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A single-frame multichannel blind image deconvolution technique has been formulated recently as a blind
source separation problem solved by independent component analysis (ICA). The attractive feature of this ap-
proach is that neither origin nor size of the spatially invariant blurring kernel has to be known. To enhance the
statistical independence among the hidden variables, we employ multiscale analysis implemented by wavelet
packets and use mutual information to locate a subband with the least dependent components, where the basis
matrix is learned by means of standard ICA. We show that the proposed algorithm is capable of performing
blind deconvolution of nonstationary signals that are not independent and identically distributed processes.
The image poses these properties. The algorithm is tested on experimental data and compared with state-of-
the-art single-frame blind image deconvolution algorithms. Our good experimental results demonstrate the
viability of the proposed concept. © 2007 Optical Society of America
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. INTRODUCTION
he goal of image deconvolution is to reconstruct the
riginal image from an observation that is degraded by a
patially invariant blurring process and noise. Neglecting
he noise term, the process is modeled as a convolution of

blurring kernel h�s , t� with an original source image
�x ,y� as

g�x,y� = �
s=−K

K

�
t=−K

K

h�s,t�f�x + s,y + t�, �1�

here K denotes the support size of the blurring kernel. If
he blurring kernel is known, few nonblind algorithms are
vailable to reconstruct the original image f�x ,y�.1 How-
ver, it is not always possible to measure or obtain infor-
ation about the blurring kernel. That is why blind de-

onvolution (BD) algorithms are important. They can be
ivided into those that estimate the blurring kernel h�s , t�
rst and then restore the original image by some of the
onblind methods1 and those that estimate the original

mage f�x ,y� and the blurring kernel simultaneously. To
stimate the blurring kernel, a support size has to be ei-
her given or estimated. To use the appropriate paramet-
ic model of the blurring process, a priori knowledge
bout the nature of the blurring process is quite often as-
umed to be available.2 It is not always possible to know
he characteristics of the blurring process. Methods that
stimate the blurring kernel and original image simulta-
eously use either statistical or deterministic priors of the
riginal image, the blurring kernel, and the noise.2 This
eads to a computationally expensive maximum-
ikelihood estimation usually implemented by an
1084-7529/07/040973-11/$15.00 © 2
xpectation-maximization algorithm. In addition, exact
istributions of the original image required by the
aximum-likelihood algorithm are usually unknown.
ne of the most representative algorithms from this class

s the blind Richardson–Lucy (R-L) algorithm originally
erived for nonblind deconvolution of astronomical
mages.3,4 It has been later formulated in Ref. 5 for BD
nd then modified by an iterative restoration algorithm in
ef. 6. This version of the blind R-L algorithm is imple-
ented in MATLAB command deconvblind. It will be used

n Section 3 for the comparison with the wavelet-packet
WP) subband decomposition independent component
nalysis (SDICA) approach. To overcome difficulties asso-
iated with the standard BD algorithms, an approach was
roposed in Ref. 7 based on quasi-maximum likelihood
ith an approximate of the probability density function.

t, however, assumed that the original image has sparse
r super-Gaussian distribution. This is generally not true
ecause image distributions are mostly sub-Gaussian. To
vercome that difficulty, applying a sparsifying transform
o a blurred image was proposed in Ref. 7. However, the
esign of such a transform requires knowledge of at least
he typical class of images to which the original image be-
ongs. In that case, training data can be used to design
he sparsifying transform.

Multivariate data analysis methods, such as indepen-
ent component analysis8,9 (ICA), might be used to solve
he BD problem as a blind source separation (BSS) prob-
em, where the unknown blurring process is absorbed into

mixing matrix. The advantage of the ICA approach
ould be that no a priori knowledge about the origin and

ize of the support of the blurring kernel is required.
owever, the multichannel image required by ICA is not
007 Optical Society of America



a
r
c
t
a
l
t
i

p
fi
fi
m
a
H
a
d
s
r
a
i
a
g
t
a
s
v

b
f
d
a
t
d
a
f
l
m
b
t
l
t
t
s
t
t
s
b
v
c
T
r
l
c
a
n
r

s
b
p
a

T
t
m
m
c

2
I
B
a
g

a
g
t
c
c

T
i
t
r
b
b

T
i
c
f
r
R
s

974 J. Opt. Soc. Am. A/Vol. 24, No. 4 /April 2007 Ivica Kopriva
lways available. Even if it is, it would require the blur-
ing kernel to be nonstationary, which is true for the blur
aused by atmospheric turbulence,10 but it is not true for
he out-of-focus blurred images, for example. Therefore,
n approach to single-frame multichannel blind deconvo-
ution that requires minimum a priori information about
he blurring process and original image would be of great
nterest.

A single-frame multichannel representation was pro-
osed in Ref. 11. It was based on a bank of 2D Gabor
lters12 because of their ability to realize multichannel
ltering. ICA algorithms have been applied in Ref. 11 to a
ultichannel image in order to extract the source image

nd two spatial derivatives along the x and y directions.
owever, there is a critical condition that the source im-
ge and their spatial derivatives must be statistically in-
ependent. In general, this is not true, as already ob-
erved in Ref. 13. Consequently, the quality of the image
estoration by the proposed single-frame multichannel
pproach depends on how well each particular image sat-
sfies the statistical independence assumption. Therefore,
n extension of the ICA approach formulated in Ref. 11 is
iven in Refs. 14–16. In those papers, it has been shown
hat single-frame multichannel BD can be formulated as

nonnegative matrix factorization (NMF) problem with
parseness constraints imposed on the unknown mixing
ector or source image.

We present here the multiscale SDICA approach to
lind image deconvolution. It follows ideas of the recently
ormulated algorithms17–21 for separation of statistically
ependent signals. One approach to solve such a problem,
nd to relax the statistical independence assumption, is
o assume that the wideband source signals are depen-
ent, but there exist some narrow subbands where they
re independent. This assumption leads to SDICA. We re-
er interested readers to Refs. 17–21 for specific details re-
ated to SDICA implementations. In this paper, we imple-

ent SDICA by multiscale decomposition using WPs22

ecause of their computationally efficient implementation
hrough an iterative filter bank. The subband with the
east dependent subcomponents is detected by measuring
he mutual information between corresponding nodes in
he wavelet trees. We use the computationally efficient
mall cumulant-based approximation of mutual informa-
ion. Owing to the fact that the WP is a linear transform,
he unknown basis or mixing matrix is obtained by the
tandard ICA algorithm executed on the selected sub-
and. The source image is recovered by applying the in-
erse of the obtained basis matrix to the original multi-
hannel representation of the observed (degraded) image.
he advantage of this approach to BD with respect to the
ecently introduced NMF approach is that potential prob-
ems associated with the nonuniqueness of the matrix de-
omposition and selection of sparseness constraints are
voided. Once the subband with least dependent compo-
ents is detected, standard and well-understood ICA algo-
ithms can be used to learn the basis matrix.

The rest of the paper is organized as follows. We de-
cribe in Section 2 the multiscale SDICA approach to
lind image deconvolution. A comparative experimental
erformance evaluation is given in Section 3 for sparse
nd nonsparse images degraded by the out-of-focus blur.
he multiscale SDICA BD algorithm is compared with
he blind single-frame R–L algorithm,5,6 the single-frame
ultichannel ICA BD algorithm,11 and the single-frame
ultichannel NMF algorithm.14–16 The most significant

onclusions are given in Section 4.

. MULTISCALE SDICA BLIND
MAGE DECONVOLUTION
efore proceeding to describe the multiscale SDICA BD
lgorithm, we shall rewrite the image observation model
iven by Eq. (1) in the lexicographical notation

g = Hf, �2�

ssuming an image dimensionality of M�N pixels, where
,f�R0+

MN, H�R0+
MN�MN. The observed image vector g and

he original image vector f are obtained from their 2D
ounterparts by the row-stacking procedure. Equation (2)
an be rewritten as

�3�

he matrix H is a block-Toeplitz matrix.23 It absorbs into
tself the blurring kernel h�s , t�, assuming that at least
he size of it, K, is known. In Eqs. (3), vectors gj and fj
epresent jth rows of the corresponding 2D images. The
lock-Toeplitz structure of H can be further approximated
y a block-circular structure:

�4�

his approximation introduces small degradations at the
mage boundaries, but it enables expression of Eq. (2) by
ircular convolution. This is crucially important for
requency-domain implementations of deblurring algo-
ithms. We present here an updated equation of the blind
-L algorithm.5,6 It will be used in Section 3 for compari-
on purposes. While in Ref. 5, Eqs. (4) and (5), the R-L al-
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orithm is implemented in the spatial domain on the
omponent level, we give the equivalent block implemen-
ation in the frequency domain:

Ĥi+1
�k� = ��f̂�k−1��T�g � �Ĥi

kf̂�k−1����Ĥi
�k�,

f̂i+1
�k� = �f̂i

�k�
� �H�k�T�g � �H�k�f̂i

�k�����. �5�

he symbol � denotes componentwise multiplication, and
he symbol � denotes componentwise division. The index
is used to denote internal iteration of the blind R-L al-
orithm, while k denotes the main iteration index. Multi-
licative update rules automatically ensure positivity of
oth the blurring kernel and the reconstructed image. A
escaled version of the blind R-L algorithm, which con-
erges faster, is obtained by the minimization of the gen-
ralized Kullback–Leibler divergence (also called I
ivergence).24 We see from Eqs. (5) the problem with the
lind R-L algorithm. Although the blurring kernel incor-
orated in the block-circulant matrix H is estimated from
he observed image, the support size K must be either
nown or estimated. This difficulty can be resolved by
ultivariate data analysis methods, such as ICA.8,9 Here,

he BD problem is treated as a BSS problem, where the
nknown blurring process is absorbed into a mixing ma-
rix. An approach has been proposed in Ref. 11 to obtain a
ultichannel version of the observed image g, which is

equired by ICA. It was based on a bank of 2D Gabor
lters,12 which were used because of their ability to real-

ze multichannel filtering. The Gabor filters have the fol-
owing real and imaginary parts, respectively,

ig. 1. Gabor filters for two spatial frequencies, �=2, and four o
D Gabor filters for �=1, and the last two rows show them for �
R�x,y� = G�x,y�cos��

�
��x,y�� ,

I�x,y� = G�x,y�sin��

�
��x,y�� , �6�

here

G�x,y� = exp�−
x2 + y2

2�2 � ,

��x,y� = x cos��

Q
q� + y sin��

Q
q�, q = 0,1, . . . ,Q − 1.

he parameter q regulates one of the Q spatial orienta-
ions. The parameter �=�2�, with �=1,2, . . . �, regu-
ates one of the � spatial frequencies. The 2D Gabor fil-
ers used in this paper are shown in Fig. 1 with �=2 and
=4. The first two rows show real and imaginary parts of

D Gabor filters for �=1, and the last two rows show
hem for �=2. Each column shows one of the four orien-
ations. Real and imaginary parts of the Gabor filters are
sed as separate filters. The key insight in Ref. 11 was
hat the original image f�x+s ,y+ t� can be approximated
y a Taylor-series expansion around f�x ,y�, giving

f�x + s,y + t� = f�x,y� + sfx�x,y� + tfy�x,y� + s2fxx�x,y�

+ t2fyy�x,y� + ¯ . �7�

his enables one to rewrite Eq. (1) as

tions, Q=4. The first two rows show real and imaginary parts of
ach column shows one of the four orientations.
rienta
=2. E
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g1�x,y� = a11f�x,y� + a12 fx�x,y� + a13 fy�x,y� + a14 fxx�x,y�

+ a15 fyy�x,y� + ¯ , �8�

here a11=�s=−K
K �t=−K

K h�s , t�, a12=�s=−K
K �t=−K

K sh�s , t�, a13

=�s=−K
K �t=−K

K th�s , t�, a14=�s=−K
K �t=−K

K s2h�s , t�, and a15
=�s=−K

K �t=−K
K t2h�s , t�. To have a clear notation, we have in-

exed the degraded image g�x ,y� in Eq. (8). fx and fy rep-
esent first-order spatial derivatives in the x and y direc-
ions, while fxx and fyy represent second-order spatial
erivatives. When Gabor filters are applied to a blurred
mage, a new set of observed images is obtained:

gl+1�x,y� = a�l+1�1 f�x,y� + a�l+1�2 fx�x,y� + a�l+1�3 fy�x,y�

+ a�l+1�4 fxx�x,y� + a�l+1�5 fyy�x,y� + ¯ , �9�

here a�l+1�1=�s=−K�
K� �t=−K�

K� hl��s , t�, a�l+1�2

�s=−K�
K� �t=−K�

K� shl��s , t�, a�l+1�3=�s=−K�
K� �t=−K�

K� thl��s , t�, a�l+1�4

�s=−K�
K� �t=−K�

K� s2hl��s , t�, and a�l+1�5=�s=−K�
K� �t=−K�

K� t2hl��s , t�.
l��s , t� represents convolution of the appropriate lth Ga-
or filter with h�s , t�, K�=K+J−1, and J represents the
rder of the Gabor filter. This leads to multichannel rep-
esentation:

�10�

here G�R0+
�L+1��MN, A�R0+

�L+1��P, F�R0+
P�MN. P repre-

ents the number of the sources that ought to be esti-
ated.
We present here results and conditions necessary for

he stochastic differentiability of the random source sig-
al f.25 Their importance is in establishing conditions for
he existence of the Taylor-series expansion [Eq. (7)] and
he linear mixture model (LMM) expression (10)]. We as-
ume that f has been obtained from its 2D counterpart by
he Peano–Hillbert space-filling curve,26 which is map-
ing that preserves neighborhood statistics. First, we
resent two important results that relate (nonstationar-
ty) stationarity and linear signal representation. If the
ignal f is stationary, it can be represented by the linear
pace-invariant generative model:

f�p� = �
r=0

R

b�r���p − r�, �11�

here � represents an independent and identically dis-
ributed (i.i.d.) driving signal. The moving-average gen-
rative model of the order R can be replaced by the
quivalent autoregressive or autoregressive moving-
verage model with the order significantly less than R. If
he signal f is nonstationary, the linear signal model be-
omes space variant:

f�p� = �
r=0

R

b�p,r���p − r�. �12�

e comment here that image f is a nonstationary signal
ecause its statistics vary locally; i.e., pdf�f�p1��
pdf�f�p2�� when p1 and p2 differ significantly. It means

hat for the image the first-order stationarity require-
ent does not hold.25 We also comment that image f is a

rocess with colored statistics; i.e., it is not an i.i.d. pro-
ess. This is consequence of the known phenomenon that
eighborhood pixels are usually highly correlated. Conse-
uently, its autocorrelation function �f�	� differs from the
elta function.
First-order spatial derivative ḟ of the stationary signal

is defined if the first-order derivative of the autocorrela-
ion function at the lag zero is zero; i.e., �̇f�0�=0. We point
ut that this condition is not fulfilled for an i.i.d. process,
he autocorrelation function of which is a delta function.
herefore, the Taylor-series expansion [Eq. (7)] for such a
ignal does not exist. Consequently, the LMM model [ex-
ression (10)] also does not exist. Thus, i.i.d. signals can-
ot be blindly deconvolved by the proposed algorithm. Be-
ause the image is not an i.i.d. process, it is not affected
y this finding. If the source image f is a stationary pro-
ess with colored statistics, it can also not be deconvolved
y the proposed algorithm. The stationary signal can be
epresented by a linear space-invariant generative signal
odel [Eq. (11)]. Assuming that b represents the impulse

esponse of the linear space-invariant signal generative
odel, it is impossible to distinguish the blurring filter h

rom the linear convolution of the blurring filter and mod-
ling filter: h�b. Thus, the proposed algorithm will decon-
olve the i.i.d. driving sequence �. When the signal is sta-
ionary with colored statistics, the algorithm will have the
hitening effect. The presented analysis implies that sig-
als amenable for BD by the proposed approach must be
onstationary and non-i.i.d. processes. The image has
hese properties. Thus, in regard to blind image deconvo-
ution we only have to prove existence of the Taylor-series
xpansion [Eq. (7)] for the nonstationary non- i.i.d. pro-
ess. In Refs. 25 and 27 are derived conditions for stochas-
ic differentiability for stationary signals only. Provided
hat space-varying filter b is stationary with respect to
he independent variable p, we can use the linear genera-
ive model of the nonstationary signal [Eq. (12)] to define
erivatives of the nonstationary signal. In such a case we
efine

ḟ�p� 	 �
r=0

R db�p,r�

dp
��p − r�. �13�

e can proceed with the higher-order derivatives if the
tochastic differentiability conditions for stationary signal

are fulfilled.25,27 Therefore, for nonstationary signals,
aylor-series expansion [Eq. (7)] and the LMM [expres-
ion (10)] exist. However, we cannot make a conclusion re-
arding statistical independence between a signal and its
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tochastic derivatives as is the case for the stationary
ignal.25 Thus, it is justified to use some of the methods
erived for enhancing statistical independence between
he hidden variables in the LMM [expression (10)]. In this
aper we propose an SDICA algorithm to solve this prob-
em.

The ICA algorithms can be applied to expression (10) to
xtract the source image f. We emphasize that the main
ole of the Gabor filters in the LMM [expression (10)] is to
rovide L+1 linearly independent measurements. The
ther property of Gabor filters, to decompose input image
nto sparse images, is not of crucial importance in the WP
DICA approach to BD as it was in the NMF approach
ith sparseness constraints.14–16 In this respect, the WP
DICA approach is more robust with respect to the order
f Gabor filters. After initial testing, we set the order to
=7. Regarding the higher-order terms in expansions

7)–(9), it is evident that the order will influence the qual-
ty of the approximation of the degraded image. The
igher-order terms can be dropped from the expansion if
he size of the blurring kernel, K, is small or the source
mage has negligible higher-order spatial derivatives.
his implies that a first-order approximation would be
alid only for a weak degradation process. In contrast, the
ase with strong degradation and large K will require the
igher-order terms in the expansions (7) and (9). The
umber of terms in the expansions is equivalent to the
umber of unknown sources, P, in the BSS context. Be-
ause we know neither the strength of the degradation
or the character of the source image in advance, this
umber ought to be estimated. The standard procedure is

ig. 2. Normalized singular values of the sample data covarianc
mage shown in Fig. 3; circles, defocused super-Gaussian image
o inspect singular values of the sample data covariance
atrix R̂GG, where the hat sign denotes the sample

stimate.9 Alternatively, more sophisticated methods for
he estimation of the number of sources, such as Akaike’s
nformation criterion or minimum description length cri-
erion, may be also used.9 The ijth entry of R̂GG is ob-
ained as

�R̂GG�ij =
1

MN �
m=1

MN

gi�m�gj�m�, i, j � 
1,2, . . . ,L + 1�.

he estimate of the number of sources, P̂, is obtained from
he singular values of R̂GG as

P̂ = max
p ��

t=1

p

�t
2

�
t=1

L+1

�t
2


 � ,

here � is some predefined threshold close to 1. We point
ut that a greater number of sources will not influence
erformance of the WP SDICA algorithm as long as P
L+1. It will affect performance of the NMF algorithm
ore significantly. This is due to the known property of

he NMF methods that the number of sensors, L+1, is to
e several times greater than the number of sources P.
hus, we expect that the WP SDICA algorithm would per-

orm better than NMF algorithms in the conditions of the
trong degradation.

ices of the multichannel images: crosses, defocused sub-Gaussian
in Fig. 9.
e matr
shown
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We show in Fig. 2 singular values of the sample data
ovariance matrices obtained from the multichannel ver-
ions, expression (10), for a defocused sub-Gaussian im-
ge (Fig. 3) and a defocused super-Gaussian image (Fig. 9
elow). In the case of the sub-Gaussian image, the first
hree singular values contributed 92% of the overall en-
rgy (sum of all singular values). In the case of the super-
aussian image, the first three singular values contribute
1.4%, and the first five contribute 83% of the overall en-
rgy. This indicates that the defocusing degradation in
he experimental images was weak. Regarding other
ypes of the degradation, it has been demonstrated in Ref.
6 that the NMF algorithm with sparseness constraints
as successful in deblurring an image degraded by weak
tmospheric turbulence. The same linear multichannel
odel given by expression (10) was used in that experi-
ent. There is no reason that WP SDICA will not work

or some other type of degradation, such as atmospheric
urbulence.

We emphasize that no a priori information about the
lurring kernel is assumed so far. There is, however, a
ritical condition for the source images that must hold in
rder for ICA algorithms to work. Images f, fx, fy, fxx, and
yy must be statistically independent. This is, in general,
ot true as first observed in Ref. 13 and later in Refs.
4–16. To use the ICA algorithm to solve the BD problem
f expression (10) as a BSS problem, we assume that the
ideband source signals f, fx, fy, fxx, and fyy are depen-
ent, but there exist some narrow subbands where they
re less dependent. This is an assumption that has been
roven very successful in solving the BSS problem for sta-
istically dependent sources.17–21 It has been introduced
n the basis of empirical evidence, which shows that mul-
ichannel signals usually have the concentration of statis-
ical dependence much higher in the low-frequency part of
he spectrum than in the high-frequency part of it. This
mpirical evidence can be easily verified if an innovations
lter is found from the multichannel model [expression
10)]. The innovations have the property of being more
tatistically independent than the original process as well
s being more non-Gaussian. Because of that property,

ig. 3. Nonsparse (sub-Gaussian) image degraded by out-of-
ocus blur obtained by a digital camera in manually defocused
ode.
hey were proposed in Ref. 28 as a method to increase the
ccuracy of the standard ICA algorithms. The innovations
lter, also known as the prediction-error filter, is found
rom the multichannel model by means of Levinson’s
lgorithm.29 The filter is adapted to the local statistical
onditions and has higher attenuation in the parts of the
pectrum where statistical dependence is higher.

An adaptive subband decomposition scheme, such as
roduced by WP, should be successful in finding the sub-
and with the least dependent components. We use the
inearity property of the WP to transform data model [ex-
ression (10)] into

WP�G� = AWP�F�. �14�

his property was exploited extensively in the various
ersions of the sparse ICA. It has been found that either
he WP or the short-time Fourier transform is very useful
or obtaining a new representation of data, which is
parser than the original formulation. As has been shown,
xecuting ICA in the sparse domain produced more accu-
ate solutions for solving the linear instantaneous BSS
roblem. It also enabled the solution of an underdeter-
ined (more sources than sensors) BSS problem.30–34 In

he particular case of the WP, we express each source im-
ge in terms of its decomposition coefficients:

f kn
j ��� = �

l
cknl

j �jl���, �15�

here j represents the scale level, k represents the sub-
and index, n represents the source index, and l repre-
ents the shift index. �k��� is the chosen wavelet, also
alled the atom or element of the representation space,
nd ckml

j are decomposition coefficients. In our implemen-
ation of the described WP SDICA algorithm, we have
sed shift-invariant 2D WP decomposition. Regarding the
ype of the wavelet, we have also used symmlets22 with
ight vanishing moments. In accordance with the linear
mage observation model of expression (10), the source
mage fn in Eq. (15) belongs to the set
f ,fx ,fy ,fxx ,fyy , . . . �. The multichannel observed image G
s expressed in the source image representation space as

g kn
j ��� = �

l
y knl

j �jl���. �16�

et vectors yl and cl be constructed from the lth coeffi-
ients of the mixtures and sources, respectively. From ex-
ressions (10) and (15), and using the orthogonality prop-
rty of the functions �j���, we obtain

yl = Acl. �17�

f additive noise is present, this relation holds approxi-
ately. From expressions (10) and (17), we see the same

elation between signals in the original domain and the
P representation domain. Inserting Eq. (17) into expres-

ion (10) and using Eq. (15), we obtain

Gk
j ��� = AFk

j ���, �18�

s introduced by Eq. (14). For each component gn of the
ultichannel observed image G, the WP transform will

reate a tree with nodes that correspond to the subbands
t the appropriate scale. To select the subband with least
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ependent components fn, we measure the mutual infor-
ation between the corresponding nodes in the wavelet

rees. For this purpose, we use the small cumulant ap-
roximation of the Kullback–Leibler divergence. It repre-
ents an exact measure of the mutual information, and its
pproximation is obtained under weak correlation and
eak non-Gaussianity assumptions35:

Îc
j �g 1

j ,g 2
j , . . . ,g L+1

j � �
1

4 �
1�k
l�L+1
k�l

cum2�g k
j ,g l

j�

+
1

24 �
1�k
l�L+1
k�l

�cum2�g k
j ,g k

j ,g l
j�

+ cum2�g k
j ,g l

j,g l
j��

+
1

48 �
1�k
l�L+1
k�l

�cum2�g k
j ,g k

j ,g k
j ,gl

j�

+ cum2�gk
j ,gk

j ,gl
j,gl

j�

+ cum2�g k
j ,g l

j,g l
j,g l

j��. �19�

n Eq. (19), cum( ) denotes second-, third-, and fourth-
rder cross cumulants.36,37 The approximation of the joint
utual information as the sum of pairwise mutual infor-
ation is commonly used in the ICA community to sim-

lify computational complexity of the linear instanta-
eous ICA algorithms.38 Once the subband with the least
ependent components is selected, we obtain either an es-
imation of the inverse of the basis matrix Ŵ or an esti-
ation of the basis matrix Â by applying standard ICA

lgorithms to the model of Eq. (18). Reconstructed source

Fig. 4. Multichannel version of the degraded image shown
mages F̂, however, are obtained by applying Ŵ to the
riginal multichannel image G:

F̂ = ŴG. �20�

e summarize the multiscale SDICA blind image decon-
olution approach in the following five steps:

1. Obtain the multichannel version G of degraded im-
ge g by applying the 2D Gabor filter bank, expressions
6)–(10).

2. Perform multiscale WP decomposition of each com-
onent of the multichannel image G. A wavelet tree will
e associated with each component of G, Eqs. (14)–(17).
3. Select the subband with the least dependent compo-

ents by estimating mutual information between corre-
ponding nodes (subbands) in the wavelet trees, expres-
ions (18) and (19).

4. Estimate the basis matrix Â or its inverse Ŵ by ex-
cuting the standard ICA algorithm for the linear static
roblem on the selected subband, Eq. (18).
5. Obtain the deconvolved image by applying Ŵ to mul-

ichannel image G, Eq. (20).

. EXPERIMENTAL RESULTS
e present in this section BD results for sub-Gaussian

nd super-Gaussian images experimentally degraded by
he out-of-focus blur. The images have been acquired by a
igital camera in a manually defocused mode. We have
ompared the multiscale SDICA blind image deconvolu-
ion algorithm with the blind R-L algorithm, single-frame
ultichannel ICA blind image deconvolution algorithm,

nd single-frame multichannel NMF algorithm.

. 3, produced by the 2D Gabor filter bank shown in Fig. 1.
in Fig
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We show in Fig. 2 normalized singular values of the
ample data covariance matrices R̂GG. The covariance
atrices were estimated from the multichannel represen-

ation, expression (10), of the sub-Gaussian defocused im-
ge shown in Fig. 3 and super-Gaussian defocused image
hown in Fig. 9 (next page) Kurtosis of the sub-Gaussian
mage is −1.76, while kurtosis of the super-Gaussian im-
ge is 7.68. In the case of the sub-Gaussian image, the
rst three singular values contribute 92% of the overall
nergy. Therefore, in the blind image deconvolution of the
ub-Gaussian image in Fig. 3, by means of the linear mul-
ichannel model of expression (10) and the WP SDICA al-
orithm, we have selected the number of sources P=3. In
he case of the super-Gaussian image in Fig. 9 the first
ingular value that corresponds to the source image is
ell distinguished while the next four singular values
ave similar values. This would suggest that the number
f sources in the linear multichannel model of expression
10) is P=5; i.e., second-order terms in the expansions in
xpressions (4)–(6) exist. The first five singular values

ig. 5. Nonsparse image reconstructed with the multiscale
DICA algorithm.

ig. 6. Nonsparse (sub-Gaussian) image reconstructed by direct
pplication of the JADE algorithm to the linear multichannel
odel [expression (10)].
ontribute 83% of the overall energy. We note that, al-
hough results reported for the super-Gaussian image
ere obtained for P=5 sources, we have also tried recon-

truction with P=3 sources. There was no visible differ-
nce between the two restored images.

We show in Fig. 3 the blurred sub-Gaussian image ob-
ained by a digital camera in a manually defocused mode.
he multichannel version of the same image produced by

he 2D Gabor filter bank is shown in Fig. 4. Figure 5
hows the image reconstructed by the multiscale SDICA
lgorithm, while Fig. 6 shows the image reconstructed by
he single-frame multichannel ICA algorithm.11 The
ADE algorithm39 has been used to perform ICA. The im-
ge restored by the single-frame multichannel ICA algo-
ithm has poor quality due to already noted assumptions
ade about the statistical independence between the

ource image and its spatial derivatives. The JADE algo-
ithm has also been used to find the inverse of the basis
atrix at the subband selected by the multiscale SDICA

lgorithm. The best subband has been found at the scale
evel 2. Due to the computational complexity of the 2D
avelet tree, the number of nodes grows as 4j, with j be-

ng the scale level. Hence, we did not proceed with decom-
osition at level 3 or higher. There is, however, experience
rom experiments with 1D signals, which shows that im-
rovement in separation quality at higher decomposition
evels is not comparable with the increase of computa-
ional costs.

Figure 7 shows the image restored by the blind R-L al-
orithm after five iterations with a circular blurring ker-
el and radius of R=3 pixels. Because the blurred image
f Fig. 3 was not highly defocused, the blind R-L algo-
ithm with the kernel size of R=3 pixels produced good
esults. But they were still inferior to the result produced
y the multiscale SDICA algorithm shown in Fig. 5. We
omment that the blind R-L algorithm had to be run sev-
ral times for different values of the size of the blurring
ernel R. Then the image with the best quality was cho-
en. There are no such problems with the multiscale
DICA algorithm. For the sake of completeness, we show

n Fig. 8 the image deconvolved by single-frame multi-

ig. 7. Nonsparse image reconstructed by the blind
ichardson–Lucy algorithm after five iterations with a circular
lurring kernel with radius of R=3 pixels.
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hannel NMF algorithms.14–16 This image is of compa-
able quality with the image obtained by the multiscale
DICA algorithm, except that the paradigm used to for-
ulate BD was completely different. The advantage of

he multiscale SDICA approach in relation to the NMF
pproach with sparseness constraints is that problems
ith the nonuniqueness of the factorization and selec-

ions of constraints are avoided. Once the subband with
east dependent components is selected, well-understood
lgorithms for solving linear instantaneous BSS
roblems8,9 are used to learn either the basis matrix or its
nverse. Also, if the inspection of the singular values indi-
ates that a greater number of sources ought to be used in
he linear multichannel model, the NMF algorithms
ould require a greater order of the multichannel model

o retain the same level of the restoration quality. We note
hat the images shown in Fig. 3 and 6–8 have already
een shown in Refs. 14–16. Some important references to
MF with constraints are Refs. 40–42.
To illustrate performance of the described multiscale

DICA algorithm for the blurred super-Gaussian images,
e have recorded the blurred image by a digital camera in

he manually defocused mode under low-light-level condi-

ig. 8. Nonsparse image reconstructed with the single-frame
ultichannel NMF algorithm.

ig. 9. Sparse (super-Gaussian) image degraded by out-of-focus
lur obtained by a digital camera in manually defocused mode.
mage was acquired under low-light-level conditions.
ions. It is shown in Fig. 9. Figure 10 is the image recon-
tructed by the multiscale SDICA algorithm. The image
as restored under conditions already described for Fig.
. Figure 11 shows the image reconstructed by the single-
rame multichannel ICA algorithm,11 where the JADE
lgorithm39 was used again to execute an ICA. Again, the
mage restored by the single-frame multichannel ICA al-
orithm has poor quality due to the assumptions made
bout the statistical independence between the source im-
ge and its spatial derivatives. Figure 12 shows the image
estored by the blind R-L algorithm after five iterations
ith a circular blurring kernel and radius of R=3 pixels.
ecause the blurred image in Fig. 9 was not highly defo-
used, the blind R-L algorithm with the kernel size of R
3 pixels produced a good result but still inferior to that
roduced by the multiscale SDICA algorithm shown in
ig. 10. Again, we comment that the blind R-L algorithm
ad to be run several times for different values of the size
f the blurring kernel R. Then the image with the best
uality could be chosen. There are no such problems with
he multiscale SDICA algorithm. For the sake of com-
leteness, we show in Fig. 13 the image deconvolved by
ingle-frame multichannel NMF algorithms.14–16 This im-

ig. 10. Sparse image reconstructed with the multiscale SDICA
lgorithm.

ig. 11. Sparse (super-Gaussian) image reconstructed by direct
pplication of the JADE algorithm to the linear multichannel
odel [expression (10)].
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ge is of comparable quality with the image obtained by
he multiscale SDICA algorithm except that the paradigm
sed to formulate BD was completely different and has
otential problems avoided by the procedure introduced
n this paper. We note again that images shown in Figs. 9
nd 11–13 have already been shown in Ref. 16.

. CONCLUSION
multiscale subband decomposition independent compo-

ent analysis approach to blind image deconvolution has
een derived. By relating statistical properties of the im-
ge to the existence of the linear mixture model, we show
hat the proposed algorithm is capable of performing
lind deconvolution of nonstationary and non-i.i.d. pro-
esses. The image has these properties. In relation to
ost blind image deconvolution algorithms, this approach

oes not require information about the size of the blurring
ernel or the statistics of the unknown source image.
hus, the algorithm is completely unsupervised. This
akes it attractive for applications in astronomy, medical

ig. 12. Sparse image reconstructed by the blind Richardson–
ucy algorithm after five iterations with a circular blurring ker-
el with radius of R=3 pixels.

ig. 13. Sparse image reconstructed with the single-frame mul-
ichannel NMF algorithm.
maging, microscopy, night vision, and other imaging mo-
alities. Good experimental results with defocused sub-
aussian and super-Gaussian images confirmed the vi-
bility of the proposed approach to blind image
econvolution.
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