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Abstract  

Background 

Bioinformatics data analysis is often using linear mixture model representing samples 

as additive mixture of components. Properly constrained blind matrix factorization 

methods extract those components using mixture samples only. However, automatic 

selection of extracted components to be retained for classification analysis remains an 

open issue.  

Results 
The method proposed here is applied to  well-studied protein and genomic datasets of 

ovarian, prostate and colon cancers to extract components for disease prediction. It 

achieves average sensitivities of: 96.2 (sd=2.7%), 97.6% (sd=2.8%) and 90.8% 

(sd=5.5%) and average specificities of: 93.6% (sd=4.1%), 99% (sd=2.2%) and 79.4% 

(sd=9.8%) in 100 independent two-fold cross-validations.   

Conclusions 
We propose an additive mixture model of a sample for feature extraction using, in 

principle, sparseness constrained factorization on a sample-by-sample basis. As 

opposed to that, existing methods factorize complete dataset simultaneously. The 

sample model is composed of a reference sample representing control and/or case 

(disease) groups and a test sample. Each sample is decomposed into two or more 

components  that are selected automatically (without using label information) as 

control specific, case specific and not differentially expressed (neutral). The number 

of components is determined by cross-validation. Automatic assignment of features 

(m/z ratios or genes) to particular component is based on thresholds estimated from 

each sample directly. Due to the locality of decomposition, the strength of the 

expression of each feature across the samples can vary. Yet, they will still be allocated 
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to the related disease and/or control specific component. Since label information is 

not used in the selection process, case and control specific components can be used 

for classification. That is not the case with standard factorization methods. Moreover, 

the component selected by proposed method as disease specific can be interpreted as a 

sub-mode and retained for further analysis to identify potential biomarkers. As 

opposed to standard matrix factorization methods this can be achieved on a sample 

(experiment)-by-sample basis. Postulating one or more components with indifferent 

features enables their removal from disease and control specific components on a 

sample-by-sample basis. This yields selected components with reduced complexity 

and generally, it increases prediction accuracy.  

Background  
Bioinformatics data analysis is often based on the use of a linear mixture model 

(LMM) of a sample [1-15], whereas mixture is composed of components generated by 

unknown number of interfering sources. As an example, components can be generated 

during disease progression that causes cancerous cells to produce proteins and/or 

other molecules that can serve as early indicators (biomarkers) representing disease 

correlated chemical entities. Their correct identification may be very beneficial for an 

early detection and diagnosis of disease [16]. However, an identification of individual 

components within a sample is complicated by the fact that they can be "buried" 

within multiple substances. In addition to that, dynamic range of their concentrations 

can vary even several orders of magnitude [16], i.e., single components could no 

longer be recognizable [1]. Nevertheless, there are the algorithms able to extract either 

individual components or a group of components with similar concentrations within a 

sample. These algorithms are known under the name blind source separation (BSS) 

[17], and they commonly include independent component analysis (ICA) [18], and 
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nonnegative matrix factorization (NMF) [19]. However, BSS methods perform 

unsupervised decomposition of the mixture samples. Thus, it is not clear which of the 

extracted components are to be retained for further prediction/classification analysis. 

To this end, several contributions toward solution of this problem have been 

published in [1-5, 8]. In [1], a matrix factorization approach to the decomposition of 

infrared spectra of a sample is proposed taking into account class labels i.e., the 

classification phase and the components inference tasks are unified. Thus, the concept 

proposed in [1] is a classifier specific. It is formulated as the multiclass assignment 

problem where the number of components equals the number of classes and must be 

less than the number of samples available. As opposed to [1], the method proposed 

here selects automatically the case and control specific components on a sample-by-

sample basis. Afterwards, these components can be used to train arbitrary classifier. 

In [2] gene expression profile is modelled as a linear superposition of three 

components comprised of up-regulated, down-regulated and differentially not 

expressed genes, whereas existence of two fixed thresholds is assumed to enable a 

decision to which of the three components the particular gene belongs. The thresholds 

are defined heuristically and in each specific case the optimal value must be obtained 

by cross-validation. Moreover, the upper threshold cu and the lower one cl are 

mutually related through cu=1/cl. As opposed to that, the method proposed here 

decomposes each sample (experiment) into components comprised of up-regulated, 

down-regulated and not differentially expressed features using data adaptive 

thresholds. They are based on mixing angles of an innovative linear mixture model of 

a sample. The method proposed in [3] uses available sample labels (the clinical 

diagnosis of the experiments) to select component(s), extracted by independent 

component analysis (ICA) or nonnegative matrix factorization (NMF), for further 
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analysis. ICA or NMF are used to factorize the whole dataset simultaneously and one 

selected component (gene expression mode for ICA and metagene for NMF) is used 

for further analysis related to gene marker extraction. This component cannot be used 

for classification. Alternatively, basis matrix with labelled column vectors (for ICA) 

or row vectors (for NMF) can be used for classification in which case the test sample 

needs to be projected to space spanned by the column/row vectors, respectively. 

However, in this case no feature extraction can be performed. As opposed to 

ICA/NMF method proposed in [3], the method proposed here extracts disease and 

control specific component from each sample separately. Since no label information is 

used in the selection process, extracted components can be used for classification and 

that is the goal in this paper. The disease specific component can, however, be also 

retained for further biomarker related analysis as in [3]. The important difference is 

that by the method proposed here such component can be obtained from each sample 

separately while the method in [3], as well as in [4, 5, 8], needs the whole dataset. The 

method [4] uses again ICA (the FastICA algorithm [20]) to factorize the microarray 

dataset. Extracted components (gene expression modes) were analyzed to discriminate 

between those with biological significance and those representing noise. However, 

biologically significant components can be used for further gene marker related 

analysis but not for classification. The reason is that, as in [3], the whole dataset 

composed of case and control samples is reduced to several biologically interesting 

components only. In the extreme case it can only be one such component. In [5] the 

JADE ICA algorithm is used to decompose whole dataset into components (gene 

expression modes). As in [3, 4] these components cannot be used for classification. 

They are used for further decomposition into sub-modes to identify a regulating 

network in the problem considered there. We want to emphasize that the component 
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selected as disease specific by the method proposed here can also be interpreted as a 

sub-mode and used for the similar type of analysis. However, since it is extracted 

from an individual and labelled sample it can be used for the classification as well. 

That is the main goal in this paper. The method in [8] again uses ICA (the maximum 

likelihood with natural gradient [18]) to extract components (gene expression modes). 

Similarly, as in [3-5] these components are not used for a classification. Instead, they 

are further analyzed by data clustering to determine biological relevance and extract 

gene markers. Similar types of comments as those discussed in relation to [3-5, 8] can 

also be raised to other methods that use either ICA or NMF to extract components 

from the whole dataset, [6, 7, 10-12]. Hence, although related to the component 

selection methods [1, 3-5, 8] the method proposed here is dissimilar to all of them by 

the fact that it extracts most interesting components on a sample (experiment)-by-

sample basis. To achieve this, the linear mixture model (LMM) used for components 

extraction is composed of a test sample and a reference sample representing control 

and/or case group. Hence, a test sample is, in principle, associated with two LMMs. 

Each LMM describes a sample as an additive mixture of two or more components. 

Two of them are selected automatically (no thresholds needed to be predefined) as 

case (disease) and control specific, while the rest are considered neutral i.e. not 

differentially expressed. Decomposition of each LMM is enabled by enforcing 

sparseness constraint on the components to be extracted. This implies that each 

feature (m/z ratio or gene) belongs to the two components at most (disease and neutral 

or, control and neutral). The model formally presumes that disease specific features 

are present in the prevailing concentration in disease samples as well as that control 

specific features are present in prevailing concentration in control samples. However, 

the features do not have to be expressed equally strong across the whole dataset in 
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order to be selected as a part of disease or case specific components. It is this way due 

to the fact that decomposition is performed locally (on a sample-by-sample basis). 

This should prevent losing some important features for classification. Accordingly, 

the level of expression of indifferent features can also vary between the samples. 

Thus, postulating one or more components with indifferent features enables their 

removal that is sample adaptive. As opposed to that, existing methods try to optimize 

a single threshold for a whole dataset. Geometric interpretation of the LMM based on 

a reference sample enables automatic selection of disease and control specific 

components (Figure 1 in section 1.2), without using label information. Hence, the 

selected components can be further used for disease prediction. By postulating 

existence of one or more components with differentially not expressed features the 

complexity of the selected components can be controlled (see discussion in section 

1.7), whereas the overall number of components is selected by cross-validation. 

Although the feature selection is the main goal of the proposed method, component 

extracted from the sample as disease specific can also be interpreted as a sub-mode as 

in [3, 4]. It can be used for further biomarker identification related analysis. We see 

the linearity of the model used to describe a sample as a potential limitation of a 

proposed method. Although linear models dominate in bioinformatics, it has been 

discussed in [8] that nonlinear models might be more accurate description of 

biological processes. Assumption of an availability of a reference sample might also 

be seen as a potential weakness. Yet, we have demonstrated that in the absence of 

expert information the reference sample can be obtained by a simple average of all the 

samples within the same class. The proposed method is demonstrated in sections 1.4 

to 1.7 on disease prediction problems using a computational model as well as on the 
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experimental datasets related to a prediction of ovarian, prostate and colon cancers 

from protein and gene expression profiles.     

Methods 

This section derives sparse component analysis (SCA) approach to unsupervised 

decomposition of protein (mass spectra) and gene expression profiles using a novel 

mixture model of a sample. The model enables automatic selection of the two of the 

extracted components as case and control specific. They are retained for 

classification. In what follows, the problem motivation and definition are presented 

first. Then, LMM of a sample is introduced and its interpretation is described. 

Afterwards, a two-stage implementation of the SCA algorithm is described and 

discussed in details.  

1.1 Problem formulation  

As mentioned previously, bioinformatics problems often deal with data containing 

components that are imprinted in a sample by several interfering sources. As an 

example, brief description of endocrine signalling system, secreting hormones into a 

blood stream, is given in [1]. Likewise, reference [21] describes how different organs 

imprint their substances (metabolites) into a urine sample. As pointed out in [1] and 

[16] disease samples are combinations of several co-regulated components (signals) 

originating from different sources (organs) and disease specific component is actually 

"buried" within a sample. Hence we are dealing with the two problems 

simultaneously: a sample decomposition (component inference) problem and a 

classification (disease prediction) problem that is based on sample decomposition. 

Thus, automatic selection of one or more extracted components is of practical 

importance. It is also important that component selection is done without a use of 

label information in which case it can be used for classification.   
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 Matrix factorization is conveniently used in signal processing to solve 

decomposition problems [17-19]. It is assumed that data matrix ×∈ℝ
N KX is 

comprised of N row vectors representing mixture samples, whereas each sample is 

further comprised of K features (m/z ratios or genes).  It is also assumed that N 

samples are labelled: { }{ }
1

, 1, 1
NK

n n n
y

=
∈ ∈ −x ℝ ,  where 1 denotes positive (disease) 

sample and -1 stands for a negative (control) sample. Data matrix X is modelled as a 

product of two factor matrices: 

 

   X=AS        (1) 

 

where N M×∈A ℝ  and ×∈ℝ
M KS , and M represents an unknown number of components 

present in a sample. Each component { }
1=

∈ℝ
MK

m m
s  is represented by a row vector of 

matrix S. Nonnegative relative concentration profiles { }
1

MN
m m+ =

∈a ℝ are represented by 

column vectors of matrix A and are associated with the particular components. Here, 

it will be presented how innovative version of the LMM (1) of a sample { }
1

NK
n n=

∈x ℝ

enables automatic selection of the case (disease) and control specific components out 

of { } 1

M

m m=
s components extracted by unsupervised factorization method: a two stage 

SCA. The method will then be demonstrated on a computational model as well as on a 

cancer prediction problem using well known proteomic and genomic datasets.  

1.2 Novel additive linear mixture model of a sample  
The LMM (1) is widely used in various bioinformatics problems [1-15]. Unless 

constraints are imposed on A and/or S, the matrix factorization implied by (1) is not 

unique. Typical constraints involve non-Gaussianity and statistical independence 
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between components by ICA algorithms [6, 18], and non-negativity and sparseness 

constraints by NMF algorithms, [7, 11, 12, 19, 22, 23]. In addition to that, many ICA 

algorithms, as well as many NMF algorithms, also require the unknown number of 

components M to be less than or equal to the number of mixture samples N.  

Depending on the context, this constraint can be considered as restrictive. There are, 

however, ICA methods developed for the solution of underdetermined problems that 

are known as overcomplete ICA, see Chapter 16 in [18], as well as [24, 25]. However, 

as discussed in details in [18], overcomplete ICA methods also assume that unknown 

components are sparse. The two exemplary overcomplete ICA methods based on 

sparseness assumption are described in [24] and [25]. In [24] it is assumed that 

components are sparse and approximately uncorrelated (“quasi-uncorrelated”). This 

basically means that each feature belongs to one component only. That is even a fairly 

stronger assumption than what is used by the method proposed here. Likewise, in 

maximum likelihood (ML) approach to the overcomplete problem in [25] it is 

assumed that marginal distributions of the components are Laplacian. In this case the 

component estimation problem (assuming the mixing matrix is estimated by 

clustering) is reduced to linear program with equality constraint. In other words, a 

probabilistic ML problem is converted into a deterministic linear programming task. 

Hence, the overcomplete ICA effectively becomes SCA. This further justifies our 

choice of the state-of-the-art SCA method (described in section 1.3), to be used in a 

component extraction task. Here, we propose a novel type of the LMM model which 

is composed of two samples only: 

  

  control
control control

 
= 

 

x
A S

x
     (2a) 
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  disease
disease disease

 
= 

 

x
A S

x
     (2b) 

 

The first sample is a reference sample representing control group, control ∈ℝ
Kx ,  in 

(2a) and case (disease) group, disease∈ℝ
Kx ,  in (2b). The second sample is actual test 

sample: { }
1=

∈ ∈ℝ
NK

n n
x x .  Coefficients of matrices 2

control
M×

+∈A ℝ  and 2
disease

M×
+∈A ℝ  

in (2a) and (2b) refer to the amount of relative concentration at which related 

components are present in the mixture samples x and xcontrol in (2a) or x and xdisease in 

(2b). Source matrices control
×∈ℝ

M KS  and disease
×∈ℝ

M KS contain (as row vectors), 

disease- and control specific components and , possibly, differentially not expressed 

components. Number of components M is assumed to be greater than or equal to 2. 

Evidently, for M=2 existence of differentially not expressed components is not 

postulated. Importance of postulating components with indifferent features is to 

obtain less complex disease and control specific components used for classification 

(see also discussion in section 1.7). These components absorb features that do not 

vary substantially across the sample population. These features are removed 

automatically from each sample. The concentration is relative due to the fact that BSS 

methods enable estimation of the mixing and source matrices up to the scaling 

constant only. Therefore, it is customary to constrain the column vectors of the 

mixing matrix to unit ℓ2 or ℓ1 norm. The LMM proposed here is built upon an implicit 

assumption that disease specific features (m/z ratios or genes) are present in prevailing 

concentration in disease specific samples and in minor concentration in control 

specific samples. As opposed to that, control specific features are present in prevailing 
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concentration in control specific samples and in minor concentration in disease 

specific samples. Features that are not differentially expressed are present in similar 

concentrations in both control and disease specific samples. These groups of features 

constitute components, whereas similarity of their concentration profiles enables 

automatic selection of the components extracted by unsupervised factorization. The 

assumption on the prevailing concentrations of up- and down-regulated features needs 

to be understood in the relative sense. It is justified on the basis of locality of 

proposed method since the components are extracted on a sample-by-sample basis. 

Thus, to be allocated in the same component (a case or a control specific one) feature 

does not need to be expressed in each sample equally strong. Since the LMMs 

(2a)/(2b) considered here are comprised of two samples only the non-negative mixing 

vectors are confined in the first quadrant of the plane spanned by control reference 

sample and test sample, see Figure 1a, or by disease reference sample and test sample, 

see Figure 1b. Thus, upon decomposition of the LMM (2a) into M components, the 

one associated with the mixing vector that confines the maximal angle with respect to 

the axis defined by control reference sample is selected as a disease specific 

component, Figure 1a. As opposed to that, the one associated with the mixing vector 

that confines the minimal angle with respect to the axis defined by control reference 

sample is selected as a control specific component. When decomposition is performed 

with respect to a disease reference sample, LMM (2b), the logic for an angle-based 

automatic selection of disease and control specific components is the opposite, see 

Figure 1b. The components not selected as disease or control specific are considered 

neutral i.e. not differentially expressed. Thus, LMMs (2a)/(2b) enable automatic 

selection of the components extracted by unsupervised factorization of mixture 

samples. Unlike selection method presented in [2] that is based on fixed thresholds 
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which need to be determined by cross-validation, the thresholds (mixing angles) used 

in the method presented here are sample adaptive. An assumption that each feature is 

contained in disease specific and one of the neutral components, or control specific 

and one of the neutral components, represents a sparseness constraint. It enables 

solution of the related BSS problems through, in principle, two-stage SCA method 

described in section 1.3. However, sparseness constraint is not justified by 

mathematical reasons only but also, as emphasized in [3, 6, 11, 12], by the biological 

reasons. As noted in [6] this is necessary if underlying component (source signal) is 

going to be indicative of ongoing biological processes in a sample (cell, tissue, serum, 

etc.). The same conjecture has actually also been used in a three components based 

gene discovery method in [2]. In this respect, the sparseness constrained NMF 

methods for microarray data analysis proposed in [7, 11, 12] also assume the same 

working hypothesis. As discussed in [11, 12], it is the sparseness constraint that 

enabled biological relevance of obtained results. In microarray data analysis 

enforcement of sparseness constraint is biologically justified due to the fact that more 

sparse S gives rise to metagenes (if factorization is performed by NMF), or to the 

expression modes (if factorization is performed by ICA), that comprise few 

dominantly co-expressed genes which may indicate good local features for specific 

disease [11]. A subtle interpretation of the reference-based mixture model (2a)/(2b) 

reveals its several profound characteristics. Since placement of the features to each of 

the two or more postulated components is based on sample adaptive thresholds 

(decomposition is localized), one gene (or m/z ratio) may be highly up-regulated in a 

case of one sample and significantly less expressed in a case of an another sample. 

Yet, if it is contained in prevailing concentration in both samples it will be contained 

in both cases in the component automatically selected as disease or control specific. 
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Moreover, sample adaptive component (feature) selection enables that features 

selected as up- (or down)-regulated in one sample be less (or more) expressed than 

differentially not expressed features in another sample. Thus, extracted components 

selected as disease or control specific are composed of multiple features with different 

expression levels and joint discriminative power rather than of several (or even single) 

features only.     

  For disease prediction, disease and control specific components can be used 

to train  a classifier. The reason is that in each LMM (2a)/(2b) they are extracted with 

respect to different reference samples and, thus, carry on different but specific 

information. Hence, proposed method yields four components to be retained for 

classifier training. In accordance with Figure 1 they are denoted as disease
control ref.;ns , 

control
control ref.;ns , control

disease ref.;ns  and disease
disease ref.;ns , where n denotes index of a test sample xn used in 

current decomposition. Components extracted from N mixture samples, form four sets 

of labelled feature vectors as follows: { }disease
control ref.; 1

,
N

n n n
y

=
s , { }control

control ref.; 1
,

N

n n n
y

=
s , 

{ }control
disease ref.; 1

,
N

n n n
y

=
s and { }disease

disease ref.; 1
,

N

n n n
y

=
s . One or more classifiers can be trained on 

them and the one with the highest accuracy achieved through cross-validation is 

selected for a disease diagnosis.  

 Selection of the unknown number of components M  is generally non-trivial 

problem in a matrix factorization and is the part of a model validation procedure. M is 

selected through cross-validation and postulated to be 2, 3, 4 or 5 because it directly 

determines the number of features used for classification. This follows from 

previously described interpretation of the LMM (2a) and (2b). Since disease 

prediction is based on four components selected as disease and control specific it is 

important that they are composed of features with the high discriminative power. It 
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means that they should contain features which are truly disease or control specific. 

The component considered here as disease or control specific (as well as neutral) can 

actually be composed of features (m/z ratios or genes) belonging to multiple 

substances (metabolites, analytes) that share similar relative concentrations. This is 

practically important since it makes decomposition much less sensitive to an 

underestimation of the true total number of substances present in a sample. By setting 

the number of substances to predefined value M, proposed method is enforcing 

substances with similar concentrations to be linearly combined into one more 

complex components composed of disease, neutral or control specific features. 

Provided that concentration variability of these features across the samples is small, it 

would suffice to select overall number of components as M=3 or even M=2. (In the 

latter case, the existence of differentially not expressed features is not postulated at 

all). However, since we are dealing with biological samples it is more realistic to 

expect that relative concentrations could vary across the sample population. This is 

illustrated in Figures 1a and 1b by ellipsoids around vectors that represent average 

concentration profiles of each group of features (components). As seen from Figure 1, 

some features considered neutral can be present in the prevailing concentration in a 

certain number of samples than the features considered in a majority of the samples as 

disease (or control) specific. To partially remove such features from disease and/or 

control specific components, an unknown number of components M should be 

increased to M=4 or perhaps even to M=5. Thus, existence of two or three neutral 

components should be postulated. This is expected to yield less complex disease and 

control specific components and that is in agreement with the principle of parsimony 

(see also discussion in section 1.7). Model validation presented in section 1.4 suggests 

that this, indeed, is the case when concentration variability across the samples is 
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significant. When it comes to the real world datasets, the information about number of 

components will not be known in advance. The strategy to comply with this 

uncertainty is to use the cross-validation and to verify whether increased number of 

components M indeed contributed to increased accuracy in disease prediction.  

1.3 Sparse component analysis algorithm 
Proposed feature extraction/component selection method is based on a decomposition 

of LMMs (2a)/(2b) comprised of two samples (reference sample and test sample) into 

M≥2 components. From the BSS point of view this yields determined BSS problem 

when M=2 and underdetermined BSS problem, when M≥3 [26, 27, Chapter 10 in 17]. 

The enabling constraint for solving underdetermined BSS problems is a sparseness of 

the components and the methods are known under the common name as sparse 

component analysis (SCA) [26-29, Chapter 10 in 17]. As commented at the beginning 

of section 1.2 the overcomplete ICA, [Chapter 16 in 18, 24, 25], is basically reduced 

to SCA and also demands sparse sources. SCA has already been applied to microarray 

data analysis in [3, 6, 7, 11, 12]. It has also been used in [22, 23] to extract more than 

two components from the two mixture samples of nuclear magnetic resonance and 

mass spectra. A sparseness constraint implies that each particular feature point 

k=1,...,K (m/z ratio or gene) belongs to the several components only. To this end, for 

the two-samples based LMMs (2a)/(2b) used here, it is assumed that each feature 

point belongs to at most two components: either disease specific and neutral or 

control specific and neutral. From the viewpoint of biology, a plausibility of this 

assumption has been elaborated before.  

 Algorithmic approaches used to solve underdetermined BSS problem 

associated with (2a)/(2b) belong to the two main categories: (i) estimating 

concentration/mixing matrix and component matrix simultaneously by minimizing 
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data fidelity terms 
2

control control F
−X A S or 

2

disease diseaseF
−X A S , where X follows from 

the left side of (2a) or (2b). A minimization is usually done through the alternating 

least square (ALS) methodology with sparseness constraint imposed on source 

matrices Scontrol and Sdisease , [19, 22, 23, 30-32]; (ii ) estimating concentration/mixing 

matrices first by clustering and source/component matrices afterwards by solving 

underdetermined system of linear equations through minimization of the ℓp norm, 

0<p≤1 , of  the column vectors ∈ℝ
M

ks of  Scontrol and Sdisease , [25-29, 33-35].  As 

discussed in [6], a sparseness constrained minimization of the data fidelity term is 

sensitive to the choice of a sparseness constraint. On the other side, it has been 

recognized in [33-35] that accurate estimation of the concentration matrix enables 

accurate solution of even determined BSS problems. To this end, selection of feature 

points where only single component is present is of a special importance. At these 

points, feature vector and appropriate mixing vector are collinear. For example, if 

feature k belongs to component m then: ≈k m mksx a . Thus, clustering of a set of single 

component points (SCPs) ought to yield an accurate estimate of the mixing matrix. Its 

columns are represented by cluster centroids. It has been demonstrated in [33] that 

such estimation of the mixing matrix, where hierarchical clustering was used, yields 

more accurate solution of determined BSS problem: S=pinv(A)X, than the one 

obtained by ICA algorithms. Thus, selection of SCPs is of an essential importance for 

accurate estimation of the mixing matrix. Such feature points are identified from the 

overall number of K points using geometric criterion based on the notion that at them 

real and imaginary parts of the mixture samples point either in the same or in the 

opposite direction [33, 34]. Since protein (mass spectra) and gene expression levels 

are real sequences an analytic continuation [22] of mixture samples: 
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( )1n n n nH= + −x x x xɶ֏  is used to obtain complex representation, where H(xn) 

denotes Hilbert transform of xn. The feature point k will be selected to the set of  J  

SCPs provided that the following criterion is satisfied: 

 

 
( ) ( )
( ) ( ) ( ) { }

T

cos 1,...,θ≥ ∆ ∈
ɶ ɶ

ɶ ɶ

k k

k k

R I
k K

R I

x x

x x
          

 

where ( )ɶ kR x and ( )ɶ kI x  denote real and imaginary part of ɶ kx  respectively, 'T' 

denotes transpose operation, ( )ɶ kR x  and ( )ɶ kI x  denote 2ℓ -norms of R( ɶ kx ) and I(

ɶ kx ) while ∆θ  stands for the angular displacement from direction of either 0 or π 

radians. Evidently, ∆θ determines quality of the selected SCPs and, thus, accuracy of 

the estimation of the mixing matrices Acontrol and Adisease. Setting ∆θ to a small value 

(e.g., to an equivalent of 10 ) enforces, with an overwhelming probability, the 

selection of feature points that contain one component only. If, however, all the 

components are not present in at least one feature point alone it may occur that 

corresponding columns of the mixing matrices will be estimated inaccurately. This 

problem can be alleviated by increasing the value of ∆θ in which case the selected 

feature points may not contain one component only, but may rather be composed of 

one dominant component and one or more components present in a small amount. 

Thus, in practice, ∆θ needs to be selected through a cross-validation. In the 

experiments described in sections 1.4 to 1.7, ∆θ has been selected from the set of 

radians equivalent to {10, 30, 50} together with a postulated number of components M 

and with a regularization parameter related to sparseness constraint imposed on Scontrol 

and Sdisease (see eq. (3) below). Hierarchical clustering implemented by MATLAB 
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clusterdata command (with a ‘cosine’ distance metric and ‘complete’ linkage 

option) has been used to cluster the set of selected  J  feature points with a single 

component belonging. Number of clusters has been set in advance to equal the 

postulated number of components M.  Cluster centres represent estimated 

concentrations vectors { }2

1

M

m m+ =
∈a ℝ . It is also possible to use other clustering 

methods, such as k-means, as an alternative to hierarchical clustering. The problem 

with k-means, however, is that it is non-convex and its performance strongly depends 

on the initial value selected for cluster centroids. On the other side, hierarchical 

clustering produces repeatable result i.e. for a given set of SCPs it yields the same 

result for the mixing matrix in each run. Since the number of selected SCPs is modest, 

the computational complexity of hierarchical clustering approach is not too high. That 

is why hierarchical clustering is used to estimate the mixing matrices in (2a) and (2b). 

After mixing matrices are estimated, estimation of the component matrices proceeds 

by minimizing sparseness constrained cost functions: 
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where the hat sign denotes estimates of the model variables A  and Scontrol/Sdisease. 

Problems (3) relate to the sparseness constrained solution of the underdetermined 

systems of linear equations.  For a decomposition of gene expression profiles, a non-

negativity constraint is additionally imposed on S: S≥0.  Problem (3) can be solved by 

the LASSO algorithm [36] or, by some other solver for underdetermined system of 
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linear equations [37]. Here, for problem (3) we have used the iterative shrinkage 

thresholding (IST) type of method [38], with a MATLAB code available at [39]. This 

approach has been shown to be fast and it can be easily implemented in batch mode 

such as (3a)/(3b) i.e.as a solving of all K systems of equations simultaneously. In 

relation to standard IST methods, the method [38] has guaranteed better global rate of 

convergence. In addition to that, through the effect of iterations, it shrinks to zero 

small nonzero elements of S that are influenced by noise. This prevents them to 

determine level of sparseness of S. As discussed in [6] this shrinking operation is 

important in preventing selection of less sparse S over the sparse version of S. With 

non-negativity constraint S≥0 problem (3) becomes a quadratic program. Thus, we 

have used a gradient descent with projection onto non-negative orthant: max(0,S). A 

sparsity of the solution is controlled by the parameter λ. There is a maximal value of  

λ (denoted by λmax here) above which the solution of the problems (3) is maximally 

sparse, i.e. it is equal to zero. Thus, in the experiments reported in sections 1.5 to 1.7 

the value λ has been selected by cross-validation (together with ∆θ and M) with 

respect to λmax as: λ∈{10-2⋅λmax , 10-4⋅λmax , 10-6⋅λmax}. We conclude this section by an 

observation that the  situation suggested in [6]: X=AS=ApseuSpseu  , where (Apseu,Spseu) 

represents alternative factorization of X such that Spseu would be less sparse than S, 

during minimization of (3) cannot occur. That is due to IST algorithm [38] as well as 

due to accurate estimation of the mixing matrices that is enabled by clustering set of  

the SCPs . First, this is a consequence of the fact that a shrinking operation used by 

IST algorithm [38] imposes sparseness constraint of the type given by eq.(7) in [6]: 

maxnumber of elements of 
0 ( ) 1

number of elements of τ
τσ ≤ ⋅≤ = ≤k k

k
k

s s
s

s
, τ ∈ [0, 1], i.e. small nonzero 

elements of sk are set to zero. This prevents selection of less sparse Spseu over sparser 
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S. Second, SCA method used here is a two-stage method where A is estimated 

accurately by clustering on a set of SCPs. This, in addition to a sparseness measure 

discussed above, prevents estimate of S to deviate from the true value significantly. It 

is this way because when S is being estimated by means of IST algorithm the very 

estimate of A is fixed. As opposed to the case when A and S are estimated 

simultaneously, as in [6], an estimate of A can't now be adjusted by the algorithm to 

some value Apseu that will counteract changes in S. Hence, selecting Spseu would 

increase a data fidelity term in the cost function. Thus, situation as suggested in [6]: 

X=AS=ApseuSpseu can't occur. A proposed two-stage SCA approach to feature 

extraction /component selection is in a concise form presented in Table 1. A 

MATLAB code is posted in the Additional Material Files section accompanied with 

the paper as Additional File 1. 

Results and Discussion 
This section presents model validation procedure. It is demonstrated how increased 

number of postulated components retains, or slightly improves, prediction accuracy 

when concentration variability of the features across the sample population is 

significant. Moreover, an increased number of postulated components yields the 

disease and control specific components used for classification with a smaller number 

of features. This is in an agreement with the principle of parsimony which states that 

less complex solution ought to be preferred over the more complex one. Proposed 

method for feature extraction/component selection is also applied to a prediction of 

ovarian, prostate and colon cancers from the three well-studied datasets. Prediction 

accuracy (sensitivity and specificity with standard deviations) is estimated by 100 

independent two-fold cross-validations. Proposed SCA component selection method 

is compared (favourably) against state-of-the-art predictors tested on the same 
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datasets including our implementation of methods proposed in [1, 2].  Regarding our 

implementation of a predictive matrix factorization method [1], we have used the 

MATLAB fminsearch function to minimize the negative value of the target 

function suggested in [1] while selecting the threshold vector. We have set the 

TolFun to 10-10, the TolX to 10-10 and the MaxFunEvals to 10,000. An initial 

value of the two-dimensional threshold vector has been set to [0 0]T. Regarding a gene 

discovery method proposed in [2] we have cross-validated three values of the 

threshold cu ∈{2, 2.5, 3.0} (cl is set automatically cl=1/cu). The best result is presented 

in section 1.7. Regarding a comparison of a proposed component selection method 

against many methods in sections 1.5 to 1.7, our intention has been to provide a brief 

description of the methods and to provide fair comparison given the fact that code for 

compared methods has not been available to us. That actually was the main reason for 

choosing a well known datasets such as in 1.5 to 1.7, since a rich list of published 

results exists for them. We are aware of the fact that results by many other methods 

were obtained by different cross-validation settings. Therefore, our reasoning is that 

fair comparison is possible as long as the results to be compared were obtained on the 

same datasets under conditions that favor less the method proposed here. That is the 

reason why we have chosen to perform two-fold cross-validation, since it is known to 

yield the least optimistic result. Thus, if such results are compared favorably against 

those obtained under milder (ten- and three-fold) cross-validation settings, conclusion 

can be made that proposed feature extraction/component selection method represents 

contribution to the field. As opposed to the two-fold cross-validation applied here, 

cross-validation details for many cited results were not specified. Sometimes ten-fold, 

or three-fold, cross-validations have been performed. Hence, it is believed that 

performance assessment of proposed component selection method is more realistic 
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than performance of the majority of methods cited in comparative analysis. For each 

of the three types of cancers three classifiers were trained on four sets of extracted 

components: { }disease
control ref.; 1

,
N

n n n
y

=
s , { }control

control ref.; 1
,

N

n n n
y

=
s , { }control

disease ref.; 1
,

N

n n n
y
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s and 
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disease ref.; 1

,
N

n n n
y

=
s .   The three classifiers used were linear SVM and nonlinear SVM 

with radial basis function (RBF) and polynomial kernels [40], with C=1. Parameters 

of the nonlinear SVM classifiers were selected by cross-validation. Prior to the 

classification, the sets of extracted components were standardized to zero mean and 

unit variance. Although the standardization across the features is used more often, a 

standardization across the components (they coincide with the samples from which 

they were extracted) has been performed here. It yielded much better accuracy and 

such a fact has also been observed in Chapter 18 in [41], where in microarray data 

analysis standardization across the samples has also been preferred over 

standardization across the features.  In comparative performance analysis presented in 

Tables 2 to 4 the best result (obtained by a nested two-fold cross-validation with 

respect to parameters of the classifiers, single component selection threshold ∆θ, 

regularization constant λ and postulated number of components M ) on all four sets of 

selected components has been used to represent component selection method 

proposed here. Since many components extracted by other combinations of the 

parameters yielded also good prediction accuracy we have posted complete results in 

the Additional Material Files section (Additional Files 2, 3, 4 and 5) accompanied 

with the paper. Reference samples used to represent disease and control groups were 

obtained by averaging all the samples in disease group, 1

disease 1
1

1 N
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and N1+N2=N. We thought this is the most fair approach in the absence of any prior 

information that could suggest which labelled sample could serve as a gold standard. 

We conclude this section by providing assessment of the computational complexity of 

proposed method. It has been implemented in MATLAB 7.7 environment on a 

desktop computer based on 3GHz dual core processor and 2GB of RAM. Processing 

of proteomic and genomic datasets used in sections 1.5 to 1.7 took 10, 7 and 3 

minutes respectively.  

1.4 Model validation 
This section presents model validation results obtained on simulated data using LMM 

(2a)/(2b). To this end, each mixture sample has been composed of ten orthogonal 

components comprised of K=15000 features. The orthogonality implies that each 

feature belongs to one component only. By a convention, the first component has 

been selected to contain disease specific features, the tenth component to contain 

control specific features and the components two to nine contain features that are not 

differentially expressed and share similar concentrations in control and disease 

labelled samples. A concentration variability across the sample population is 

simulated using the following model for disease group of samples: 

 

 2

1
sin ( )

M

n nm mm
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and for control group of samples:
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Thus, by controlling the mixing angles { } ,

1, 1

N M

nm n m
θ

= =
 the amount of a concentration of 

each component in disease and control samples is controlled. Also amount of 

concentration variability is controlled by selecting { } ,

1, 1

N M

nm n m
θ

= =
to be confined within 

(non-) overlapping angular sectors. Note that (4) implies that component sm is 

contained in a related disease and control samples in overall concentration of 100%. 

To simulate biological variability between the samples, the relative concentration has 

been varied across the sample population, where disease and control groups contained 

100 samples each. The concentration vectors were overlapping in the mixing angle 

domain i.e. a concentration vector for disease specific features was confined in the 

sector of  [500, 89.990], for the neutral features it was in the sector of [250,650] and for 

control specific features it was confined in the sector of  [0.010,400]. Thus, amount of 

overlap between concentration profiles was significant, implying that in many cases 

neutral features were contained in greater concentrations in disease labelled samples 

than disease specific features, as well as that neutral features were contained in greater 

concentrations in control labelled samples than control specific features. Figures 2a 

and 2b show disease prediction results using four extracted disease and control 

specific components with the postulated overall number of components equal to  M=2 

(red bars), M=3 (green bars), M=4 (blue bars) and M=5 (magenta bars). Reference 

samples used in LMM (2a)/(2b) were obtained by averaging all the samples in control 

i.e. disease group. Results reported in terms of sensitivity (Figure 2a) and specificity 

(Figure 2b) were obtained by the linear support vector machine (SVM) classifier 

using 100 independent two-fold cross-validations. SCPs selection parameter has been 

set to ∆θ=30 and sparseness regularization parameter in (3a)/(3b) to  λ=10-6⋅ λmax. 

These parameters were not selected through cross-validation since the purpose of the 

computational experiment has been to evaluate influence of the assumed number of 



 - 26 - 

components M to the prediction accuracy when concentration varies across the sample 

population. The presented results demonstrate that greater number of postulated 

components does not decrease prediction accuracy (in the average it is even slightly 

increased). However, increased number of postulated components M reduces the 

number of features contained in disease and control specific components selected for 

classification. As discussed previously, a greater M yields less complex disease and 

control specific components. Following the principle of parsimony such solution 

should be preferred over the more complex ones that are obtained for smaller M. 

Thus, selected disease and control specific components are expected to be more 

discriminative and less sensitive to over-fitting when the number of postulated 

components is increased. In practical implementation of the proposed approach to 

component selection the optimal number of overall components needs to be evaluated 

by a cross-validation. In the three real world experiments reported below the number 

of components has been selected by cross-validation from M ∈ {2, 3, 4, 5}.  If a 

prediction accuracy achieved for the two values of M is approximately equal, it is 

better to prefer components extracted from the samples with a greater value of M.  

1.5 Ovarian cancer prediction from a protein mass s pectra 
Low resolution surface-enhanced laser desorption ionization time-of-flight (SELDI-

TOF) mass spectra of 100 controls and 100 cases have been used for ovarian cancer 

prediction study [42]. See also the website of the clinical proteomics program of the 

National Cancer Institute (NCI), [43] , where the used dataset is labelled as "Ovarian 

4-3-02". All spectra were baseline corrected. Thus, some intensities have negative 

values. Table 2 presents the best result obtained by the proposed SCA-based 

component selection method together with results obtained for the same dataset by 

competing methods reported in cited references as well as by predictive factorization 
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method proposed in [1]. Described SCA method has been used to extract four sets of 

components with the overall number of components M assumed to be 2, 3, 4 and 5. 

Figure 3 shows sensitivities and specificities estimated by 100 independent two-fold 

cross-validations using linear SVM classifier which yielded the best results compared 

against nonlinear SVM classifiers based on polynomial and RBF kernels. 

Performance improvement is visible when assumed number of components is 

increased from 2 to 3, 4 or 5. The error bars are dictated by the sample size and would 

decrease with a larger sample. Thus, the mean values should be looked at to observe 

the trend in performance as a function of M. The best result (shown in Table 2) has 

been obtained with the linear SVM classifier for M=3 with sensitivity of 96.2% and 

specificity of 93.6%, but results with the very similar quality have been obtained for 

several combinations of the parameters M, ∆θ and λ, see Figure 3, most notably M=4 

(see second column in Table 2 and the Additional File 2. As seen in Table 2, only [13] 

reported better result for a two-fold cross-validation with the same number of 

partitions. There, a combination of genetic algorithm and k-nearest neighbours 

method, originally developed for mining of high-dimensional microarray gene 

expression data, has been used for analysis of proteomics data. However, the method 

[13] is tested on proteomic ovarian cancer dataset only, while the method proposed 

here exhibited excellent performance in prediction of prostate cancer from proteomic 

data (reported in section 1.6), as well as on colon cancer from genomic data 

(presented in section 1.7). The method shown in [42] used 50 samples from the 

control group and 50 samples from the ovarian cancer group to discover a pattern that 

discriminated cancer from non-cancer group. This pattern has then been used to 

classify an independent set of 50 samples with ovarian cancer and 66 samples 

unaffected by ovarian cancer. In [44], a fuzzy rule based classifier fusion is proposed 
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for feature selection and classification (diagnosis) of protein mass spectra based 

ovarian cancer. Demonstrated accuracy of 98-99% has been estimated through 10 ten-

fold cross-validations (as opposed to 100 two-fold cross-validations used here). 

Moreover, as demonstrated in sections 1.6 and 1.7, the method proposed here 

exhibited good performance on diagnosis of prostate and colon cancers from 

proteomic and gene expression levels, respectively. In [45], a clustering based method 

for feature selection from mass spectrometry data is derived by combining k-means 

clustering and genetic algorithm. The method exhibited an accuracy of 95.8% (error 

rate 4.1%), but this has been assessed through three-fold cross-validations (as opposed 

to two-fold cross-validations used here).   

1.6 Prostate cancer prediction from a protein mass spectra 
Low resolution SELDI-TOF mass spectra of 63 controls: no evidence of cancer with 

prostate-specific antigen (PSA)<1, and 69 cases (prostate cancers): 26 with 

4<PSA<10 and 43 with PSA>10, have been used for prostate cancer prediction study 

[46]. There are additional 190 control samples with benign cancer (4<PSA<10) 

available as well (see the website of the clinical proteomics program of the NCI, 

[43]), in dataset labelled as "JNCI_Data_7-3-02". However, in the two-class 

comparative performance analysis problem reported here these samples were not 

used. Proposed SCA-based method has been used to extract four sets of components 

with the overall number of components M assumed to be 2, 3, 4 and 5. The best result 

has been achieved for M=5 with sensitivity of 97.6% and specificity of 99% , but 

results with the very similar quality have been obtained for several combinations of 

the parameters M, ∆θ and λ, (see Figure 4 and the Additional File 3. Table 3 presents 

two best results achieved by the proposed SCA-based approach to component 

selection together with the results obtained by competing methods reported in cited 
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references. Linear SVM classifier yielded the best results when compared against 

nonlinear SVM classifiers based on polynomial and RBF kernels. According to Table 

3, comparable result (although slightly worse) is in the reference [47] only. The 

method [47] is proposed for analysis of mass spectra for screening of prostate cancer. 

The system is composed of three stages: a feature selection using statistical 

significance test, a classification by radial basis function and probabilistic neural 

networks and an optimization of the results through the receiver-operating-

characteristic analysis. The method achieved sensitivity (97.1%) and specificity 

(96.8%) but the cross-validation setting has not been described in details. In [46], the 

training group has been used to discover a pattern that discriminated cancer from non-

cancer group. This pattern has then been used to classify an independent set of 38 

patients with the prostate cancer and 228 patients with the benign conditions. The 

obtained specificity is low. The predictive matrix factorization method [1] yielded 

significantly worse result than the method proposed here. In [45] a clustering based 

method for feature selection from mass spectrometry data is derived combining k-

means clustering and genetic algorithm. Despite a three-fold cross-validation, the 

reported error was 28.97%. Figure 4 shows sensitivities and specificities estimated by 

100 independent two-fold cross-validations using linear SVM classifier on 

components selected by the method proposed here. For each M the optimal values of 

the parameters λ and ∆θ (obtained by cross-validation) have been used to obtain 

results shown in Figure 4. Increasing a postulated number of components from 2 to 5 

increased accuracy from 97.4% to 98.3%. Thus, better accuracy is achieved with the 

smaller number of features (m/z ratios) contained in selected components. 
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1.7 Colon cancer prediction from gene expression pr ofiles 
Gene expression profiles of 40 colon cancer and 22 normal colon tissue samples 

obtained by an Affymetrix oligonucleotide array [48], have been also used for 

validation and comparative performance analysis of proposed feature extraction 

method. Gene expression profiles have been downloaded from [49]. Original data 

produced by oligonucleotide array contained more than 6500 genes but only 2000 

high-intensity genes have been used for cluster analysis in [48] and are provided for 

download on the cited website. The proposed SCA-based approach to feature 

extraction/component selection has been used to extract four sets of components with 

up- and down-regulated genes and with the overall number of components M assumed 

to be 2, 3, 4 and 5. The linear SVM classifier has been applied to groups of the four 

sets of selected components extracted from gene expression levels for specific 

combinations of parameters ∆θ, λ and M. The best result in terms of sensitivity and 

specificity for each M  has been selected and shown in Figure 5. The complete list of 

results obtained by linear SVM classifier is presented in the Additional File 4. An 

increased number of postulated components M did not decrease accuracy but it 

yielded components selected for classification with reduced number of genes. This is 

verified in Figure 6 which shows component with up-regulated genes disease
controls  extracted 

from a cancer labelled sample w.r.t. the control reference for assumed number of 

components M=2 and M=4. Thus, it is confirmed again that an increased M yields less 

complex components that (following the principle of parsimony), should be preferred 

over the more complex ones obtained by smaller M. In order to (possibly) increase the 

prediction accuracy, we have applied nonlinear, polynomial and RBF SVM classifiers 

to the two groups of the four sets of components that yielded the best results with the 

linear SVM classifier: M=2 (∆θ=10) and M=4 (λ=10-2λmax and ∆θ=50). The 
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polynomial SVM classifier has been cross-validated for degree of the polynomial 

equal to d=2, 3 and 4. The RBF SVM classifier ( ) ( )2 2

2
, exp 2κ σ= − −x y x y  has been 

cross-validated for the variance σ
2 in the range 5×102 to 1.5×103 in steps of 102. The 

best result has been obtained with σ
2=1.2×103 for M=2 and with σ2=1.0×103 for M=4. 

An achieved accuracy is comparable with the accuracy obtained by other state-of-the-

art results reported. That is shown in Table 4 as well as in the Additional File 5. A 

predictive matrix factorization method [1] yielded slightly better results here, but it 

has shown significantly worse result in the cases of ovarian (see Table 2) and prostate 

(see Table 3) cancers. Gene discovery method [2] has been applied for three values of 

the threshold cu ∈ {2, 2.5, 3} used to select up-regulated genes. Maximum a 

posteriori probability has been used for an assignment of genes to each of the three 

components containing up-, down regulated and differentially not expressed genes. 

Thus for each threshold value the two components were obtained for training a 

classifier. The logarithm with the base 10 has been applied to gene folding values 

prior gene discovery/selection took place. The best result reported in Table 4 has been 

obtained for a component containing up-regulated genes with cu=2.0 and an RBF 

SVM classifier, whereas σ2 has been cross-validated in the range 102 to 103 in steps of 

102. The best result has been obtained for σ
2=5×102. The gene discovery method [2] 

outperformed slightly the method proposed here. However as opposed to the proposed 

method, the gene discovery method [2] is not applicable to the analysis of mass 

spectra. The gene selection method in [15] is a model driven trying to take into 

account the genes' group behaviours and interactions by developing an ensemble 

dependence model (EDM). The microarray dataset is clustered first. The EDM is 

based on modelling dependencies that represent inter-cluster relationships. Inter-

cluster dependence matrix is the basis for discrimination between cancerous and non-
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cancerous samples. Classification accuracy of 85% reported in [15] is very close to 

the one obtained by the SCA-based method proposed here. However, while SCA-

based performance has been assessed through two-fold cross-validation, no cross-

validation details were reported in [15]. Similarly, sensitivity had to be estimated 

indirectly from Figure 5 in [48]. The method in [50] combines a recursive feature 

extraction and the linear SVM to yield accuracy of 82.5%. This is also less accurate 

than what has been achieved by the method proposed. Moreover, the very accuracy 

reported in [50] has been assessed by a ten-fold cross-validation only and that is 

known to yield a too optimistic performance assessment. In this regard accuracy 

reported in [51] can be taken closer to the realistic one since it has been assessed by 

two-fold cross-validation. This method, as [50], again combines recursive feature 

elimination with the SVM, but it is taking additionally into account the parameter C. 

A reported accuracy of 88.84% is slightly better than the one obtained by the method 

proposed here. However, the proposed method is a classifier independent one and, as 

demonstrated in sections 1.5 and 1.6, it yields good results on cancer diagnosis from 

proteomic datasets as well.  

Conclusions  
This work presents a feature extraction/component selection method based on 

innovative additive linear mixture model of a sample (protein or gene expression 

levels represented respectively by mass spectra or microarray data) and sparseness 

constrained factorization that operates on a sample(experiment)-by-sample basis. That 

is different in respect to the existing methods which factorize complete dataset 

simultaneously. The sample model is comprised of a test sample and a reference 

sample representing disease and/or control group. Each sample is decomposed into 

several components selected automatically (the number is determined by cross-



 - 33 - 

validation), without using label information, as disease-, control specific and 

differentially not expressed. An automatic selection is based on mixing angles which 

are estimated from each sample directly. Hence, due to the locality of decomposition, 

the strength of the expression of each feature can vary from sample to sample. 

However, the feature can still be allocated to the same (disease or control specific) 

component in different samples. As opposed to that, feature allocation/selection 

algorithms that operate on a whole dataset simultaneously try to optimize a single 

threshold for the whole dataset. Selected components can be used for classification 

due to the fact that labelled information is not used in the selection. Moreover, disease 

specific component(s) can also be used for further biomarker related analysis. As 

opposed to the existing matrix factorization methods, such disease specific component 

can be obtained from one sample (experiment) only. By postulating one or more 

components with differentially not expressed features the method yields less complex 

disease and control specific components that are composed of smaller number of 

features with higher discriminative power. This has been demonstrated to improve 

prediction accuracy. Moreover, decomposing sample with one or more components 

with indifferent features performs (indirectly) sample adaptive preprocessing related 

to removal of features that do not significantly vary across the sample population. The 

proposed feature extraction/component selection method is demonstrated on the real 

world proteomic datasets used for prediction of the ovarian and prostate cancers as 

well as on the genomic dataset used for the colon cancer prediction. Results obtained 

by 100 two-fold cross-validations are compared favourably against most of the state-

of-the-art methods cited in the literature and used for cancer prediction on the same 

datasets.  
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Figures 

Figure 1  - Geometrical interpretation of the linea r mixture model.  

Concentration vectors of the linear mixture model comprised of control reference 

sample and test sample, (2a) and  Figure 1a, i.e. disease reference sample and test 

sample, (2b) and Figure 1b, are confined in a first quadrant of the plane spanned by 

two mixture samples. Features (m/z ratios or genes) with prevailing concentration in 

disease sample are linearly combined into component associated with the red colour 

relative concentration vector. Likewise, features with prevailing concentration in 

control sample are combined linearly into component associated with the blue colour 

relative concentration vector. Features that are not differentially expressed are 

combined linearly into one or more neutral components associated with the green 

colour relative concentration vectors.   

Figure 2  - model validation.  

Sensitivities, Figure 2a, and specificities, Figure 2b, (with standard deviations as error 

bars) estimated by linear SVM classifier and 100 independent two-fold cross-

validations using two disease specific and two control specific components. 

Components were extracted from the linear mixture models based on control 

reference (c.r.) sample, model (2a), and  disease reference (d.r.) sample, model (2b), 

where each sample was comprised of ten orthogonal components containing 
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K=15000 features. One component contained in prevailing concentration disease 

specific features, one control specific features and eight components contained 

features equally expressed in control and disease labelled samples. Relative 

concentration (expressed through a mixing angle) across the sample population has 

been: for disease specific features in the range of 500 to 89.990; for differentially not 

expressed features in the range of  250 to 650; and for control specific features in the 

range of 0.010 to 400.  Assumed overall number of components has been M=2 (red 

bars), M=3 (green bars), M=4 (blue bars) and M=5 (magenta bars).   

Figure 3  - ovarian cancer prediction.  

Sensitivities (a) and specificities (b) (with standard deviations as error bars) estimated 

in ovarian cancer prediction from protein expression levels using 100 independent 

two-fold cross-validations and linear SVM classifier. Four sets of selected 

components were extracted by SCA-based factorization using LMMs (2a) and (2b) 

with control reference (c.r.)  and disease reference (d.r.) samples respectively, where 

the overall number of components M  has been set to 2 (red bars), 3 (green bars), 4 

(blue bars) and 5 (magenta bars). Optimal values of the parameters λ and ∆θ were 

used for each M. Performance improvement is visible when number of components is 

increased from 2 to 3, 4 or 5. 

Figure 4  - prostate cancer prediction.  

Sensitivities (a) and specificities (b) (with standard deviations as error bars) estimated 

in prostate cancer prediction from protein expression levels using 100 independent 

two-fold cross-validations and linear SVM classifier. Four sets of selected 

components were extracted by SCA-based factorization using LMMs (2a) and (2b) 

with control reference (c.r.)  and disease reference (d.r.) samples respectively, where 

the overall number of components M  has been set to 2 (red bars), 3 (green bars), 4 
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(blue bars) and 5 (magenta bars). Optimal values of the parameters λ and ∆θ were 

used for each M. Performance improvement is visible when number of components is 

increased from 2 to 5. 

Figure 5  - colon cancer prediction.  

Sensitivities (a) and specificities (b) (with standard deviations as error bars) estimated 

in colon cancer prediction from gene expression levels using 100 independent two-

fold cross-validations and linear SVM classifier. Four sets of selected components 

were extracted by using LMMs (2a) and (2b) with control reference (c.r.) and disease 

reference (d.r.) samples respectively, where the overall number of components M  has 

been set to 2 (red bars), 3 (green bars), 4 (blue bars) and 5 (magenta bars). Optimal 

values of the parameters λ and ∆θ were used for each M. Increasing number of 

components M  did not decrease prediction accuracy but did reduce the number of 

features (genes) in components used for classification (see Figure 6). 

Figure 6  - colon cancer feature vectors.  

Component containing up-regulated genes extracted from a cancerous sample w.r.t. to 

a control reference sample using LMM (2a): a) assumed number of components M=2; 

b) assumed number of components M=4. 
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Tables 

Table 1  A mixture model with a reference-based alg orithm for feature 
extraction/component selection 
 

Inputs. { }{ }
1

, 1, 1
NK

n n n
y

=
∈ ∈ −x ℝ samples and sample labels, where K represents 

 number of feature points (m/z ratios or genes). 

           control ∈ℝ
Kx and disease∈ℝ

Kx representing control and disease (case) groups of 

 samples. 

Nested two-fold cross-validation. Parameters: single component points (SCPs) 

 selection threshold in radian equivalents of ∆θ ∈ {10, 30, 50}; regularization 

 constant  λ ∈ {10-2λmax , 10-4λmax , 10-6λmax} ; number of components M ∈ {2, 

 3, 4, 5}; parameters of selected classifier. 

  Components selection from mixture samples.   

  1. { }
1=

∀ ∈ ∈ℝ
NK

n n
x x form a linear mixture models (LMMs) (2a) and 

  (2b). 

  2. For LMMs (2a)/(2b) select a set of single component points for a 

  given ∆θ. 

  3. On sets of SCPs use hierarchical clustering (other clustering  

  methods can be used also) to estimate mixing matrices Acontrol and  

  Adisease for a given M. 

  4. Estimate source matrices Scontrol and Sdisease by solving (3a) and (3b) 

      respectively for a given regularization parameter λ.  

  5. Use minimal and maximal mixing angles estimated from mixing 

       matrices Acontrol and Adisease  to select, following the logic illustrated 

      in Fig. 2a and Fig. 2b, disease and control specific components:  

     disease
control ref.;ns , 

control
control ref.;ns , control

disease ref.;ns  and disease
disease ref.;ns .  

 End of component selection. 

End of nested two-fold cross-validation. 
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Table 2  Comparative performance results in ovarian  cancer prediction 
Sensitivities and specificities were estimated by 100 two-fold cross-validations 

(standard deviations are in brackets).  

 

Method Sensitivity/Specificity/Accuracy 

Proposed method 

M=3,  ∆θ=50  

λ=10-4λmax 

Linear SVM 

Sensitivity: 96.2 (2.7)% ; specificity: 93.6 (4.1)%; 

accuracy: 94.9% 

Control specific component extracted with respect to a 

cancer reference sample.   

Proposed method 

M=4,  ∆θ=30  

λ=10-6λmax 

Linear SVM 

Sensitivity: 95.4 (3)% ; specificity: 94 (3.7)%; accuracy: 

94.7% 

Control specific component extracted with respect to a 

cancer reference sample.   

[1] Sensitivity: 81.4 (7.1)% ; specificity: 71.7 (6.6)% 

[42] 
Sensitivity: 100%; specificity: 95%  

(one partition only: 50/50 training; 66/50 test). 

[44] 
Accuracy averaged over 10 ten-fold partitions: 98-99% 

(sd: 0.3-0.8) 

[13] 
Sensitivity: 98%, specificity: 95% , two-fold CV with 

100 partitions. 

[45] Average error rate of  4.1 % with three-fold CV.  
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Table 3 Comparative performance results in prostate  cancer prediction 
Sensitivities and specificities were estimated by 100 two-fold cross-validations 

(standard deviations are in brackets).  

 

Methods Sensitivity/Specificity/Accuracy 

Proposed method 

M=5,  ∆θ=10  

λ=10-4λmax 

Linear SVM 

Sensitivity: 97.6 (2.8)% ; specificity: 99 (2.2)%; 

accuracy: 98.3% 

Control specific component extracted with respect to a 

cancer reference sample.   

Proposed method 

M=4,  ∆θ=10  

λ=10-4λmax 

Linear SVM 

Sensitivity: 97.7 (2.3)% ; specificity: 98 (2.4)%; 

accuracy: 97.9% 

Control specific component extracted with respect to a 

cancer reference sample.   

[1] Sensitivity: 86 (6.6)%; specificity: 67.8(12.9)%; 

accuracy: 76.9%. 

[46] Sensitivity: 94.7%; specificity: 75.9%; accuracy: 85.3%. 

253 benign and 69 cancers. Results were obtained on 

independent test set comprised of 38 cancers and 228 

benign samples.  

[47] Sensitivity: 97.1%; specificity: 96.8%; accuracy: 97%.  

253 benign and 69 cancers. Cross-validation details not 

reported. 

[45] Average error rate of 28.97 on four class problem with 

three-fold cross-validation.  
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Table 4  - Comparative performance results in colon  cancer prediction 
Sensitivities and specificities were estimated by 100 two-fold cross-validations 

(standard deviations are in brackets).  

 

Methods Sensitivity/Specificity/Accuracy 

Proposed method 

M=2,  ∆θ=10  

RBF SVM (σ2=1200, 

C=1) 

Sensitivity: 90.8 (5.5)%, specificity: 79.4 (9.8)%; 

accuracy: 85.1% 

Control specific component extracted with respect to a 

cancer reference sample.   

Proposed method 

M=4,  ∆θ=50  λ=10-2λmax 

RBF SVM (σ2=1000, 

C=1) 

Sensitivity: 89.8 (6.2)%, specificity: 78.6 (12.8)%; 

accuracy: 84.2%.  

Control specific component extracted with respect to a 

control reference sample. 

[1] Sensitivity: 89.7 (6.4)%, specificity: 84.3 (8.4)% ; 

accuracy=87%. 100 two-fold cross-validations. 

[2] Sensitivity: 92.1 (4.7)%, specificity: 85 (10.1)%; 

accuracy: 88.55%.  100 two-fold cross-validations. 

cu=2.0.  

[48] Sensitivity: 92-95% calculated from Figure 5. 

Specificity not reported.  

[15] Accuracy 85%. Cross-validation details not reported. 

[50] Accuracy 82.5%, ten-fold cross-validation (RFE with 

linear SVM). 

[51] Accuracy 88.84%, two-fold cross-validation (RFE 

with linear SVM and optimized penalty parameter C). 
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Additional files 
Additional file 1 

file format: MATLAB  

description of data: code with implementation of proposed feature 

extraction/component selection method. 

Additional file 2  

file format: XLS (Excel spreadsheet) 

description of data: classification results obtained by the linear SVM applied to 

disease and control specific components extracted from the ovarian cancer dataset for 

various combination of parameters M, λ and ∆θ. 

Additional file 3  

file format: XLS (Excel spreadsheet) 

description of data: classification results obtained by the linear SVM applied to 

disease and control specific components extracted from the prostate cancer dataset for 

various combination of parameters M, λ and ∆θ. 

Additional file 4  

file format: XLS (Excel spreadsheet) 

description of data: classification results obtained by the linear SVM applied to 

disease and control specific components extracted from the colon cancer dataset for 

various combination of parameters M, λ and ∆θ. 

Additional file 5  

file format: XLS (Excel spreadsheet) 

description of data: best classification results obtained by the RBF SVM applied to 

disease and control specific components extracted from the colon cancer dataset for 

M=4, λ=10-2λmax and ∆θ=50 and M=2 and ∆θ=10. 
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