
SIMULATION 
PRACTICE = THEORY 

ELSEVIER Simulation Practice and Theory 5 ( 1997) 137- I5 I 

A methodology for digital real time simulation of 
dynamic systems using modern DSPs 

KreSimir 6osiC a**, Ivica Kopriva a,1, Tomislav SikiC b~2 
a Faculty of Electrical Engineering. Vukovarsku 39, 10000 Zagreb, Croaria 

h Department of Mathematics, University of Zqreb, BijeniEka 30, 10000 ilagreb. Croatia 

Received 1 December 1994; revised 5 March 1996 

Abstract 

The speedup factor in real time simulation of dynamic systems using multiprocessor resources 
depends on: the architecture of the multiprocessor system, type of interconnection between paral- 
lel processors, numerical methods and techniques used for discretization and task assignment and 
scheduling policy. The minimization of the number of processors needed for real time simulation 
requires the minimization of processors times for interprocessor communications and efficient 
scheduling policy. Therefore, this article presents a methodology for the real time simulation of 
dynamic systems including a new pre-emptive static assignment and scheduling policy. The ad- 
vantages of applying digital signal processor with parallel architecture, for example TMS320C40, 
in real time simulation have been described. Some important issues in real time architectures 
necessary for efficient multiprocessor real time simulations, such as multiple I/O channels, con- 
current I/O and CPU processing, direct high speed interprocessor communications, fast context 
switching, multiple busses, multiple memories, and powerful arithmetic units are inherent to this 
processor. These features minimize interprocessor communication time and maximize sustained 
CPU performance. 

Keywords: Real time simulations; Parallel processing; Pre-emptive static scheduling policy; Hard deadline 
periodic tasks; Digital signal processors; Asynchronous parallel interprocessor communication 

* Corresponding author. 
’ Email: ikopriva@jagor.srce.hr. 
* Email: sikic@math.hr. 

0928-4869/97/$17.00 Copyright @ 1997 Elsevier Science B.V. Ali rights reserved. 
PII SO928-4869(96)00003-l 



138 K. &osiC et al./Sindttion Pructice und Theory 5 (1997) 137-151 

1. Introduction 

The current importance and interest for tactical training systems, distributed interactive 
simulation, virtual reality, man-in-the-loop training and hardware in the loop simulation 
require an efficient methodology for real time simulation using multiprocessor resources. 
These training or testing scenarios include a number of different moving objects, dy- 
namic systems or subsystems, which are characterized by the appropriate mathematical 
model. Efficient multiprocessor real time simulation of such complex mathematical mod- 
els requires their decomposition into clearly defined subsystems preserving physical and 
logical structure of the original problem. Such physical and logical decomposition rep- 
resents a systematic and effective technique for discovering and utilizing concurrence in 
parallel real time simulation of complex systems which have to be distributed among a 
number of processors. Such structural decomposition at the same time represents a basis 
for partitioning of the starting simulation problem into executable module/task units and 
their assignment and scheduling. The allocation of modules/tasks, which preserves the 
physical structure of the original model, minimizes interprocessor communication and 
makes testing and debugging of real time simulation problem much easier. 

The methodology by which a given simulation problem is partitioned, discretized, 
distributed, and activated determines the efficiency of multiprocessor implementation, 
i.e., the required number of microprocessors and percentage of their utilization. 

Minimization of the number of microprocessors needed for real-time simulation re- 
quires optimal utilization of each microprocessor as well as the minimization of their 
mutual intercommunications. The basic criterion for the task assignment and schedul- 
ing policy, the module/task deadlines and module/task workload parameters have been 
introduced. The module/task deadline is determined by the discretization period and 
presents the hard timing constraint imposed on the execution of each task while the 
module/task workload presents the required intensity of computations for module/task 
processing during the module/task deadline period. The new pre-emptive static algorithm 
for scheduling hard deadline periodic tasks is introduced. This algorithm, called clus- 
tering scheduling policy, approaches 100% of utilization factor, like dynamic deadline 
driven scheduling policy [3,9,10], but is at the same time easier for software imple- 
mentation as other static scheduling algorithms [ 3,10,14]. The starting global workload 
for multiprocessor implementation strongly depends on the applied numerical methods 
and techniques for discretization of the original continuous problem. This workload, 
using suitable numerical methods and techniques, can be minimized so that the arith- 
metic complexity of discretized model can be significantly reduced using highly efficient 
numerical methods, see [ 1,2,4,5,7,11]. 

2. Methodology for a multiprocessor real-time simulation 

Real time simulation of dynamic systems is essentially signal processing applica- 
tion composed of tasks with hard deadline periodic requests, and therefore, requires 
deterministic task executions, i.e., deterministic response times which are determined 
by task deadlines. Any breakthrough of these hard real time constraints may cause 



K. &siC et al./Simulation Practice and Theory 5 (1997) 137-151 139 

data losses and may throw the real time simulation into unknown states. Therefore, in 
real time simulation, hard real time constraints are the inherent part of the problem 
definition [ 1,3,9,10,13,14]. Failure to observe all timing constraints imposed on the 
modules/tasks deadlines leads to severe consequences and “may result in economic, 
human and ecological catastrophes” [ 151. Therefore, all timing constraints must be 
explicitly and clearly specified by modules/tasks computation times and corresponding 
deadlines. In that sense, each simulation task is characterized by a pair T and C, i.e., 
r, = (C, T), where T denotes discretization period, i.e., deadline period and C is task 
run-time. Real-time simulation requires that the latest possible completion time of each 
module/task is less than its deadline, i.e., C < T. “The scheduling problem is to specify 
an order in which the requests of a set of tasks are to be executed and the proces- 
sor to be used, with the goal of meeting all the deadlines with a minimum number 
of processors” [ 91, while “a scheduling algorithm is a set of rules that determine the 
task to be executed at a particular moment” [ IO]. The pre-run-time assignment and 
scheduling policy is applied to the task set in order to ensure the temporal correctness 
and optimal utilization of hardware resources required for real time implementation. In 
such timing organization there is no need for the task message synchronization since all 
tasks share the module/task variables at the precise moment of real time. To describe 
a more systematic approach to the real-time simulation using multiprocessor resources. 
the following definitions are introduced: 

Definition 1. The design objective function requires real-time simulation of a given 
problem with prescribed accuracy requirements using a minimal number of micropro- 
cessors. The objective function is simultaneously looking for: 

?? the discrete model with minimal workload characterization, 
?? the optimal utilization of each microprocessor separately, 
?? the minimization of microprocessor intercommunications. 

Definition 2. Module/task represents a logical and consistent portion of a global simu- 
lation problem. The module/task corresponds to some physical subsystems of the given 
simulation problem or some logical and consistent computational block which is defined 
by a corresponding mathematical model. The software module for implementation of 
each block is defined as a task. 

Definition 3. A module/task deadline represents the hard timing constraint imposed on 
the execution of each task. The corresponding time interval is equal to the discretization 
period and depends on the module dynamic, required accuracy, and applied numeri- 
cal methods. The module/task deadline cannot be violated in the real-time simulation 
process by any of the tasks. 

Definition 4. A module/task workload represents the amount of computation necessary 
for module equation processing, normalized to the module/task discretization period, 
i.e., the deadline interval. The formal definition of module/task workload is given by 



140 K. &osiC et al. /Simulation Practice and Theory 5 (I 997) 137-151 

w$‘= ; 0 *cj, i= I)...) n, 
I 

where T, and Ci represent the discretization and implementation period for ith mod- 
ule/task. 

Definition 5. A global workload represents the amount of computation necessary for 
real time simulation of all modules/tasks which constitute mathematical model which is 
the objective of real-time simulation. The formal definition of global workload is given 

by 
II 1 a > z 

. c;. 
i=l 

A large number of dynamic modules which participate in typical training or 
scenarios very often cause that the global/system workload is characterized by 

II 
m< c W$)<m+l, m>l. 

i=l 

This means that the real time simulation of such a system requires at least 
processors. 

(2) 

testing 

(3) 

m+ 1 

According to notation used in [9] the task set which is going to be scheduled is 
consisted of IZ tasks 71, . . . , T,,, each of which is represented by an ordered pair (Ci, q), 
where C; is the run-time, i.e., implementation time and 1; is the request period or 
deadline. By using this information, appropriate real-time scheduling algorithm makes 
its decisions explicitly on the temporal characteristics of the task set. Using these 
parameters, the level of computational granularity and the assignment and scheduling 
policy can be adapted to different workload characteristics. 

2.1. Clustering assignment and scheduling policy 

Modules/tasks with workload specification characterized by 

W$‘= 
0 

$ .Ci<l, i=l,..., nc, 
1 

are candidates for clustering-assignment policy, since they require only a fraction of 
a single processor frame time. Taking into account the impressive computing power 
of modern signal processors, such as TMS320C30/C40 or AD21020/60, many dy- 
namic modules or subsystems which participate in a real-time simulation scenarios have 
workload parameter significantly less than 1, and therefore, can be clustered together 
and assigned to the same processor. Time metrics for this policy are characterized by 
multiple deadlines because each subsystem is processed with sampling time, i.e., dead- 
line in accordance with its dynamic features. Task communications for this policy are 
characterized by predominantly local, i.e., innerprocessor communication. 



K. &CC et al./Simulation Practice and Theory 5 (1997) 137-151 141 

As every other scheduling policy, clustering scheduling policy must meet the deadlines 
assigned to each task in a cluster. In order to be schedulable, the task set or cluster must 
satisfy the following inequality: 

Since task communications are predominantly local the second term in (5) can be 
neglected. It was shown in [7] and it will be discussed later, that task switching 
time when clustering scheduling policy is implemented on TMS320C30/C40 is almost 
1000 times smaller than deadlines of typical dynamic systems. Therefore, the previous 
expression can be rewritten as follows: 

The special feature of the clustering scheduling policy is introducing basic cycle time 
TbC, which is the greatest common divisor of all deadlines of the related task set. By 
multiplying both sides of (6) with Tic, the following is obtained, 

which is the schedulability condition for clustering scheduling policy. This policy assigns 
to each task the amount of processing time per basic cycle Tbc which is equal to 

Unlike rate-monotonic scheduling policy [9,10], for this policy all tasks in the set are 
of equal priority. The task with greater request rate will in accordance with (8) get the 
greater part of basic cycle time. After Tbc elapses, the scheduling sequence is repeated 
in the same manner again. At the same time, the order of task execution over the basic 
cycle interval is of no importance. Using standard classification [ 3,9,10,14], clustering 
scheduling algorithm can be classified as static pre-emptive scheduling policy. Although 
all tasks have the same priority and order of execution is chosen arbitrarily, once the 
execution is started the predefined order of execution and pre-emption is not changed. 
This significantly simplifies software implementation of the clustering scheduling algo- 
rithm enabling small task switching time and is contrary to the deadline driven, i.e., 
dynamic scheduling algorithms [ 3,9,10], such as earliest deadline, least-laxity first and 
maximum-urgency-first algorithms. On the other hand it is possible to attain almost 
100% of utilization factor, which is the prime feature of dynamic scheduling algorithms. 
Although in [lo] it was stated explicitly that rate-monotonic priority assignment is 
optimum in the sense that no other fixed priority assignment rule can schedule a task 
set which cannot be scheduled by the rate- monotonic priority assignment, the follow- 
ing example will show that this statement is not true [ 11. Consider the four tasks set: 



142 K. &siC et al. /Sinzularion Practice and Theory S (1997) 137-151 

1 2 3 4 5 no Tbc 

Fig. I. Clustering and rate-monotonic scheduling policies 

rt = (0.1, l), 72 = (0.4,2), 73 = (1.2,4), 74 = (2.0,5). The parameters in brackets 
determine the tasks run-times and deadlines, respectively. According to the given defini- 
tion TbC = 1, and the amount of processing time per basic cycle is computed according 
to expression (8). The application of clustering and rate-monotonic scheduling policies 
to the presented task set is illustrated in Fig. 1. 

According to the schedulability test for rate-monotonic scheduling policy [ 3,9, lo], 
given task set is not schedulable under this policy. Fig. 1 illustrates this fact. After 5 
time units, 74 has yet not been completed. Although the order of execution for clustering 
scheduling policy is of no importance, it was intentionally given the same priority 
assignment like the rate-monotonic assignment policy. As can be seen from Fig. 1, the 
chosen priority scheme is fixed and the task set is still schedulable. This, however, is 
not true for rate-monotonic scheduling algorithm. 

The clustering assignment and scheduling policy is applied on the satellite attitude 
control system [ 6,7]. The mathematical model of satellite attitude control system dy- 
namic is composed of four subsystems according to Fig. 2. Those subsystems are treated 
as tasks in accordance with the previously described methodology. The discretization 
time or deadline of each subsystem/task corresponds to the time constants or dynamics 
of the related subsystem/task. The task run times and deadlines are given in millisec- 
onds. The rate and position sensors were integrated using AB-2 algorithm, the satellite 
equations of motions using modified Euler integration algorithm [ 61, and actuator dy- 

Fig. 2. Clustering scheduling policy applied to satellite attitude control system 



K. &CC et (11. /Sinmkution Pructice and Tlzeo~y 5 (I 997) 137-151 133 

namic using the state transition method. The complete model was implemented on the 
TMS320C30 based DSP card. The clustering partitioning and scheduling policy was ap- 
plied on the related four task set. All tasks were coded as C functions of type void. The 
object code of assembled mathematical model was linked with the scheduler object code. 
The information about execution time per basic cycle for each task, in accordance with 
clustering scheduling policy and expression (8)) was reported to the scheduler in the 
form of the number of timer ticks. This was achieved by using integer array with a re- 
served name. The clustering scheduling policy was implemented as timer interrupt driven 
software kernel. Variables necessary for task communication were declared as global. 
The worst case delay, introduced by scheduler during context switching, was 130 CPU 
cycles of the TMS320C30 signal processor [ 71. For 30 MHz version of C30 it means 
8.66 ,us. A similar or even better feature can be obtained on AD21020 or AD21060 
signal processors. For faster CPU clocks the scheduler delay approaches 4-5 pus, which 
can be neglected in relation to the task deadline since sampling times of a majority ot 
dynamic systems are in the millisecond range. 

The use of the clustering scheduling policy enables that each module be processed in 
real time corresponding to the module dynamics, assuming schedulability of the related 
tasks set with maximum utilization factor. Additionally, the use of explicit integration 
methods (AB-2, modified Euler, state-transition method) increase the level of compu- 
tational parallelism. Since I/O variables are declared global and are always available, 
because of the use of explicit integration methods, the computation is being performed 
asynchronously, i.e., parallel. Although the numerical complexity of the given example 
is low, it clearly illustrates the advantages of the simultaneous application of the clus- 
tering scheduling policy and explicit integration methods in real time simulation of the 
satellite attitude control system, and of control systems in general. 

2.2. Partitioning assignment and scheduling poliq 

Modules/tasks with workload specification characterized by 

w$‘= 
0 
; .C,>l, i=l,,.., np, 

I 

are candidates for a partitioning-assignment policy, since they require multiple processor 
units to satisfy the real time constraints. 

The basic property of the partitioning-assignment policy is characterized by the as- 
signment of multiple processors to one module, since such policy will be applied to 
modules with a high workload. With respect to time metrics, this policy is characterized 
by a single deadline, which must be met by all subtasks generated by the partitioning 
procedure. With respect to communications, this policy is characterized by a predomi- 
nantly interprocessor communication. 

The partitioning assignment policy splits a module with high computational intensity 
into a set of subtasks, which distributed on the multiprocessor resources enable real-time 
simulation. The number of processors actually assigned to such a module depends on: 
the workload intensity of the balancing of the assigned computations, the degree of 
coupling between equations distributed among different processors and the efficiency of 



144 K. &siC et al./Simulation Pructice and Theory 5 (1997) 137-151 

interprocessor communications. If differential equations assigned to the same processor 
are tightly coupled to each other, at the same time loosely coupled with differential 
equations assigned to other processors and if such allocation is well balanced, the speed 
up factor can approach the ideal maximum. 

The natural candidates for application of the partitioning assignment and scheduling 
policy are modules or systems described by partial differential equations (PDEs). The 
following example illustrates application of the partitioning assignment and scheduling 
policy and parallel processing platform, based on modern DSPs such as TMS32OC40 or 
ADSP21060, to the solution of the 3-D stationary transport model [ 81 described by 

-DAC(X) + V(X)VC(X) + KC(X) = q(X). (10) 

The above model is supplied with appropriate boundary conditions at the free surface, 
coastal boundary and bottom. The equation describes the steady state process induced by 
an input substance distribution in some bounded volume or basin. Eq. ( 10) was applied 
[ 81 to the analysis of the lead distribution in the Punat Bay of the Adriatic Sea, the area 
of which is 2.4 km2. Here C(X) is the concentration field, V(X) is the current field, 
K is the extinction rate and q(X) is the input distribution. V is the gradient operator, 
denoting the derivatives with respect to coordinates x, y and z, and A is the Laplacian 
A = a2/dx2 + a*/Jy* + d2/dz2. To simplify computation, the basin is divided into n 
layers. The concentration in each layer is Ck (x, y ), k = 1,2, . . . , n. The general form of 
the discretization scheme of Eq. (10) is 

L 0 Cl + I ??c* = q, 

L.Ck+I.Ck+, =U*Ck_,, k=2,3 ,..., n- 1, (11) 

LOC, +pc, =uecfl__l, 

where L, U and I are matrices and p is a scalar. In this way the 3-D problem (10) is 
replaced by n 2-D coupled problems. It has been shown that satisfactory results could 
be achieved with IZ = 4 layers. To achieve required accuracy, the computation must be 
done in an iterative manner. It turned out that a dozen iterations is adequate to get an 
acceptably accurate solution. In the case of n = 4, the discretization scheme is given by 
(12), where the superscript (i = 1,2,. . . , 11, 12)) denotes the number of the iteration 
and the subscript denotes the number of the layer. 

L.Cf +I .c;-’ =q, 

L.c;+I.c;-’ =uec;, 
(12) 

L*c;+I.cy =uoc;, 

L.c~+pc;=u*c;. 

By using four processors, such as the TMS32OC40, each processor can perform one iter- 
ation. The implementation of Eq. (12) together with appropriate CPU interconnections 
is shown on Fig. 3. 

The problem is characterized by the following features. Each 2-D layer has 5000 
nodes. For solving all four layers the amount of 2.25 . lo8 multiplication/additions and 



K. &uiC et al./Simuhtion Practrce and Theory 5 (1997) 137-151 14.5 

CPU-A CPU-B CPU_C CPU-D 

Fig. 3. Four-processor implementation of the PDE discretization scheme. 

1.5 IO6 divisions are required. One TMS320C40 can perform the required number 
of operation in about 11 seconds. While single processor implementation requires 132 
seconds, implementing each iteration on one processor according to Fig. 3, it would be 
possible to perform all necessary computations in 41-42 seconds. The various number 
of different scenarios corresponding to the various current fields can be evaluated in 
a few minutes, which is very important for the decision making process. The average 
communication requirements of 8 . lo5 bit/s are easily satisfied since each TMS320C40 
DMA channel assures a bi-directional communication rate of up to 20Mbytes/s. The 
main difficulties are enormously big memory requirements, 40-60MWords per one 
processor. 

Time metrics in the partitioning assignment policy are characterized by a single 
deadline, and therefore, the partitioning scheduling policy is completely determined by 
the assignment policy. Modules/tasks with workload specification characterized by 

wr!2= k g 1 i=l,...,ns (nc+~rP+ns=n) 
( 0 

(13) 

require a single processor unit for real-time simulation. Therefore, such modules are 
assigned to one processor. 

On the basis of this assignment and scheduling policy, a global workload which 
constitutes modules with a different workload intensity, has to be distributed on a set ot 
signal processors according to the following formula, 

where 1 is the number of processors which will participate in a problem solution and gen- 
erally is 1 3 m + 1, Sk is some partition of set { 1,. , n} that includes all modules/tasks 
which constitute a simulation problem, W$) determines workload of interprocessor com- 
munications of processor k, and WiiA determines workload for task scheduling policy 
of processor k. 

The efficiency of pre-run-time assignment and scheduling policy can be measured by 
a multiprocessor resource utilization factors such as load imbalances of processors and 



146 K. &siL et al. /Simulation Practice and Theory 5 (I 997) 137-151 

by a ratio between scheduling time length and task computation times. On the basis 
of these criteria, some algorithms for automatic load balancing can be established. The 
main advantages of the pre-run-time scheduling strategy in hard real time simulations 
are: meeting all real time constraints and minimization of I/O communications and 
context switching time. 

Minimization of the number of signal processors needed for real-time simulation of 
a given problem requires minimization of processors times for interprocessor communi- 
cations and scheduling policy, i.e., 

$k’ + $k’ 
IO Sch + min. (15) 

Using a very fast clustering scheduling policy, implemented on the signal processor 
TMS320C30/C40 [ 71, and asynchronous interprocessor communications based on par- 
allel I/O ports and DMA coprocessors of TMS32OC40, expression (15) can be mini- 
mized. Consequently, the speed up factor in multiprocessor real time simulation using 
C40 signal processors can achieve nearly ideal linear approximation. 

3. Parallel processing development system with four TMS320C40s 

The main real-time system requirements for efficient multiprocessor real time sim- 
ulations are: multiple FIFO buffered I/O bi-directional channels, concurrent I/O and 
CPU processing, direct high speed interprocessor communications controlled by DMA 
coprocessors, fast context switching, multiple busses, multiple memories, and powerful 
arithmetic units. The TMS320C40 is one of the modern DSPs which satisfies the listed 
requirements [ 161. 

The primary benefit of the DMA coprocessor is to maximize sustained CPU perfor- 
mance by completely alleviating the CPU of burdensome I/O duties. DMA transfers 
data to and from any C40 memory mapped location (on-chip memory, external memory, 
input and output communication port registers, etc.), even routes data directly from one 
processor to another processor across communication ports, without interfering with the 
operation of the CPU. 

In this research, practical experimentation has been done using Texas Instruments 
parallel-processing development and debug tools. The research goal was to show that 
communication overhead specific for partitioning assignment policy can be almost ne- 
glected when real time simulation problem is implemented on the multiprocessor plat- 
form composed of modern signal processors such as TMS320C40. Although the demon- 
stration example can be considered trivial in order to illustrate the previous statement, 
the eight level FIFO buffer on each DMA communication channel supports implemen- 
tations, which are considerably demanding from the interprocessor communication point 
of view. The development tools provide easy-to-use real-time emulation and software 
development for parallel-processing architectures. These tools include: XDS5 10 parallel 
in-system emulator capable of debugging any number of processors in a system and 
PPDS. A block diagram of this system is shown in Fig. 4. 

The key features of the PPDS are: four on-board C40 parallel processors supported 
by a local bus consisting of 64 K x 32-bit words of zero wait-state SRAM and 8 Kbytes 



K. dosiC et al. /Simulr&n Pracrice and Theory 5 (1997) 137-151 

Fig. 4. TMS320C40 PPDS block diagram 

147 

of EPROM; 128 K x 32-bit words of one wait-state SRAM on a shared global bus; 
an expansion bus connector that provides an external interface to the shared global 
memory bus; direct connections between each C4Os through the communication ports; 
eight external communication connectors that provide an interface for connecting off- 
board C4Os and external peripherals to the PPDSs C4Os; a JTAG test connector that 
provides an interface for connecting the XDSSlO into a single ring with C4Os allowing 
debugging of all processors through a single interface. The XDS510 provides a separate 
debugger for each C40, allowing debugging of individual C4Os in C, assembly, or both 
simultaneously. The XDSSIO, and thus the PPDS, is used with IBM-compatible PCs 
using OS/2. The OS/2 must be used for the multitasking environment in order to 
simultaneously debug multiple processors. 

4. Asynchronous parallel interprocessor communications in real time simulation 

In order to illustrate the asynchronous interprocessor communications (inherent for 
partitioning-assignment policy) using parallel I/O ports and DMA coprocessors, let us 
consider the following four-task-four-processor real time simulation problem. 

Tusk, is defined by Eqs. (16) and represents an input signal with discretization period 
of lS/_Ls. 

u( 1) = sin( 20007rt) + sin( 70007rt). C 16) 

With discretization period of 15 ,US the 133 points ( ri, u( t,) ) of 2 ms-periodical function 
will be generated. Tusk2,3,4 are defined by Eqs. (17)-( 19) 

y1 (Z ) 0.53249~’ - 0.92657473~ + 0.44088439 
-= 
I*(z) Z* - 1.914135668~ + 0.960945215 ’ 

( 17) 



148 K. &nsiC et al. /Simulation Practice and Theory 5 (1997) 137-151 

yz(z) 0.3547~~ - 0.595101032 + 0.282879754 -= 
Yl(Z) z* - 1.82317966~ + 0.865658384 ’ (18) 

ys (2 ) 0.2267 1 z2 - 0.378275279~ + 0.19988579482 
-= 
Y*(z) z2 - 1.64111158~ + 0.688403953 ’ 

(19) 

which represent lowpass digital Chebyshev filter sections obtained from an analog proto- 
type using MS1 method [ 21 with T = 15 pus. The discretization period of 15 ,us is equal to 
240 clocks (one clock is 62.5 ns). Using the C Source Debugger [ 191 the implementa- 
tion times of Tusk1,2,3,4 have been precomputed using RUNB command, which measures 
the number of clocks between two breakpoints. The measurement results obtained by 
C Source Debugger show that 181 clocks for Tusk, and 183 clocks for other tasks are 
required. On the basis of this information, it is easy to precompute module/task work- 
loads for all tasks as well as the global workload. For the discretization period of 15 ,us 
the workloads of the related tasks were Wi) = 0.754, Wh2) = Wg) = Wg) = 0.7625. 
Therefore, it can be written as follows: 

WE’+ W;) > 1 i,j= 1,2,3,4, i #j 

3 < w$) + w$) + w$) + w;) < 4. 
(20) 

On the basis of these equations, it is evident that the real time simulation of the given 
problem requires at least four processors. If we take into account TMS32OC40 abilities 
for asynchronous I/O communications, i.e., simultaneous CPU and I/O operations, that 
leads to W:,k) -+ 0, and the fact that there is no need for tasks clustering and scheduling 
overhead in this case, we can write W:,k) + W$ --f 0 for k = 1,2,3,4. The relatively 
small discretization period of 15 ,us is chosen intentionally to show that interprocessor 
communication time when using concurrent DMA channels can be neglected even at such 
high processing rates. This is, in a way, equivalent to the case with significantly lower 
processing rates, but with more demanding interprocessor communication requirements 
as it is the 3-D stationary transport problem described by Eqs. (lo)-( 12) and Fig. 3. 
Therefore, optimal task assignment policy in this example is given by one-task-one- 
processor and is shown in Fig. 5. 

The four-tasks-four-processor example has been implemented on PPDS TMS32OC40 
platform using C-language supported by runtime support library [ 171 and parallel run- 
time support library [ 181. Communication between PC and the PPDS TMS320C40 
platform is supported by the OS/2 operating system and C Source Debugger [ 191. 
DMA channels have been prepared for split mode and autoinitialization transfer. The 

~~~~~~~~, 

0 1 2 3 no. Tk 

Fig. S. Task distribution across CPU’s for parallel task execution. 



TMS320C40 A TMS320C40 B 

____________________---------------~ 
TMS320C40_D TMS320C40 C ._ 

Fig. 6. Real time simulation using PPDS TMS320C40 platform. 

split mode transforms one DMA channel into two DMA channels; primary and aux- 
iliary channel. The primary channel is dedicated for reading data from a location in 
the memory and writing it to an output communication port. The auxiliary channel is 
used for receiving data from an input communication port and writing it to a location in 
the memory. The DMA coprocessor controls and executes all processes concerning data 
transfer and autoinitialization. In order to start I/O communications, CPU has only to 
write bits 11 in DMA channel control register. As a consequence, output data transfer be- 
gins using the primary channel. The parallel start of all four processors is achieved with 
assembly routine syncuotzt.asm [ 121. After simultaneous start the processors begin with 
the real-time simulation under the control of timer interrupts. In interrupt routine each 
processor reads DMA local memory input value, computes new output values by using 
recursive equations of (16)-( 19), starts DMA coprocessor and waits a new interrupt. 
Auxiliary and primary DMA channels perform data transfer between designated PORTS 
and memory locations, according to Fig. 6. This figure illustrates implementation of the 
four task example on the PPDS platform. 

The timing diagram of this simulation scenario is shown by Fig. 7. From it is evident 
that: Tusk1,2,3,4 are activated by interrupt signal TINT and executed simultaneously, 
DMA auxiliary channels are activated by the “input channel ready” signal ICRDY, input 
and the output data are transferring under the control of the DMA coprocessor and 
CPU performs computations on the input data provided by DMA coprocessors in local 
memory without checking if they have been received or not. 

From recursive equations of ( 17) -( 19) it is evident that the values u( nt I), ~‘1 (nt I), 
y2( tz + 1) are not available at the time interval (n : n + 1) when computing output 
variables y1 (n + I), yz(n + I), y?(n + 1). To ensure the compatibility of real time 



150 K. C%osiC et al. /Simulation Practice and Theory 5 (I 997) 137-151 

I 
U I 

I 

To (k)= 15vs 

Fig. 7. Timing diagram of asynchronous CPU and DMA operations 

inputs without introducing time delay we were forced to use second-order extrapolation 
formula based on nth, ( IZ - 1) st and (n -2) nd values of u, yi , yz [ 4,5]. The extrapolated 
values were introduced instead of u (nf 1)) yi (n+ 1) , y2 (nf 1) in recursive equations of 
( 17)-( 19). Due to small discretization period of 15 ,LLS the sum of squares of deviation 
normalized on one discretization point was S = 4.18 . 10m5, which can be considered as 
satisfied accuracy. 

5. Conclusions 

The predictable task execution and deterministic response time are necessities in all 
hard real-time applications with stringent timing constraints. Therefore, a predictable 
deterministic computing algorithm based on the module/task constraints and new static 
allocation and scheduling algorithm have been introduced. This new pre-emptive static 
algorithm called clustering scheduling policy is intended for scheduling hard deadline 
periodic tasks. It approaches 100% of utilization factor like dynamic deadline driven 
scheduling algorithms, while at the same time remains easier for software implementa- 
tion like other fixed priority or static scheduling algorithms. Furthermore, the speedup 
factor in real time simulation using multiprocessor resources strongly depends on the 
architecture of the multiprocessor system, especially on the interconnection between 
parallel processors. Therefore, special attention has been paid to the asynchronous I/O 
communications. Parallel signal processors TMS320C40 allow simultaneous CPU and 
I/O operations using high-speed 8 bits communication ports and 6-channels DMA copro- 
cessor. DMA coprocessor maximizes sustained CPUs performance providing continuous 
data transfer between processors over I/O ports without any CPU intervention. Architec- 
ture of this processor is ideal for use in multiprocessor real-time simulation applications, 



such as hardware-in-the-loop testing, man-in-the-loop training and implementation of 
complex tactical trainers, which has been clearly illustrated. 

Acknowledgement 

The authors would like to thank Dr Nediad Limit from the Department of Math- 
ematics, University of Zagreb, for his suggestions related to the application of the 
partitioning assignment and scheduling policy on the example of the 3-D stationary 
transport problem. 

References 

[ I 1 K.K. t?osiC and R.M. Howe. Real time simulation using multiprocessor resources, in: Proc~~d~n~s ,!/ 
rhe 1991 Europecm Simulation Multiconference. Copenhagen, Denmark. 

12 1 K. (?osiC and 1. Kopriva, Some improvements of the state transition method in real-time simulation of 
linear systems, Truns. Sot. Cwnpuf. Simukuion 11 ( I ) ( 1994). 

13 1 A.D. Ferrani, Real-time scheduling algorithms, Dr. D&b’s J. (December 1994). 
[ 4 I A. Haraldsdottir and R.M. Howe, Mu&h Frcww Rate Intqratron (American Institute of Aeronautics 

and Astronautics Inc., 1988). 
15 I R.M. Howe, Dynamics of real-time digital simulation, Course Notes, Ann Arbor, MI, 1988. 
161 R.M. Howe and W.P. Kavanough, AD 100 simulation of a satellite attitude control system, ADI 

Application Rept., Ann Arbor, MI, 1989. 
17 I I.Kopriva. K. CosiC, A new approach to the low cost hardware-in-the-loop simulation, in: Procwdinp 

of/he 37th International Conference Corerncl, Croatia ( 1992) 43 l-435. 
18 1 T. LegoviC, N. LimiC and V. ValkoviC, Estimation of diffuse inputs to a coastal sea: Solution to an 

inverse modeling problem, Evuarine. Coustul Shelf Sci. 30 ( 1990) 619-634. 
19 1 C.L. Liu and S.K. Dhall, On a real-time scheduling problem, O/?er. Res. 26 ( I ) ( 1978). 

1 IO 1 C.L. Liu and J.W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment, 
J. ACM 20 (I) (197s) 46-61. 

1 I I 1 O.A. Palusinski. Simulation of dynamic systems using multirate integration techniques. Trcmx SN 
CompuI. Simukrtion 2 (4) ( 1985) 

I 12 1 R.M. Piedra, A parallel approach for solving matrix multiplication on the TMS320C4x. DSP Application 
Rept. (lit. number SPRA026). Texas Instruments Inc., 199 I. 

I I3 I L. Sha and J.B. Goodenough, Real-time scheduling theory and Ada, IEEE Conput. (April 1990) 53-62. 
I I-I I B. Sprunt, L. Sha and J. Lehoczky, Aperiodic task scheduling for hard-real-time systems. J. Kerr/-Time 

.(;)‘s~~m.~ 1 ( I ) ( 1989) 27-60. 
1 I5 1 J.A.StankoviC, Misconceptions about real-time-computing. IEEE Comput. (October 1988) IO-- IO. 
1 I6 I TMS320C4x User’s Guide (lit. number SPRU0.76). Texas Instruments Inc., 199 I. 
1 17 I TMS320 Floating-Point DSP Optimizing C Compiler User’s Guide (lit. number SPRU034). Texas 

Instruments Inc., I99 I. 
1 IX I TMS320C4x Parallel Runtime Support Library User’s Guide (lit. number SPRU084). Texas Instrument& 

Inc., 1992 
I I9 I TMS320C4x C Source Debugger User’s Guide (lit. number SPRlJOS4). Texas Instruments Inc., 19’12. 


