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A single-frame multichannel blind image deconvolution technique has been formulated recently as a blind
source separation problem solved by independent component analysis (ICA). The attractive feature of this ap-
proach is that neither origin nor size of the spatially invariant blurring kernel has to be known. To enhance the
statistical independence among the hidden variables, we employ multiscale analysis implemented by wavelet
packets and use mutual information to locate a subband with the least dependent components, where the basis
matrix is learned by means of standard ICA. We show that the proposed algorithm is capable of performing
blind deconvolution of nonstationary signals that are not independent and identically distributed processes.
The image poses these properties. The algorithm is tested on experimental data and compared with state-of-
the-art single-frame blind image deconvolution algorithms. Our good experimental results demonstrate the
viability of the proposed concept. © 2007 Optical Society of America
OCIS codes: 070.6020, 100.1830, 100.3020, 100.3190, 100.7410.

1. INTRODUCTION

The goal of image deconvolution is to reconstruct the
original image from an observation that is degraded by a
spatially invariant blurring process and noise. Neglecting
the noise term, the process is modeled as a convolution of
a blurring kernel h(s,t) with an original source image

flx,y) as

K K
gxy)= >, X, h(s,Ofx +s,y+1), (1)
s=—K t=—K

where K denotes the support size of the blurring kernel. If
the blurring kernel is known, few nonblind algorithms are
available to reconstruct the original image f(x ,y).1 How-
ever, it is not always possible to measure or obtain infor-
mation about the blurring kernel. That is why blind de-
convolution (BD) algorithms are important. They can be
divided into those that estimate the blurring kernel A(s,#)
first and then restore the original image by some of the
nonblind methods® and those that estimate the original
image f(x,y) and the blurring kernel simultaneously. To
estimate the blurring kernel, a support size has to be ei-
ther given or estimated. To use the appropriate paramet-
ric model of the blurring process, a priori knowledge
about the nature of the blurring process is quite often as-
sumed to be available.? It is not always possible to know
the characteristics of the blurring process. Methods that
estimate the blurring kernel and original image simulta-
neously use either statistical or deterministic priors of the
original image, the blurring kernel, and the noise.? This
leads to a computationally expensive maximum-
likelihood estimation wusually implemented by an
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expectation-maximization algorithm. In addition, exact
distributions of the original image required by the
maximum-likelihood algorithm are usually unknown.
One of the most representative algorithms from this class
is the blind Richardson—-Lucy (R-L) algorithm originally
derived for nonblind deconvolution of astronomical
images.?”4 It has been later formulated in Ref. 5 for BD
and then modified by an iterative restoration algorithm in
Ref. 6. This version of the blind R-L algorithm is imple-
mented in MATLAB command deconvblind. It will be used
in Section 3 for the comparison with the wavelet-packet
(WP) subband decomposition independent component
analysis (SDICA) approach. To overcome difficulties asso-
ciated with the standard BD algorithms, an approach was
proposed in Ref. 7 based on quasi-maximum likelihood
with an approximate of the probability density function.
It, however, assumed that the original image has sparse
or super-Gaussian distribution. This is generally not true
because image distributions are mostly sub-Gaussian. To
overcome that difficulty, applying a sparsifying transform
to a blurred image was proposed in Ref. 7. However, the
design of such a transform requires knowledge of at least
the typical class of images to which the original image be-
longs. In that case, training data can be used to design
the sparsifying transform.

Multivariate data analysis methods, such as indepen-
dent component analysisg’9 (ICA), might be used to solve
the BD problem as a blind source separation (BSS) prob-
lem, where the unknown blurring process is absorbed into
a mixing matrix. The advantage of the ICA approach
would be that no a priori knowledge about the origin and
size of the support of the blurring kernel is required.
However, the multichannel image required by ICA is not
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always available. Even if it is, it would require the blur-
ring kernel to be nonstationary, which is true for the blur
caused by atmospheric turbulence,® but it is not true for
the out-of-focus blurred images, for example. Therefore,
an approach to single-frame multichannel blind deconvo-
lution that requires minimum a priori information about
the blurring process and original image would be of great
interest.

A single-frame multichannel representation was pro-
posed in Ref. 11. It was based on a bank of 2D Gabor
filters'? because of their ability to realize multichannel
filtering. ICA algorithms have been applied in Ref. 11 to a
multichannel image in order to extract the source image
and two spatial derivatives along the x and y directions.
However, there is a critical condition that the source im-
age and their spatial derivatives must be statistically in-
dependent. In general, this is not true, as already ob-
served in Ref. 13. Consequently, the quality of the image
restoration by the proposed single-frame multichannel
approach depends on how well each particular image sat-
isfies the statistical independence assumption. Therefore,
an extension of the ICA approach formulated in Ref. 11 is
given in Refs. 14-16. In those papers, it has been shown
that single-frame multichannel BD can be formulated as
a nonnegative matrix factorization (NMF) problem with
sparseness constraints imposed on the unknown mixing
vector or source image.

We present here the multiscale SDICA approach to
blind image deconvolution. It follows ideas of the recently
formulated alg.;orithms”_21 for separation of statistically
dependent signals. One approach to solve such a problem,
and to relax the statistical independence assumption, is
to assume that the wideband source signals are depen-
dent, but there exist some narrow subbands where they
are independent. This assumption leads to SDICA. We re-
fer interested readers to Refs. 17-21 for specific details re-
lated to SDICA implementations. In this paper, we imple-
ment SDICA by multiscale decomposition using WPs?2
because of their computationally efficient implementation
through an iterative filter bank. The subband with the
least dependent subcomponents is detected by measuring
the mutual information between corresponding nodes in
the wavelet trees. We use the computationally efficient
small cumulant-based approximation of mutual informa-
tion. Owing to the fact that the WP is a linear transform,
the unknown basis or mixing matrix is obtained by the
standard ICA algorithm executed on the selected sub-
band. The source image is recovered by applying the in-
verse of the obtained basis matrix to the original multi-
channel representation of the observed (degraded) image.
The advantage of this approach to BD with respect to the
recently introduced NMF approach is that potential prob-
lems associated with the nonuniqueness of the matrix de-
composition and selection of sparseness constraints are
avoided. Once the subband with least dependent compo-
nents is detected, standard and well-understood ICA algo-
rithms can be used to learn the basis matrix.

The rest of the paper is organized as follows. We de-
scribe in Section 2 the multiscale SDICA approach to
blind image deconvolution. A comparative experimental
performance evaluation is given in Section 3 for sparse
and nonsparse images degraded by the out-of-focus blur.
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The multiscale SDICA BD algorithm is compared with
the blind single-frame R-L algor‘ithm,5’6 the single-frame
multichannel ICA BD algorithm,11 and the single-frame
multichannel NMF algorithm.'*® The most significant
conclusions are given in Section 4.

2. MULTISCALE SDICA BLIND
IMAGE DECONVOLUTION

Before proceeding to describe the multiscale SDICA BD

algorithm, we shall rewrite the image observation model
given by Eq. (1) in the lexicographical notation

g=Hf, 2

assuming an image dimensionality of M X N pixels, where
g.fe R%{N, He R%NXMN. The observed image vector g and
the original image vector f are obtained from their 2D
counterparts by the row-stacking procedure. Equation (2)
can be rewritten as

o -Ho H, H, 0 fo
g1 H, Hy, H, f;
g2 = H; H; H, f, ,
gy L O Hy | \fy1

(i Bisy hjs O

hin hjo hja

= hj’2 h_],l hj’o.
| 0 "'hj,O (3)

The matrix H is a block-Toeplitz matrix.?® It absorbs into
itself the blurring kernel h(s,#), assuming that at least
the size of it, K, is known. In Egs. (3), vectors g; and f;
represent jth rows of the corresponding 2D images. The
block-Toeplitz structure of H can be further approximated
by a block-circular structure:

HO H_1 H_2 Hl
Hl HO H_1
H = H2 Hl HO

H__l .. HO
hjo hj-1 hjs Ry
hj,l hj,o hj 1

hj,—l "‘hj,O (4)

This approximation introduces small degradations at the
image boundaries, but it enables expression of Eq. (2) by
circular convolution. This is crucially important for
frequency-domain implementations of deblurring algo-
rithms. We present here an updated equation of the blind
R-L algorithm.>® It will be used in Section 3 for compari-
son purposes. While in Ref. 5, Egs. (4) and (5), the R-L al-
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gorithm is implemented in the spatial domain on the
component level, we give the equivalent block implemen-
tation in the frequency domain:

HYY, = () (g o EF-))EY,

£ =[P o (H®T(g @ (HPED)))]. (5)

The symbol ® denotes componentwise multiplication, and
the symbol @ denotes componentwise division. The index
i is used to denote internal iteration of the blind R-L al-
gorithm, while £ denotes the main iteration index. Multi-
plicative update rules automatically ensure positivity of
both the blurring kernel and the reconstructed image. A
rescaled version of the blind R-L algorithm, which con-
verges faster, is obtained by the minimization of the gen-
eralized Kullback—Leibler divergence (also called I
divergence).?* We see from Egs. (5) the problem with the
blind R-L algorithm. Although the blurring kernel incor-
porated in the block-circulant matrix H is estimated from
the observed image, the support size K must be either
known or estimated. This difficulty can be resolved by
multivariate data analysis methods, such as ICA.%? Here,
the BD problem is treated as a BSS problem, where the
unknown blurring process is absorbed into a mixing ma-
trix. An approach has been proposed in Ref. 11 to obtain a
multichannel version of the observed image g, which is
required by ICA. It was based on a bank of 2D Gabor
filters,'? which were used because of their ability to real-
ize multichannel filtering. The Gabor filters have the fol-
lowing real and imaginary parts, respectively,

=1

w=

w=

=1

2

il
Nl
[

Vol. 24, No. 4/April 2007/J. Opt. Soc. Am. A 975

Rix.y) = G(x,y)cos( ;p(x,y)) ,

Itx,y) = G(x,y)sin(ggo(xm) , ®)
where
x2+y?
G(x,y)=eXP - 20_2 >

o T
olx,y)=x cos<§q> +y sin<§q>, qg=0,1,...,Q@-1.

The parameter g regulates one of the @ spatial orienta-
tions. The parameter o= V@, with w=1,2,... Q, regu-
lates one of the ) spatial frequencies. The 2D Gabor fil-
ters used in this paper are shown in Fig. 1 with Q=2 and
@=4. The first two rows show real and imaginary parts of
2D Gabor filters for w=1, and the last two rows show
them for w=2. Each column shows one of the four orien-
tations. Real and imaginary parts of the Gabor filters are
used as separate filters. The key insight in Ref. 11 was
that the original image f(x+s,y+t) can be approximated
by a Taylor-series expansion around f(x,y), giving

flac+ s,y +1) = flx,) + sfe(x,y) + 1, (x,) + $*frrl,y)
+ 1%, () + (7

This enables one to rewrite Eq. (1) as

W

q=4

Kl

Fig. 1. Gabor filters for two spatial frequencies, (=2, and four orientations, @ =4. The first two rows show real and imaginary parts of
2D Gabor filters for w=1, and the last two rows show them for w=2. Each column shows one of the four orientations.
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gl(x,y) = allf(x}y) + alfo(xay) + aley(x}y) + a14fxx(x’y)

+a15f;/y(x,y)+ Tty (8)

K <K K <K
where ay1=3__ g2 _gh(s,t), a19=2_ g2 _gsh(s,t), aig

=3K 5K th(s,t), a14=3K ;5K (s?h(s,t), and a5
=E§=_KE£_Kt2h(s,t). To have a clear notation, we have in-
dexed the degraded image g(x,y) in Eq. (8). f; and f, rep-
resent first-order spatial derivatives in the x and y direc-
tions, while f,, and f,, represent second-order spatial
derivatives. When Gabor filters are applied to a blurred
image, a new set of observed images is obtained:

81:1(%,Y) = a1 f,Y) + g fo(x,y) + agisfy(®,y)

+aa)aley) + agenslhy(@y) + o, 9
K <K
where =2 g2 gl (s,1), age1)2
=sK K shl(s,t) =sK SK' thi(s,t)
=2 ko= grSM\S L), A41)3= 2 gy gt \S,51), A(141)4

K oK' K oK'
=3 o2 os?hi(s,t), and ag15=3 o2 t7h(s,t).

hj(s,t) represents convolution of the appropriate /th Ga-
bor filter with h(s,t), K'=K+J-1, and J represents the
order of the Gabor filter. This leads to multichannel rep-
resentation:

T

g1 a1 ais a3 Q14 Q15
T
G g3 QAo Qo9 Qo3 Qoq Qo5
T a a a a a
€141 (L+1)1 (L+1)2 (L+1)8 (L+1)4 (L+1)5
fT
T
fx
T
X f =AF
1t - ’
XX
T
foy

(10

where G e Rgfl)XMN, Ae RBL:DXP, Fe RngN. P repre-
sents the number of the sources that ought to be esti-
mated.

We present here results and conditions necessary for
the stochastic differentiability of the random source sig-
nal £.%° Their importance is in establishing conditions for
the existence of the Taylor-series expansion [Eq. (7)] and
the linear mixture model (LMM) expression (10)]. We as-
sume that f has been obtained from its 2D counterpart by
the Peano—Hillbert space-filling curve,?® which is map-
ping that preserves neighborhood statistics. First, we
present two important results that relate (nonstationar-
ity) stationarity and linear signal representation. If the
signal f is stationary, it can be represented by the linear
space-invariant generative model:

R
fp)=> b(r)ep -7), (11)
r=0

where € represents an independent and identically dis-
tributed (i.i.d.) driving signal. The moving-average gen-
erative model of the order R can be replaced by the
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equivalent autoregressive or autoregressive moving-
average model with the order significantly less than R. If
the signal f is nonstationary, the linear signal model be-
comes space variant:

R
fp) =2, b(p,r)elp 7). (12)
r=0

We comment here that image f is a nonstationary signal
because its statistics vary locally; i.e., pdf(f(p1))
#pdf(f(pz)) when p; and p, differ significantly. It means
that for the image the first-order stationarity require-
ment does not hold.?> We also comment that image f is a
process with colored statistics; i.e., it is not an i.i.d. pro-
cess. This is consequence of the known phenomenon that
neighborhood pixels are usually highly correlated. Conse-
quently, its autocorrelation function pg(7) differs from the
delta function.

First-order spatial derivative f of the stationary signal
f is defined if the first-order derivative of the autocorrela-
tion function at the lag zero is zero; i.e., pg(0)=0. We point
out that this condition is not fulfilled for an i.i.d. process,
the autocorrelation function of which is a delta function.
Therefore, the Taylor-series expansion [Eq. (7)] for such a
signal does not exist. Consequently, the LMM model [ex-
pression (10)] also does not exist. Thus, i.i.d. signals can-
not be blindly deconvolved by the proposed algorithm. Be-
cause the image is not an i.i.d. process, it is not affected
by this finding. If the source image f is a stationary pro-
cess with colored statistics, it can also not be deconvolved
by the proposed algorithm. The stationary signal can be
represented by a linear space-invariant generative signal
model [Eq. (11)]. Assuming that b represents the impulse
response of the linear space-invariant signal generative
model, it is impossible to distinguish the blurring filter h
from the linear convolution of the blurring filter and mod-
eling filter: h+b. Thus, the proposed algorithm will decon-
volve the i.i.d. driving sequence . When the signal is sta-
tionary with colored statistics, the algorithm will have the
whitening effect. The presented analysis implies that sig-
nals amenable for BD by the proposed approach must be
nonstationary and non-i.i.d. processes. The image has
these properties. Thus, in regard to blind image deconvo-
lution we only have to prove existence of the Taylor-series
expansion [Eq. (7)] for the nonstationary non- i.i.d. pro-
cess. In Refs. 25 and 27 are derived conditions for stochas-
tic differentiability for stationary signals only. Provided
that space-varying filter b is stationary with respect to
the independent variable p, we can use the linear genera-
tive model of the nonstationary signal [Eq. (12)] to define
derivatives of the nonstationary signal. In such a case we
define

R G
for=3 — D ep-r). (13)
r=0 p

We can proceed with the higher-order derivatives if the
stochastic differentiability conditions for stationary signal
b are fulfilled.?>*” Therefore, for nonstationary signals,
Taylor-series expansion [Eq. (7)] and the LMM [expres-
sion (10)] exist. However, we cannot make a conclusion re-
garding statistical independence between a signal and its
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stochastic derivatives as is the case for the stationary
signa1.25 Thus, it is justified to use some of the methods
derived for enhancing statistical independence between
the hidden variables in the LMM [expression (10)]. In this
paper we propose an SDICA algorithm to solve this prob-
lem.

The ICA algorithms can be applied to expression (10) to
extract the source image f. We emphasize that the main
role of the Gabor filters in the LMM [expression (10)] is to
provide L+1 linearly independent measurements. The
other property of Gabor filters, to decompose input image
into sparse images, is not of crucial importance in the WP
SDICA approach to BD as it was in the NMF approach
with sparseness constraints.'* ¢ In this respect, the WP
SDICA approach is more robust with respect to the order
of Gabor filters. After initial testing, we set the order to
J="7. Regarding the higher-order terms in expansions
(7)—(9), it is evident that the order will influence the qual-
ity of the approximation of the degraded image. The
higher-order terms can be dropped from the expansion if
the size of the blurring kernel, K, is small or the source
image has negligible higher-order spatial derivatives.
This implies that a first-order approximation would be
valid only for a weak degradation process. In contrast, the
case with strong degradation and large K will require the
higher-order terms in the expansions (7) and (9). The
number of terms in the expansions is equivalent to the
number of unknown sources, P, in the BSS context. Be-
cause we know neither the strength of the degradation
nor the character of the source image in advance, this
number ought to be estimated. The standard procedure is
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to inspect singular values of the sample data covariance

matrix Rgg, where the hat sign denotes the sample
estimate.’ Alternatively, more sophisticated methods for
the estimation of the number of sources, such as Akaike’s
information criterion or minimum description length cri-

terion, may be also used.” The ijth entry of RGG is ob-
tained as
MN
[Rel; = vazzl gimgm),  i,je{l2,....L+1}.

The estimate of the number of sources, P, is obtained from
the singular values of RGG as

p
> o7
T
P t=1
=max| 737 <e€e|,
X
t
t=1

where € is some predefined threshold close to 1. We point
out that a greater number of sources will not influence
performance of the WP SDICA algorithm as long as P
<L+1. It will affect performance of the NMF algorithm
more significantly. This is due to the known property of
the NMF methods that the number of sensors, L+1, is to
be several times greater than the number of sources P.
Thus, we expect that the WP SDICA algorithm would per-
form better than NMF algorithms in the conditions of the
strong degradation.

T
—&— Super-Gaussian image

—— Zub-Gaussian image

Norralized value

i
0 2 4 B 3

Singular valus index

Fig. 2. Normalized singular values of the sample data covariance matrices of the multichannel images: crosses, defocused sub-Gaussian
image shown in Fig. 3; circles, defocused super-Gaussian image shown in Fig. 9.
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Fig. 3. Nonsparse (sub-Gaussian) image degraded by out-of-
focus blur obtained by a digital camera in manually defocused
mode.

We show in Fig. 2 singular values of the sample data
covariance matrices obtained from the multichannel ver-
sions, expression (10), for a defocused sub-Gaussian im-
age (Fig. 3) and a defocused super-Gaussian image (Fig. 9
below). In the case of the sub-Gaussian image, the first
three singular values contributed 92% of the overall en-
ergy (sum of all singular values). In the case of the super-
Gaussian image, the first three singular values contribute
71.4%, and the first five contribute 83% of the overall en-
ergy. This indicates that the defocusing degradation in
the experimental images was weak. Regarding other
types of the degradation, it has been demonstrated in Ref.
16 that the NMF algorithm with sparseness constraints
was successful in deblurring an image degraded by weak
atmospheric turbulence. The same linear multichannel
model given by expression (10) was used in that experi-
ment. There is no reason that WP SDICA will not work
for some other type of degradation, such as atmospheric
turbulence.

We emphasize that no a priori information about the
blurring kernel is assumed so far. There is, however, a
critical condition for the source images that must hold in
order for ICA algorithms to work. Images f, f, fy, f,, and
fyy must be statistically independent. This is, in general,
not true as first observed in Ref. 13 and later in Refs.
14-16. To use the ICA algorithm to solve the BD problem
of expression (10) as a BSS problem, we assume that the
wideband source signals f, £, fy, f;,, and fyy are depen-
dent, but there exist some narrow subbands where they
are less dependent. This is an assumption that has been
proven very successful in solving the BSS problem for sta-
tistically dependent sources.!” ! It has been introduced
on the basis of empirical evidence, which shows that mul-
tichannel signals usually have the concentration of statis-
tical dependence much higher in the low-frequency part of
the spectrum than in the high-frequency part of it. This
empirical evidence can be easily verified if an innovations
filter is found from the multichannel model [expression
(10)]. The innovations have the property of being more
statistically independent than the original process as well
as being more non-Gaussian. Because of that property,
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they were proposed in Ref. 28 as a method to increase the
accuracy of the standard ICA algorithms. The innovations
filter, also known as the prediction-error filter, is found
from the multichannel model by means of Levinson’s
algorithm.29 The filter is adapted to the local statistical
conditions and has higher attenuation in the parts of the
spectrum where statistical dependence is higher.

An adaptive subband decomposition scheme, such as
produced by WP, should be successful in finding the sub-
band with the least dependent components. We use the
linearity property of the WP to transform data model [ex-
pression (10)] into

WP(G) = AWP(F). (14)

This property was exploited extensively in the various
versions of the sparse ICA. It has been found that either
the WP or the short-time Fourier transform is very useful
for obtaining a new representation of data, which is
sparser than the original formulation. As has been shown,
executing ICA in the sparse domain produced more accu-
rate solutions for solving the linear instantaneous BSS
problem. It also enabled the solution of an underdeter-
mined (more sources than sensors) BSS problem.?*3* In
the particular case of the WP, we express each source im-
age in terms of its decomposition coefficients:

£5,,(8) = 2 huen(8), (15)
!

where j represents the scale level, £ represents the sub-
band index, n represents the source index, and [ repre-
sents the shift index. ¢,(¢) is the chosen wavelet, also
called the atom or element of the representation space,
and ¢}, , are decomposition coefficients. In our implemen-
tation of the described WP SDICA algorithm, we have
used shift-invariant 2D WP decomposition. Regarding the
type of the wavelet, we have also used symmlet522 with
eight vanishing moments. In accordance with the linear
image observation model of expression (10), the source
image f, in Eq. (15) belongs to the set
{f, £ty fxx . fyy, ... }. The multichannel observed image G

yy»
is expressed in the source image representation space as

g = 2 Yhuen(@. (16)
l

Let vectors y; and ¢; be constructed from the /th coeffi-
cients of the mixtures and sources, respectively. From ex-
pressions (10) and (15), and using the orthogonality prop-
erty of the functions ¢;(¢), we obtain

vi=Ac;. (17)

If additive noise is present, this relation holds approxi-
mately. From expressions (10) and (17), we see the same
relation between signals in the original domain and the
WP representation domain. Inserting Eq. (17) into expres-
sion (10) and using Eq. (15), we obtain

G, (& = AFj(9), (18)

as introduced by Eq. (14). For each component g, of the
multichannel observed image G, the WP transform will
create a tree with nodes that correspond to the subbands
at the appropriate scale. To select the subband with least
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dependent components f,, we measure the mutual infor-
mation between the corresponding nodes in the wavelet
trees. For this purpose, we use the small cumulant ap-
proximation of the Kullback—Leibler divergence. It repre-
sents an exact measure of the mutual information, and its
approximation is obtained under weak correlation and
weak non-Gaussianity assumptions®:

1

fi(gji,gé,...,g£+1)~z >, cum¥(g},g)
1sk<I<L+1
k#l
1 S
+— > (cum®(g},g}.g))
24l§k<l§L+1
k#1

+cum*(g}, g/,g))

1 S
+— > (cum®(g},g}.g}.g)
481£k<lsL+1
k#1
+ cum*(g}, g}, &), &)
+cum?®(g}, g},87,8)). (19)

In Eq. (19), cum() denotes second-, third-, and fourth-
order cross cumulants.?®3” The approximation of the joint
mutual information as the sum of pairwise mutual infor-
mation is commonly used in the ICA community to sim-
plify computational complexity of the linear instanta-
neous ICA algorithms.?® Once the subband with the least
dependent components is selected, we obtain either an es-

timation of the inverse of the basis matrix W or an esti-

mation of the basis matrix A by applying standard ICA
algorithms to the model of Eq. (18). Reconstructed source
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images I‘A‘, however, are obtained by applying W to the
original multichannel image G:

F=WG. (20)

We summarize the multiscale SDICA blind image decon-
volution approach in the following five steps:

1. Obtain the multichannel version G of degraded im-
age g by applying the 2D Gabor filter bank, expressions
(6)—(10).

2. Perform multiscale WP decomposition of each com-
ponent of the multichannel image G. A wavelet tree will
be associated with each component of G, Eqgs. (14)—(17).

3. Select the subband with the least dependent compo-
nents by estimating mutual information between corre-
sponding nodes (subbands) in the wavelet trees, expres-
sions (18) and (19).

4. Estimate the basis matrix A or its inverse W by ex-
ecuting the standard ICA algorithm for the linear static
problem on the selected subband, Eq. (18).

5. Obtain the deconvolved image by applying W to mul-
tichannel image G, Eq. (20).

3. EXPERIMENTAL RESULTS

We present in this section BD results for sub-Gaussian
and super-Gaussian images experimentally degraded by
the out-of-focus blur. The images have been acquired by a
digital camera in a manually defocused mode. We have
compared the multiscale SDICA blind image deconvolu-
tion algorithm with the blind R-L algorithm, single-frame
multichannel ICA blind image deconvolution algorithm,
and single-frame multichannel NMF algorithm.

Fig. 4. Multichannel version of the degraded image shown in Fig. 3, produced by the 2D Gabor filter bank shown in Fig. 1.
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Fig. 5. Nonsparse image reconstructed with the multiscale
SDICA algorithm.
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Fig. 6. Nonsparse (sub-Gaussian) image reconstructed by direct
application of the JADE algorithm to the linear multichannel
model [expression (10)].

We show in Fig. 2 normalized singular values of the

sample data covariance matrices RGG. The covariance
matrices were estimated from the multichannel represen-
tation, expression (10), of the sub-Gaussian defocused im-
age shown in Fig. 3 and super-Gaussian defocused image
shown in Fig. 9 (next page) Kurtosis of the sub-Gaussian
image is —1.76, while kurtosis of the super-Gaussian im-
age is 7.68. In the case of the sub-Gaussian image, the
first three singular values contribute 92% of the overall
energy. Therefore, in the blind image deconvolution of the
sub-Gaussian image in Fig. 3, by means of the linear mul-
tichannel model of expression (10) and the WP SDICA al-
gorithm, we have selected the number of sources P=3. In
the case of the super-Gaussian image in Fig. 9 the first
singular value that corresponds to the source image is
well distinguished while the next four singular values
have similar values. This would suggest that the number
of sources in the linear multichannel model of expression
(10) is P=5; i.e., second-order terms in the expansions in
expressions (4)—(6) exist. The first five singular values

Ivica Kopriva

contribute 83% of the overall energy. We note that, al-
though results reported for the super-Gaussian image
were obtained for P=5 sources, we have also tried recon-
struction with P=3 sources. There was no visible differ-
ence between the two restored images.

We show in Fig. 3 the blurred sub-Gaussian image ob-
tained by a digital camera in a manually defocused mode.
The multichannel version of the same image produced by
the 2D Gabor filter bank is shown in Fig. 4. Figure 5
shows the image reconstructed by the multiscale SDICA
algorithm, while Fig. 6 shows the image reconstructed by
the single-frame multichannel ICA algorithm.11 The
JADE algorithm?® has been used to perform ICA. The im-
age restored by the single-frame multichannel ICA algo-
rithm has poor quality due to already noted assumptions
made about the statistical independence between the
source image and its spatial derivatives. The JADE algo-
rithm has also been used to find the inverse of the basis
matrix at the subband selected by the multiscale SDICA
algorithm. The best subband has been found at the scale
level 2. Due to the computational complexity of the 2D
wavelet tree, the number of nodes grows as 4/, with j be-
ing the scale level. Hence, we did not proceed with decom-
position at level 3 or higher. There is, however, experience
from experiments with 1D signals, which shows that im-
provement in separation quality at higher decomposition
levels is not comparable with the increase of computa-
tional costs.

Figure 7 shows the image restored by the blind R-L al-
gorithm after five iterations with a circular blurring ker-
nel and radius of R=3 pixels. Because the blurred image
of Fig. 3 was not highly defocused, the blind R-L algo-
rithm with the kernel size of R=3 pixels produced good
results. But they were still inferior to the result produced
by the multiscale SDICA algorithm shown in Fig. 5. We
comment that the blind R-L algorithm had to be run sev-
eral times for different values of the size of the blurring
kernel R. Then the image with the best quality was cho-
sen. There are no such problems with the multiscale
SDICA algorithm. For the sake of completeness, we show
in Fig. 8 the image deconvolved by single-frame multi-
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Fig. 7. Nonsparse image reconstructed by the blind
Richardson—Lucy algorithm after five iterations with a circular
blurring kernel with radius of R=3 pixels.
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Fig. 8. Nonsparse image reconstructed with the single-frame
multichannel NMF algorithm.

Fig. 9. Sparse (super-Gaussian) image degraded by out-of-focus
blur obtained by a digital camera in manually defocused mode.
Image was acquired under low-light-level conditions.

channel NMF algorithms.mf16 This image is of compa-
rable quality with the image obtained by the multiscale
SDICA algorithm, except that the paradigm used to for-
mulate BD was completely different. The advantage of
the multiscale SDICA approach in relation to the NMF
approach with sparseness constraints is that problems
with the nonuniqueness of the factorization and selec-
tions of constraints are avoided. Once the subband with
least dependent components is selected, well-understood
algorithms for solving linear instantaneous BSS
problems®® are used to learn either the basis matrix or its
inverse. Also, if the inspection of the singular values indi-
cates that a greater number of sources ought to be used in
the linear multichannel model, the NMF algorithms
would require a greater order of the multichannel model
to retain the same level of the restoration quality. We note
that the images shown in Fig. 3 and 6-8 have already
been shown in Refs. 14-16. Some important references to
NMF with constraints are Refs. 40—42.

To illustrate performance of the described multiscale
SDICA algorithm for the blurred super-Gaussian images,
we have recorded the blurred image by a digital camera in
the manually defocused mode under low-light-level condi-
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tions. It is shown in Fig. 9. Figure 10 is the image recon-
structed by the multiscale SDICA algorithm. The image
was restored under conditions already described for Fig.
5. Figure 11 shows the image reconstructed by the single-
frame multichannel ICA algorithm,11 where the JADE
algorithm39 was used again to execute an ICA. Again, the
image restored by the single-frame multichannel ICA al-
gorithm has poor quality due to the assumptions made
about the statistical independence between the source im-
age and its spatial derivatives. Figure 12 shows the image
restored by the blind R-L algorithm after five iterations
with a circular blurring kernel and radius of R=3 pixels.
Because the blurred image in Fig. 9 was not highly defo-
cused, the blind R-L algorithm with the kernel size of R
=3 pixels produced a good result but still inferior to that
produced by the multiscale SDICA algorithm shown in
Fig. 10. Again, we comment that the blind R-L algorithm
had to be run several times for different values of the size
of the blurring kernel R. Then the image with the best
quality could be chosen. There are no such problems with
the multiscale SDICA algorithm. For the sake of com-
pleteness, we show in Fig. 13 the image deconvolved by
single-frame multichannel NMF allgorithms.lzl_16 This im-

Fig. 10. Sparse image reconstructed with the multiscale SDICA
algorithm.

Fig. 11. Sparse (super-Gaussian) image reconstructed by direct
application of the JADE algorithm to the linear multichannel
model [expression (10)].
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Fig. 12. Sparse image reconstructed by the blind Richardson—
Lucy algorithm after five iterations with a circular blurring ker-
nel with radius of R=3 pixels.

Fig. 13. Sparse image reconstructed with the single-frame mul-
tichannel NMF algorithm.

age is of comparable quality with the image obtained by
the multiscale SDICA algorithm except that the paradigm
used to formulate BD was completely different and has
potential problems avoided by the procedure introduced
in this paper. We note again that images shown in Figs. 9
and 11-13 have already been shown in Ref. 16.

4. CONCLUSION

A multiscale subband decomposition independent compo-
nent analysis approach to blind image deconvolution has
been derived. By relating statistical properties of the im-
age to the existence of the linear mixture model, we show
that the proposed algorithm is capable of performing
blind deconvolution of nonstationary and non-i.i.d. pro-
cesses. The image has these properties. In relation to
most blind image deconvolution algorithms, this approach
does not require information about the size of the blurring
kernel or the statistics of the unknown source image.
Thus, the algorithm is completely unsupervised. This
makes it attractive for applications in astronomy, medical
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imaging, microscopy, night vision, and other imaging mo-
dalities. Good experimental results with defocused sub-
Gaussian and super-Gaussian images confirmed the vi-
ability of the proposed approach to blind image
deconvolution.
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