: to have more
linearly independent mixtures than pure components and to have
statistically independent pure components seem to bemost critical for
the success of the BSS approach to blind decomposition of the
mixtures spectra into pure components spectra [4,5,8,10]. Statistical
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independence assumption is certainly not fulfilled in the case of IR
spectra [2–6] because they are highly correlated i.e. overlapped. Raw
data preprocessing technique by first or second order derivative has
been used in FT-IR spectra analysis to reduce level of statistical
dependence among pure components, [2–6]. This technique actually
belongs to the generalization of the ICA known as dependent
component analysis (DCA), [14,16–18]. An algorithm for blind
decomposition of EPR spectra has been derived in [8] minimizing
contrast function that exploits sparseness rather than statistical
independence among the pure components. Unfortunately, sparseness
criterion cannot be used in the case of FT-IR spectra due to high degree
of overlap between them, especially in wavelength or wavenumber
domain. All discussed blind spectra decomposition methods require
the number of mixtures spectra to be equal to or greater than the
unknown number of pure components spectra. In a number of real
world situations it is however not easy to acquire mixtures spectra
with different concentrations of the pure components spectra. In this
regard it is desirable property of blind decompositionmethods to solve
related BSS problem with as few mixtures as possible. Here, we
demonstrate flexible component analysis (FCA) approach to blind
decomposition of more than two pure components FT-IR spectra from
two mixtures only. To solve related underdetermined BSS (uBSS)
problem we use recently developed nonnegative matrix factorization
(NMF) algorithm that is known as local or hierarchical alternating least
squares (HALS) NMF algorithm [19,20,40]. Its unique property is to
estimate concentration or mixing matrix globally and pure compo-
nents spectra locally, wherein smoothness and sparseness constraints
are simultaneously imposed on the pure components spectra. Unlike
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majority of the BSS algorithms that assume the number of pure
components to be known, proposed approach estimates it from the
mixtures spectra in the wavelet domain by means of data clustering
algorithm, [21]. Transformation of the mixtures spectra in wavelet
domainyields representation that is significantly sparser than inoriginal
wavenumber domain. This enables more accurate estimation of the
number of pure components spectra, especially due to the fact that used
data clustering algorithm requires that pure components spectra are in
average sparse in the chosen basis. Comparison of the HALS NMF
approach against sparse component analysis (SCA)based approach [22–
25] on experimental uBSS problem, which is presented in Section 3,
yields favorable results. Therefore, it is believed that proposed FCA-
basedapproach to blindextractionof theFT-IRpure components spectra
is practically important. The rest of the paper is organized as follows.We
introduce data clustering algorithm, SCA and FCA concepts in Section 2.
Results and discussion of the experimental comparative performance
analysis of the FCA and SCA approaches on two mixtures of IR spectra
containing three pure components are given in Section 3. Conclusions
are presented in Section 4.

2. Computational methods

Like many decomposition methods proposed approach is based on
static linear mixture model

X = AS ð1Þ

where X ∈ R0+
N×T represents matrix of N measured mixtures spectra

acrossTwavenumbers,A∈R0+
N×M represents thematrixof concentration

profiles also called the mixing matrix and matrix S ∈ R0+
M×T contains M

pure components spectra across T wavenumbers. Due to the nature of
the problem all quantities in Eq. (1) are nonnegative. As already pointed
out, the number of pure components M is in principle unknown
although many BSS/ICA algorithms assume that it is either known in
advance or can be easily estimated. This does not seem to be true in
practice, especiallywhen the BSSproblem is underdetermined.Here,we
shall treat M as unknown parameter that will be estimated by the
clustering algorithm to be described in Section 2.1. In addition to
estimate the number of pure components used data clustering
algorithm also estimates the concentration matrix. This is necessary
for the SCA approach described in Section 2.2, but is not necessary for
HALSNMFapproach described in Section 2.3. In overall, the BSS problem
related to blind FT-IR spectra decomposition consists of: (i) estimating
the number of pure components spectra; (ii) estimating the matrix of
the pure components spectra S; (iii) estimating the concentration
matrix A. All three tasks are executed usingmatrixofmixtures spectra X
only. In addition to that, we allow the number of pure components
spectra M to be greater than the number of mixtures spectra N. Hence,
blind FT-IR spectra decomposition problem becomes uBSS problem.

2.1. Data clustering

In FT-IR spectra decomposition problem considered in this paper
we shall assume that pure components spectra are in average k=M-1
sparse in wavelet domain. This implies that at each coordinate in
wavelet domain in average only one pure component is active i.e.
nonzero. This assumption allows to reduce number of mixtures to
N=2, hence reducing the computational complexity of to be used
data clustering algorithm [21] by reducing dimension of the
concentration subspaces, that equals average number of active
components, to 1. However, we are aware that it is not realistic to
demand that pure components FT-IR spectra do not overlap in any
representation domain including wavelet domain used here. That is
why we expect that pure components spectra are only in average
k=M−1 sparse in wavelet domain. Under such assumption the
appropriately chosen function, see Eq. (3), will effectively cluster data,
wherein the number of clusters corresponds with the estimate of the
number of pure components M. If the number of coordinates that
violates k=M−1 sparseness assumption in wavelet domain is
relatively large this will influence accuracy of the estimation of the
concentration matrix due to the repositioning of the cluster centers. It
will not however influence in the same amount the accuracy of the
estimation of the number of clusters. Thus, performance of the SCA
algorithms that require the estimate of the concentration matrix in
order to proceed to the next phase and solve underdetermined system
of linear equations will be affected significantly if FT-IR spectra are not
sparse enough in the chosen basis. On the other hand proposed FCA
approach will be significantly less sensitive to the level of sparseness
of the FT-IR spectra because it only requires from the clustering
algorithm the estimate of the number of pure components spectra.

Because solution of the BSS problem is generally characterized by
scale indeterminacy we shall assume the unit norm constraint (in the
sense of ℓ2 norm) on the columns of the concentration matrix A, i.e.,
{||am||2=1}m=1

M . As already pointed out, in this paper we do assume
the number of mixtures to be N=2. Thus, the normalized mixing
vectors {am}m=1

M lie in the first quadrant on the unit circle, i.e., they are
parameterized as:

am = cos umð Þ sin umð Þ½ �T m = 1; :::;M ð2Þ
whereφm representsmixing angle that is confined in the interval [0,π/2].
We do assume that mixtures are transformed into wavelet domain
through wavelet transform

Xn a; bð Þ = 1ffiffiffi
a

p

Z∞
−∞

xn tð Þψ t − b
a

� �
dt n = 1; :::;N

where thea andb represent respectively scale (resolution level) and time
shift and Ψ(t) represents wavelet function. After extensive experiments
we have found out that symmlets with two to eight vanishing moments
yield best results in terms of sparseness of X(a,b). Thus, the results
reported in Section 3 were obtained with the symmlets with the four
vanishing moments. The fact that symmlets performed best is just
experimentalfinding.Wehave also triedDaubechie'swavelet of different
order, Haar wavelet, Morlet wavelet, Mexican hat wavelet, Coiflets and
some biorthogonal wavelets. From the sparse representation point of
view thekeypropertyof thewavelet is tomatchwell thewaveformof the
particular signal of interest (in this case the FT-IR spectra). It is however
very hard to find such a wavelet in case of FT-IR signals. Perhaps, the
optimal solutionwould be to design new wavelet that will reflect better
morphological properties of FT-IR data than standard wavelets do.
Wavelet transform above can be used either as continuous or as discrete.
In the results presented in Section 3we have used discrete shift invariant
wavelet transform with the resolution levels corresponding to a=21 or
a=22. By assuming 1-dimensional concentration subspaces the cluster-
ing algorithm [21] is outlined by the following steps:

1) We remove all data points close to the origin for which applies: {||x(a,
bt)||2≤ε}t=1

T , where ε represents some predefined threshold. This
correspondswith the casewhenpure components spectra are close to
zero.

2) Normalize to unitℓ2 norm remaining data points x(a,bt), i.e., {x,(a,
bt)←x(a,bt)/||x (a,bt)||2}t=1

T ̅
, where T ̅≤T denotes number of data

points that remained after the elimination process in step 1.
3) Calculate function f(a), where a is defined with Eq. (2):

f að Þ =
XT
t=1

exp − d2 x a; btð Þ; að Þ
2σ2

 !
ð3Þ

where d x a; btð Þ; að Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− x a; btð Þ � að Þ2

q
and (x(a,bt)∙a) denotes

inner product. Parameter σ in Eq. (3) is called dispersion. If set to
sufficiently small value, in our experiments this turned out to be
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σ≈0.035±0.007, the value of the function f(a) will approxi-
mately equal the number of data points close to a. Thus by varying
mixing angles 0≤φ≤π/2 we effectively cluster data.

4) Number of peaks of the function f(a) corresponds with the
estimate of the number of pure components spectra M̂. Locations
of the peaks correspond with the estimates of the mixing angles
{(φ ̂m)}m=1

M ̂ , i.e., mixing or concentration vectors {âm}m=1
M ̂ , where

âm is given with Eq. (2). The hat sign introduced here is used to
denote estimate of the related quantity. Hence, at the end of data
clustering phase estimates of the number of pure components M
and concentration matrix A are obtained.

2.2. Sparse component analysis

SCA enables to find a possible good approximation of the true solution
to an underdetermined system of linear equations subject to sparsity
constraints.When in Eq. (1)NbM, the nullspace ofA is nontrivial, and the
inverse problemhasmany solutions. Therefore, additional constraint such
as sparseness between the components of the column vectors {s(t)}t=1

T is
necessary. A sparse signal is a signal whosemost samples are nearly zero,
and just few percent take significant values. Signal that has at least k≤M
zero components is called k-sparse. The SCA is carried out using one of the
two approaches. The first one employs NMF algorithms, wherein mixing
matrix A and source matrix S are estimated simultaneously, usually
through ALS methodology, [19,26]. The second one, referred in [22–26]
breaks downuBSS problem into two separate problems: estimation of the
concentrationmatrixA and the number of pure component spectra using
geometric concept known as data clustering [21,15] and estimation of the
matrix of pure components spectra S (based on estimated A) by solving
resulting underdetermined system of linear equations. The last step is
carried out as linear programming, [22,27,28]ℓ1-regularized least square
problem [29,30] or ℓ2-regularized linear problem, [31]. Presuming that
concentration matrix A and number of pure components spectra M are
estimated through data clustering phase as well as that pure component
spectra are in average M−1 sparse they can be estimated by means of
linear programming in wavelet domain

ẑ a; btð Þ = argminz a;btð Þ
P M̂

m = 1 zm a; btð Þ subject to Âz a; btð Þ = x a; btð Þ

8bt = 1; :::; T z a; btð Þz 0
ð4Þ

where z = u
v

� �
. u ∈ R0+

M , v ∈ R0+
M are nonnegative dummy vectors

used to model source vector s(a,bt) that can be both positive and
negative, i.e. s(a,bt)=u−v. Ã=[Â−A ̂] is extended mixing matrix,
while A ̂ denotes estimate of the true mixing matrix A obtained by
previously described data clustering algorithm. Pure component
spectra in wavelet domain are obtained from the solution of linear
program Eq. (4) as s ̂(a,bt)=u−v. If the noise is present in blind
decompositionproblemmore robust sparse solution for {s(a,bt)}t=1

T is
obtained by solving ℓ1-regularized least square problem, [29,30]:

ŝ a; btð Þ = argmin
s a;btð Þ

1
2
∥ Âs a; btð Þ− x a; btð Þ∥22 + λ∥s a; btð Þ∥1 8t = 1; :::; T ð5Þ

or ℓ2-regularized linear problem [31]:

ŝ a;btð Þ = argmin
s a;btð Þ

∥s a;btð Þ∥1 subject to ∥ Âs a; btð Þ− x a; btð Þ∥22V e

8 t = 1; :::; T :

ð6Þ

It can be shown that solution of Eq. (6) is minimizer of Eq. (5) for
some λN0, [34]. Also when ε=0 Eq. (6) reduces to linear program
Eq. (5), [29,34]. Note that all three pure component spectra in wave
number domain are obtained by applying inverse wavelet transform to
{sm̂(a,bt)}m=1
M̂ . In theexperiments reported inSection3, in the SCA-based

approach to estimate the pure components FT-IR spectra, we have tested
linear programming method Eq. (4) and interior point [29,37] and
gradient projection [31,38] methods to solve ℓ1-regularized least square
problem (5). As can be seen in Section 3 all three algorithms yielded the
same result, what implies that level of sparseness among pure
component spectra was not high enough to yield good solution. That
raised motivation to look for alternative solution of the blind under-
determined FT-IR spectra decomposition problem.

2.3. Flexible component analysis and HALS NMF

Majority of algorithms used for adaptive NMF are based on the
alternating minimization of the squared Euclidean distance expressed
by the Frobenius norm with respect to two sets of parameters {anm}
and {smt} [19,20,26]:

DF X∥AS� �
=

1
2
∥X − AS∥22 + αS JS Sð Þ + αA JA Að Þ ð7Þ

where JS(S) and JA(A) represent constraints imposed on S and A,
while αS and αA represent corresponding regularization constants.
Since decomposition implied by SLMM (1) through minimization of
the squared Euclidean distance only has many solutions, constraints
are necessary in order to yield solutions for A and S that are
meaningful. In a majority of cases sparseness constraints are imposed
on A and S to obtain meaningful solutions. However, FT-IR spectra are
not very sparse but they are reasonably smooth. Consequently, we
shall simultaneously impose smoothness and sparseness constraints
on rows of S: {s ̲m}m=1

M . In addition to that, to solve uBSS problem we
shall employ minimization of the of the local cost functions [19,20]:

D mð Þ
F X mð Þ∥amPsm

� �
=

1
2
∥X mð Þ − amPsm∥22 + α mð Þ

sp ∥Psm
∥1

+ α mð Þ
sm ∥u LPsTm

� �∥1 m = 1; :::;M

ð8Þ

with respect to {smt} where

X mð Þ = X −
X
j ≠ m

ajPsj :
ð9Þ

Constant αsp
(m) regulates level of sparseness while constant α sm

(m)

regulates level of smoothness of the pure component spectra {sm̲}m=1
M .

Smoothness constraint employed here is of the form φ(t)=|t|2 where
L represents second order smoothing operator

L =

−2 2
1−2 1

1−2 1
:::::::::::::::

1− 2 1
2−2

0
BBBBBB@

1
CCCCCCA

=

−2
− 2

− 2
:::::::::::::::

− 2
− 2

0
BBBBBB@

1
CCCCCCA

+

0 2
1 0 1

1 0 1
:::::::::::::::

1 0 1
2 0

0
BBBBBB@

1
CCCCCCA

= − 2I + P

ð10Þ

where I is identitymatrix. Assuming that columnsofA are normalized to
ℓ2 unit norm,minimization of Eq. (8)with respect to {s̲m}m=1

M yields the
following learning rules

P
s
mp 1

1 + α mð Þ
sm

aTmX
mð Þ−α mð Þ

sp 11×T + α mð Þ
sm PsmP

T
h i

+
: ð11Þ
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As opposed to pure components spectra the concentration matrix
is learned globally through minimization of Eq. (7) without any
constraints imposed on it. This yields the following learning rule for A

Ap XST SST + λIM
� �h i

+
ð12Þ

wherein after each iteration A is normalized to ℓ2 unit column norm. In
(12) IM is anM×M identity matrix and 11×T is row vector with all entries
equal to one. In Eqs. (11) and (12) [ξ]+=max{ε,ξ} (e.g., ε=10−16) is used
to prevent negative solutions for A and S. Regularization constant λ in Eq.
(12) is used to improve ill-conditioning of thematrix SST and changes as a
function of the iteration index k as λk=λ0 exp(−k/τ)(with λ0=100 and
τ=0.02 in the experiments). Additional improvement in theperformance
of the NMF algorithms can be obtained when they are applied in the
multilayer mode [32,35,36], whereas sequential decomposition of the
nonnegative matrices is performed as follows. In the first layer, the basic
approximation decomposition is performed X ≅ A(1)S(1) ∈ R0+N×T. In
the second layer result from the first layer is used to build up new input
datamatrix for the second layerX←S(1)∈ R0+M×T yieldingX(1)≅A(2)S(2)∈
R0+M ×T. After L layers the data decomposes as follows

XiA 1ð ÞA 2ð Þ: : :A Lð ÞS Lð Þ
: ð13Þ

Thus, learning rules Eqs. (11) and (12) can be combined with
multilayer mode of operation Eq. (13) constituting multilayer HALS
NMF algorithm. Performance of the NMF algorithm critically depends
on the strategy employed to select initial values forA and S. The reason
is that cost functions (7) and (8) are convex with respect to A or S but
not with respect to both of them. This increases chance, especially in a
case of large scale problems, that NMF algorithmwill be stuck in local
minima yielding poor performance. Therefore, a multistart initializa-
tion procedure is proposed to alleviate these problems. It includes
number of random guesses for A and S. For each random guess chosen
const function is minimized. In addition to squared Euclidean distance
another cost function such as one based on generalized Kullback-
Leibler divergence can be chosen for this purpose, [33]. We select as
initial values for A and S the combination that yields minimum of the
chosen cost function within predefined number of iterations. The
multistart procedure is briefly outlined below:

Select: number of restart R, number of alternating steps Ki and
number of final alternating steps Kf
for r=1 to R do
Initialize randomly A(0) and S(0)

{A(r),S(r)}←nmf_algorithm(X,A(0),S(0),Ki);
compute dr=D(X∥A(r)S(r));

end
rmin=argmin1≤ r≤R dr;
{A,S}←nmf_algorithm(X,A(rmin),S(rmin), Kf);

3. Experimental

3.1. Software environment

Described approach for blind decomposition of FT-IR spectra that
includes data clustering and HALS NMF algorithm was tested using
custom scripts in MATLAB programming language (version 7.1.; The
MathWorks, Natick, MA). The SCA algorithms have been imple-
mented using linprog command from the Optimization toolbox for
problem (4), using interior point method for problem (5) with a
code provided at [37], and using gradient projection method with a
code provided at [38]. All programs were executed on PC running
under the Windows XP operating system using Intel Core 2 Quad
Processor Q6600 operating with clock speed of 2.4 GHz and 4 GB of
RAM installed.

3.2. FT-IR measurements

Amino acid derivatives Boc2–Tyr–NH2 (pure component c1), Boc–
Phe–NH2 (pure component c2) and Boc–Phe–NH–CH2–C≡CH (pure
component c3) and two mixtures, X1 (c1:c2:c3=3:3:1, w/w/w) and
X2 (c1:c2:c3=2:5:3, w/w/w) were prepared. The powered sample
was placed onto the ATR crystal and spectrum was recorded at a
resolution of 4 cm−1 on an ABB Bomem MB102 spectrometer,
equipped with CsI optics, DTGS detector, and a Specac 3000 Series
high stability temperature controller with heating jacket.

4. Results and discussion

To test the described approach to blind IR spectra decomposition,
structurally similar amino acid derivatives Boc2–Tyr–NH2 (pure
component c1), Boc–Phe–NH2 (pure component c2) and Boc–Phe–
NH–CH2–C≡CH (pure component c3), see Fig. 1, were chosen in this
study. As clearly seen in Fig. 1a to 1c, pure FT-IR spectra reflect high
degree of similarity, thus providing sufficiently challenging experi-
mental ground for mathematical algorithm. Number of pure compo-
nents is estimated from two mixtures, shown in Fig. 2, in wavelet
domain with the clustering algorithm described in Section 2.1. When
dispersion factor in Eq. (3) is set to σ=0.035 the number of the pure
components is estimated as M=3. The corresponding clustering
function given by Eq. (3) is shown in Fig. 3. The estimate of the
number of pure components remains stable when dispersion factor is
changed within σ=0.035±0.007. Thus, employed data clustering
algorithms is quite robust. Clustering function shown in Fig. 3 also
reveals that one pure component, 3, was contained in low concentra-
tions. However, it is quite realistic to expect that dispersion constant is
set sub-optimally in which case too many clusters could be generated.
Thus, we have to allow that some of themwill not correspondwith the
true components but can be outliers caused by chemical noise or other
types of imperfections that exist in experimental world. Hence, we
propose information-theoretic criteria called negentropy, [13], to
measure information content of to be estimated pure components and
rank them according to estimated negentropy measure. Negentropy is
differential entropy defined relatively to the entropy of the Gaussian
process. Approximation of negentropy for random process x is
obtained as

J xð Þ≈ C3 xð Þð Þ2
12

+
C4 xð Þð Þ2
48

ð14Þ

where C3(x) and C4(x) are third order and fourth order cumulants of
the random process x, [39]. Because we shall calculate negentropy of
the magnitude spectra of the estimated pure components in
frequency domain we use the definition for the cumulants for the
non-zero mean random process x

C3 xð Þ = E x3
h i

− 3E x½ �E x2
h i

+ 2E3 x½ �

C4 xð Þ = E x4
h i

− 4E x½ �E x3
h i

+ 12E2 x½ �E x2
h i

− 6E4 x½ �

ð15Þ

where E[x] in Eq. (15) denotes mathematical expectation of x. The
Gaussian random process is the least informative among the random
processes with unbounded support and has highest entropy. Hence,

http://www.stanford.edu/~boyd/l1_ls/
http://www.lx.it.pt/~mtf/GPSR


Fig. 1. Pure components FT-IR spectra: a) pure component c1 (Boc2–Tyr–NH2); b) pure
component c2 (Boc–Phe–NH2); c) pure component c3 (Boc–Phe–NH–CH2–C≡CH).

Fig. 2. FT-IR spectra of two mixtures: a) X1; b) X2.
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random processes that are informative are non-Gaussianwith the non-
zero negentropy measure. We intuitively expect that pure components
are informative. Thus, the estimated pure components that correspond
to the true pure components are expected to have significantly larger
negentropy than the negentropy of the outliers. Fig. 4 shows results
obtained by HALS NMF algorithm, Eqs. (11) and (12), in single layer
mode with regularization constants αsp

(m)=0.02 and αsm
(m)=0.05 after

2500 iterations where instead of M=3 pure components, as indicated
by clustering results shown in Fig. 3, we have assumed existence of
M=4 pure components. As clearly seen in Fig. 4d this extracted
component represents an outlier. Estimated negentropies of the first
three extracted pure components shown in Fig. 4a to c were 1.086×106,
1.3×105 and 1.97×106, while estimated negentropies of the true pure
components shown in Fig. 1a to c were 3.437×107, 9.902×107 and
1.365×108. Estimated negentropy of the outlier shown in Fig. 4d was
4.658×10−7. Hence, estimated component shown in Fig. 4d can be
easily detected as outlier.

We have experimented with multilayer implementation, Eq. (11),
extensively but no significant improvement in the separation quality
was obtained. We contribute this to the fact that level of sparseness
between pure components FT-IR spectra was not high enough. As
demonstrated in [32,35] the multilayer implementation really helps to
find solution that is sparser than one obtained in single layer mode.
However, if true pure components are not sparse enough multilayer
implementation could not help. That is why we have proposed HALS
NMF algorithm that simultaneously imposes sparseness and smooth-
ness constraints on the pure components. For the purpose of
comparative performance analysis we have tested linear programming,



Fig. 3. Clustering function, Eq. (3), for two mixtures shown in Fig. 2 transformed in wavelet domain. Dispersion factor was set to σ=0.035. Three peaks indicate existence of three
pure components spectra in two mixtures.

Fig. 4. FT-IR spectra of three pure components extracted by HALS NMF algorithm Eqs. (9) and (10): a) pure component c1; b) pure component c2; c) pure component c3; d) outlier.
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Fig. 5. FT-IR spectra of three pure components extracted by linear programming-based
SCA algorithm in wavelet domain: a) pure component c1; b) pure component c2;
c) pure component c3.

Fig. 6. FT-IR spectra of three pure components extracted by interior point method-based
SCA algorithm in wavelet domain: a) pure component c1; b) pure component c2;
c) pure component c3.
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Eq. (4), based SCA approach to the same problem, as well as interior
point [29,37] and gradient projection [31,38] methods to solve ℓ1-
regularized least square problem (5). The concentration matrix was
estimated during data clustering phase. Figs. 5, 6 and 7 show corre-
sponding results. They are consistently similar what implies that lack of
sparseness betweenpure components andnot a noise iswhat affects the
quality of the SCA-based solution. To quantify quality of the used blind



Fig. 7. FT-IR spectra of three pure components extracted by gradient projection
method-based SCA algorithm in wavelet domain: a) pure component c1; b) pure
component c2; c) pure component c3.
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decomposition schemes we have calculated normalized correlation
coefficients between true pure components spectra shown in Fig. 1, and
pure component spectra estimated by HALS NMF algorithm, Fig. 4, and
SCA algorithm, Fig. 5. Correlation coefficients between corresponding
spectra in a case of HALS NMF algorithm were: 0.9101, 0.9804 and
0.9342. For linear programming-based SCA algorithm correlation
coefficients in the same order as before were: 0.8468, 0.822 and
0.2125. For interior point method-based SCA algorithm correlation
coefficients in the same order as beforewere: 0.8512, 0.8219 and 0.2100.
For gradient projection method-based SCA algorithm correlation
coefficients in the same order as before were: 0.8442, 0.8709 and
0.2396. Regularization constant in Eq. (5)was set to λ=0.1. Clearly, SCA
algorithms failed to extract the pure component 3, while the other two
pure components were extracted with significantly less accuracy than
by HALS NMF algorithm.

5. Conclusions

FCA-based approach using HALS NMF algorithm has been
proposed for blind extraction of more than two pure components
spectra in FT-IR spectroscopy measuring two mixtures only. This is
achieved by simultaneously imposing smoothness and sparseness
constraints on the pure components FT-IR spectra. This appears to be
the first time to report such result, because other blind decomposition
methods require the number of mixtures to be equal to or greater than
the unknown number of pure components. Unlike many existing BSS
methods that assume the number of pure components to be known in
advance, proposed FCA-based method estimates it by data clustering
algorithm in wavelet domain. Proposed FCA-based approach can be
used as a part of software packages for the analysis of FT-IR spectra
and identification of the chemical compounds.
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