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a b s t r a c t

In our previous research, we applied independent component analysis (ICA) for the restoration of image

sequences degraded by atmospheric turbulence. The original high-resolution image and turbulent

sources were considered independent sources from which the degraded image is composed of. Although

the result was promising, the assumption of source independence may not be true in practice. In this

independence assumption, to image restoration. In addition, the restored image can be further

enhanced by employing a recently developed Gabor-filter-bank-based single channel blind image

deconvolution algorithm. Both simulated and real data experiments demonstrate that DCA outperforms

ICA, resulting in the flexibility in the use of adjacent image frames. The contribution of this research is to

convert the original multi-frame blind deconvolution problem into blind source separation problem

without the assumption on source independence; as a result, there is no a priori information, such as

sensor bandwidth, point-spread-function, or statistics of source images, that is required.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Atmospheric turbulence is an inevitable problem in long-
distance ground-based and space-based imaging. The optical
effects of atmospheric turbulence arise from random inhomo-
geneities in the temperature distribution of the atmosphere.
A consequence of these temperature inhomogeneities is non-
stationary random distribution of the refraction index of the
atmosphere [30]. Atmospheric turbulence can make distant
objects being viewed through a sensor (e.g., a digital camera or
video recorder) to appear blurred. Also, the time-varying nature of
the turbulence can make the appearance of objects to wave in a
slow quasi-periodic fashion. When a target is small and moving,
its actual location becomes very difficult to estimate. This
phenomenon greatly hinders accurate target detection, tracking,
classification, and identification.

Numerous methods have been developed to mitigate the
atmospheric turbulence effects. Three broad classes of techniques
used to correct turbulence effects are: (1) pure post-processing
techniques, which use specialized image processing algorithms;
(2) adaptive optics techniques, which afford a mechanical means
of sensing and correcting for turbulence effects; and (3) hybrid
ll rights reserved.

2 325 2298.
methods, which combine the elements of post-processing tech-
niques and adaptive optics techniques. Each of these techniques
has performance limitation as well as hardware and software
requirements. In our research, due to its low cost, we focus on the
development of pure post-processing techniques to correct
atmospheric turbulence. Quite a few algorithms in this aspect
have been developed in the past 20 years. These algorithms fall
into two major categories: those adopting explicit or implicit ways
to measure the perturbations induced on the wavefront by the
atmosphere, and those using no wavefront information to
construct the underlying image formation characteristics of the
atmosphere. Wavefront reference algorithms include the guides
(natural or artificial) and deconvolution from optical measure-
ments of the wavefront entering the telescope, while reference-
less algorithms do not need such guides. In our research, we are
interested in the no-reference techniques because no optical
measurements are required. This also makes real-time or near-
real-time implementation possible and simple for many national
defense-related applications.

Current image restoration techniques for atmospheric turbu-
lence correction employ the well-known linear image formation
model g(x,y) ¼ h(x,y)*s(x,y), where the degraded image g(x,y) is
obtained by convolving the original high-resolution image s(x,y)
with the point-spread-function (PSF) h(x,y) (i.e., PSF models
the degradation caused by atmospheric turbulence) [27]. Due to
the space- and time-varying nature of atmospheric turbulence,
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the PSF should be changed with pixel location (x,y) and time t.
However, for the purpose of simplicity and mathematical tract-
ability, most techniques assume that PSF is unchanged with space
and time. In other words, they are space- and time-invariant
restoration approaches.

To relax the unrealistic assumption of a space- and time-
invariant PSF, we introduced the blind source separation (BSS)
technique to achieve the restoration of image sequences [22].
Instead of using the linear convolutive degradation model and
estimating the PSF, we considered each spatial turbulence pattern
as one physical source, the original high-resolution image of the
object as another source, and then the degraded low-resolution
image was the result from the linear combination of these sources.
This leads to the model at the component level written as

gðx; y; tnÞ ¼
XM
m¼1

anmðDtnÞsmðx; y; t0Þ (1)

where contributions from the high-resolution object image and
the individual turbulence patterns {Sm}m ¼ 1

M between time tn and
the reference time t0, i.e. Dtn ¼ tn�t0, are contained in the
unknown mixing matrix coefficients anm, which depend on some
physical constants [22]. The component level model (1) can be
generalized to a multi-frame model in a matrix form as

G ¼ AS (2)

where GARN� T is a matrix of the blurred image frames with each
row representing a blurred image frame, AARN�M is an unknown
basis or mixing matrix, and SARN� T is a matrix of the source
images. Here, N represents the number of frames whereas each
frame is treated as one measurement, M denotes the number of
source images, and T ¼ P�Q stands for the number of pixels in
each image (P and Q are image spatial dimensions). It is assumed
that each image frame has been transformed into a vector by a
row or column stacking procedure. It is also assumed that motion
effects, if present, are compensated in advance.

Intuitively, the more sources associated with the turbulence
phenomenon are included, the better quality of the restored
image is expected. The reason is that turbulence effects are
subtracted from the degraded images in the linear demixing
process. Thus, the overall number of sources, M, is set to equal the
overall number of frames (i.e. measurements). This is then in the
agreement with the known fact that the quality of a restored
image in multi-frame image restoration generally is increased
when the number of frames is increased.

BSS can be applied on (2) to extract the high-resolution object
image without the prior knowledge or estimation of PSF. The most
successful solution of the BSS problem is achieved through
independent component analysis (ICA). It solves the BSS problem
by imposing a constraint on extracted sources to be non-Gaussian
(at most one source is allowed to be Gaussian) and statistically
independent from each other [16]. One of popular ICA algorithms,
referred to as Joint Approximate Dia-gonalization of Eigenma-
trices (JADE), was adopted due to its robustness, wherein the
statistical dependence among data samples was measured by the
fourth-order cross-cumulants [5].

However, it has been argued that the assumption of source
independence may not be true in many situations. For instance,
the atmospheric turbulence components may be correlated
spatially and temporally. Sources may be at least partially
statistically dependent due to the fact that multi-frame image
model adopted in [22] and used herein assumes all the sources are
emitted from the same space-time location (x, y, t0). Thus, in this
paper, we will propose the use of dependent component analysis
(DCA) for image restoration, which does not require sources
to be independent. Both simulated and real data experiments
demonstrate that DCA outperforms ICA under this circumstance.
In addition, DCA can be employed to further sharpen the restored
image to achieve super-resolution.

In summary, the contribution of this research is to convert the
original multi-frame blind deconvolution problem into BSS
problem without the assumption on source independence; as a
result, no a priori information or assumption on sensor band-
width, PSF, or statistics of source images is required.
2. Derivation of DCA algorithms

Few papers in the literature discuss the problem of DCA [1].
Here we adopt some previous studies conducted in [18,21]. The
basic idea behind DCA is to find a transform T that can improve
the statistical independence between the sources but leave the
basis matrix unchanged, i.e.,

TðGÞ ¼ TðASÞ ffi ATðSÞ (3)

Because the sources after this transformation will be less
statistically dependent, any standard ICA algorithm, such as JADE,
derived for the original BSS problem can be used to learn the basis
matrix A. Once the basis matrix A is estimated, the sources S can
be recovered by applying the pseudo-inverse of A on the multi-
frame image G in (2).

Examples of linear transforms that possess such a required
invariance property and generate less dependent sources include:
(1) highpass filtering, (2) innovation, and (3) wavelet transforms.

2.1. Highpass filtering (HP)

A highpass filter, such as the Butterworth highpass filter, is
applied to preprocess the observed signals G, followed by a
standard ICA algorithm, such as JADE, on the filtered data in order
to learn the mixing matrix A. This is motivated by the fact that
highpass filtered signals are usually more independent than
original signals that include low frequency components. Mean-
while, this approach is computationally very efficient, making it
attractive for DCA problems with statistically dependent sources.
In this case, the transform T in Eq. (3) is the HP operator that can
be seen as a special case of the filter bank approach [6,36].

2.2. Innovation (IN)

Another computationally efficient approach is based on the use
of innovation. The arguments for using innovation are that they
are usually more independent from each other and more non-
Gaussian than original processes [13]. The innovation process is
referred to as prediction error [26], which is defined as

emðrÞ ¼ smðrÞ �
Xl

i¼1

bismðr � iÞ; m ¼ 1; . . . ;M (4)

where sm(r�i) is the i-th sample of a source process sm(r) at
location (r�i) and b’s are prediction coefficients. em(r) represents
the new information that sm(r) has but is not contained in the past
l samples. It is proved in [13] that if G and S follow the linear
mixture model (2) their innovation processes EG and ES (in matrix
form) follow the same model as well, i.e.,

EG ¼ AES (5)

In this case, the transform T in Eq. (3) is the linear prediction
operator. Temporal decorrelation-based preprocessing algorithm
[15] can be seen as an extension of the presented innovation-
based DCA algorithm. It is the same as the presented method
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when the model is linear but the algorithm in [15] works in the
case of post-nonlinear mixture as well.

2.3. Sub-band decomposition independent component

analysis (SDICA)

The SDICA approach assumes that wideband source signals can
be dependent but some of their narrowband sub-components are
less dependent [6,36]. Thus, SDICA extends applicability of
standard ICA through the relaxation of the independence
assumption. In this case, the transform T in Eq. (3) is any kind
of filter-bank-like transform used to implement the sub-band
decomposition scheme.

A wavelet transform-based approach to SDICA was developed
in [21,19] to obtain adaptive sub-band decomposition of wideband
signals through a computationally efficient implementation in a
form of iterative filter bank. Computationally efficient small
cumulant-based approximation of mutual information is used
for automated selection of the sub-band with the least-dependent
components, to which an ICA algorithm is applied. The potential
disadvantage of this approach is high-computational complexity if
2D wavelet transform is used for image decomposition. Hence, a
reformulation can be accomplished based on dual tree complex
wavelets [20]. Dual tree complex wavelets are approximately
computationally as efficient as decimated wavelet packets but as
accurate as the shift-invariant wavelet packet approach [17,33].
3. Algorithms for comparison

Other BSS approaches that can deal with statistically
dependent sources include: independent subspace analysis (ISA)
[4,14], nonnegative matrix and tensor factorization (NMF/NTF)
[24,7–9], and the blind Richardson–Lucy (BRL) algorithm
[29,25,10,2], which are used for comparison purpose in this paper.
They are briefly described as follows.

3.1. Independent subspace analysis

ISA assumes that the source signal space is composed of a
number of subspaces. Signals contained in the same subspace are
mutually dependent while signals contained in different sub-
spaces are independent. When each subspace contains one
component only, the ISA becomes ICA. The practical difficulty
with the ISA approach is in choosing a scheme necessary to
partition the source signal space into the subspaces with the
required property. For instance, it is not obvious how to choose
the number of subspaces as well as the number of signals
contained in each subspace.

In the multi-frame blind deconvolution problem treated in this
paper we decompose the signal space into two subspaces:
one that contains one image representing an approximation of
the object and the other that contains images related to the
turbulence patterns. Here, we present in the sequel brief
derivation of the ISA algorithm [14], which is based on the
concept of multi-dimensional ICA [4] that follows the same model
in (2). It is assumed that components {Sm}m ¼ 1

M are divided into K

tuples where components contained in the same tuple are
dependent and components contained in different tuples are
independent (in other words, tuples correspond to subspaces). It
is also assumed in [14] that the joint probability density function
(PDF) of a particular subspace is spherically symmetric; hence, it
can be expressed as the sum of squares of fsk

i g
dk

i¼1, where k denotes
the subspace index and dk denotes the dimension of the kth
subspace such that

P
k ¼ 1

K dk ¼ M. It is further assumed sparse
representation, which may be in agreement with data representa-
tion adopted in our approach due to the fact that turbulence
patterns are expected to be sparse. Under these assumptions the
following gradient update for de-mixing matrix W is obtained
(i.e., WGES)

DwmðtÞ / �zðtÞsmðtÞ
X

i2SkðmÞ

ðsiðtÞÞ
2

0
@

1
A
�1=2

m ¼ 1; :::;M (6)

where k(m) denotes the index of the subspace to which wm

belongs and z denotes the whitened data (whitening is applied to
data matrix in ISA in the same way as in standard ICA) [12].

3.2. Nonnegative matrix and tensor factorization

Unlike ICA, NMF/NTF algorithms do not impose statistical
independence or non-Gaussianity requirements on the sources.
NMF/NTF algorithms may yield physically useful solutions by
imposing the non-negativity, sparseness or smoothness con-
straints on the sources [24,7–9]. In [24], the NMF algorithm was
first derived to minimize two cost functions: the squared
Euclidean distance and the Kullback–Leibler divergence. Using a
gradient descent approach the resulting multiplicative algorithms
converged very slowly. In addition, the lack of additional
constraints prevents NMF algorithms [24] from yielding a unique
decomposition. Generalization of the NMF algorithms [24]
has been done in [7–9]. The gradient-based NMF algorithm
with a sparseness constraint being incorporated into the cost
function leads to the regularized alternating least-square (RALS)
algorithm [7]

DðGkASÞ ¼
1

2
kG� ASk2 þ aSFSðSÞ þ aAFAðAÞ (7)

where the regularization terms aS and aA enforce sparse solutions
for A and S, respectively. If constraints are chosen as [FS(S)]ij ¼ 1/
2sij

2 and [FA(A)]ij ¼ 1/2aij
2, the regularization terms help regular-

ize the pseudo-inverse when the normal matrices ATA and SST are
ill-conditioned. Assume rSD(GJAS) ¼ 0 and rAD(GJAS) ¼ 0 for
positive entries in A and S, which occurs at stationary points. Then

Sðkþ1Þ
¼maxf�; ðAT Aþ aðkÞS Þ

þAT GgjA¼AðkÞ

Aðkþ1Þ
¼maxf�;GST

ðSST
þ aðkÞA Þ

þ
gjS¼Sðkþ1Þ (8)

where k denotes iteration index, ()+ is Moore–Penrose inverse, and
e is a small constant (10�9) to enforce positive entries. Regular-
ization terms help avoid local minima and are implemented as
aA(k) ¼ aS(k) ¼ a0exp(�k/t) (in the experiments a0 ¼ 20 and
t ¼ 10). We employ constraints if there is a priori information
about the sparseness of either A or S; otherwise, we set both
regularization terms to zero. This algorithm is referred to as the
NMF algorithm in this paper.

Extension of this approach, known as local ALS, to 3D tensor
factorization is given in [8], which is referred to as the NTF
algorithm in this paper. In this case, G and S in model (2) become
3D tensors: GAR0+

N� P�Q and SAR0+
M� P�Q. Unlike a majority of NTF/

NMF algorithms that estimate the source matrix/tensor globally,
the local ALS algorithm [8] performs it at the source level

fsm ¼ ½a
T
mGðmÞ � aðmÞs �þg

M
m¼1

A ¼ ½A� ðAS� GÞST
ðSST
þ lIMÞ

�1
�þ (9)

where IM is an M�M identity matrix, as
(m) is a sparseness

constraint that regulates sparseness of the mth source, am

represents the mth column of A , G(m)
¼ G�

P
jamajsj, and

[x]+ ¼ max{e,x} (e.g., x ¼ 10�16). Regularization constant l
changes as a function of the iteration index as lk ¼ l0exp(�k/t)
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(with l0 ¼ 100 and t ¼ 0.02 in the experiments). Note that
sparseness constraint as

(m) imposed on source tensors affects
the final result (as

(m)
¼ 0.05 in the experiment).

3.3. BRL algorithm

BRL algorithm [29,25] was originally derived for non-blind
single frame deconvolution of astronomical images. It has been
later formulated in [10] for blind deconvolution, and then
modified by an iterative restoration algorithm in [2]. To briefly
introduce BRL algorithm we need to write a single frame image gn,
nA{1,y,N}, in the lexicographical notation:

gn ¼ Hs (10)

where gn,sAR0+
PQ,HAR0+

PQ� PQ (BRL needs to employ a PSF function
whose matrix version is H). The observed image vector gn and the
original image vector s are obtained by a stacking procedure.
The matrix H is a block-Toeplitz matrix [23]. It absorbs itself into
the blurring kernel h(x,y) by assuming that at least its size is
known. The block-Toeplitz structure of H can be further
approximated by a block-circular structure. This approximation
introduces small degradations at image boundaries, but enables
the expression of Eq. (10) with the circular convolution. The
algorithm can be implemented in the block adaptive fashion

Ĥ
ðkÞ

iþ1 ¼ ½ðŝ
ðk�1Þ
Þ
T
ðg+ðĤ

k

i ŝ
ðk�1Þ
ÞÞ�Ĥ

ðkÞ

i

ŝ
ðkÞ
iþ1 ¼ ½ŝ

ðkÞ
i � ðH

ðkÞT
ðg+ðHðkÞŝ

ðkÞ
i ÞÞÞ� (11)

where � denotes component-wise multiplication, + denotes
component-wise division, i and k are internal and main iteration
indices, respectively. Note that although H is blindly estimated
from the observed image, its size must be either known or
estimated a priori.
4. DCA for single image enhancement

After a high-resolution frame is reconstructed, its quality can
be further improved using a sharpening approach in a post-
processing step. In general, it is difficult to conduct image
sharpening based on a single-frame image only, due to the lack
of additional information. It is easier if more observations are
available about the scene, and image details can be extracted from
these observations. Here, we investigate a single-frame multi-
channel image enhancement approach [19]. A 2D Gabor filter
bank can be employed to realize multi-channel filtering, con-
sidered as multiple observations for ICA or DCA [19]. After the
multi-channel version of the original image is generated, an ICA or
DCA algorithm can be applied to extract an enhanced image. The
multi-channel linear mixture model of an observed image, in the
form of (2), has in [19] been obtained under a special assumption
that source signals are the original high-resolution source image
and its higher order spatial derivatives. Note that this special class
of sources is mutually statistically dependent, [28], DCA algorithm
is a better choice than an ICA algorithm to fulfill image
enhancement.
5. No-reference image quality assessment

In order to objectively evaluate image quality after restoration,
automatic assessment is needed. When desired high-resolution
image is available, quality assessment can simply be achieved by
comparing the restored image with desired image using a certain
criterion, such as signal-to-noise ratio (SNR). However, in many
practical situations the desired image is not available. Thus,
quality assessment becomes ‘‘no-reference’’. Here we introduce
two ‘‘no-reference’’ metrics: the area under the magnitude of the
one-dimensional (1D) the Fourier transform along a chosen line in
the image and the Laplacian operator.

The power spectrum-based image quality metric has been
proposed in [11,32] due to the invariance of power spectra of
arbitrary scenes. It has been proposed as a substitute for the
subjective image assessment in situations when naturally occur-
ring targets are not available and when re-imaging of the same
scene for comparison purpose (via mean square error) is not
possible. Most importantly the power spectrum metric can be
easily incorporated into a human visual system model [11,32]. In
this paper, instead of calculating power spectrum-based image
quality metric in an absolute sense, we compare 1D power
spectrums of images restored by various algorithms. When the
power spectrum is normalized to unit gain at the DC component,
the area under it corresponds to the level of details contained in
the image

PSA ¼
XO
o¼0

jFðoÞj
jFð0Þj

(12)

where O corresponds with half of the sampling frequency and
|F(o)| represents magnitude of the discrete Fourier transform
(DFT) of a chosen line in the image. An image with better quality
of restored details should have a larger PSA.

The Laplacian operator is an approximation to the second
derivative of brightness I(x,y) in direction x and y, can be applied

r2Iðx; yÞ ¼
qI2
ðx; yÞ

qx2
þ
qI2
ðx; yÞ

qy2
(13)

It is actually a spatial highpass filter. It yields a larger response
to a point than to a line. An image with turbulence is typically
comprised of points varying in brightness, and the Laplacian
operator will emphasize these points. A metric based on Laplacian
operator is [31]

I4 ¼ meanðjr2Iðx; yÞjÞ (14)

which takes the average of second-order derivatives of pixels in
the entire image. An image with better quality should have a
smaller I4.

PSA emphasizes the details of the restored image, while
Laplacian operator measures the smoothness of the restored
image. A successful image restoration process should simulta-
neously maximize PSA metric and minimize the Laplacian
operator-based metric.
6. Experiments

6.1. Computer simulation

In order to perform comparative performance analysis and
demonstrate performance consistency of the DCA algorithms in
solving blind deconvolution problem, we created four degraded
frames. They were obtained by convolving the original image
shown in Fig. 1(a) (with 128�128 pixels) using a Gaussian kernel-
based PSFs, i.e.

gnðx; yÞ ¼ hnðx; y;snÞ � sðx; yÞ n ¼ 1; . . . ;4

hnðx; y;snÞ ¼ Cn exp �
x2 þ y2

2s2
n

� �
(15)

where Cn and sn represents a normalization constant and
standard deviation associated with the nth frame, respectively.

We point out that Gaussian kernel-based PSFs are commonly
used to simulate the long-term exposure to atmospheric turbulence
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Fig. 1. (a) Original image and (b) a degraded image used in computer simulation.

Fig. 2. Four source images obtained from DCA (IN-JADE) algorithm: (a), (c), and (d) correspond to turbulence patterns and (b) corresponds to the restored image.

Q. Du, I. Kopriva / Neurocomputing 72 (2009) 2682–26922686
[23,3]. Standard deviations used to generate four PSFs in this
experiment were randomly chosen as [1.8535 2.1909 2.2892 1.9624].
Fig. 1(b) shows one of the four blurred frames. Fig. 2 shows the result
obtained by DCA (IN-JADE) algorithm. Based on the adopted data
representation one image (i.e., Fig. 2(b)) corresponds with the object,
while the rest of images correspond with turbulence patterns. Fig. 3
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shows the restored images using various algorithms. In terms of
visual perception, the best performance is achieved by innovation
and HP-based DCA algorithms. Note that performance of the BRL
algorithm is modest despite the fact that radius of the degradation
kernel had to be estimated. To quantify the performance, Table 1
lists the values using the two no-reference image quality metrics:
PSA metric given by Eq. (12) and I4 metric given by Eq. (14). Note that
better performance corresponds to a larger PSA value and a smaller
I4 value. In this regard it appears that DCA algorithms based on
Fig. 3. Images restored from four simulated blurred frames using (a) ICA (JADE), (b) DCA

algorithms.
innovation, HP filtering, and wavelet transform performed the best.
This is in agreement with the visual impression discussed
previously.
6.2. Real data experiment 1

An image sequence of the Washington Monument is used in
the experiment, which is the same as in [22]. Note that the frames
(IN-JADE), (c) DCA (HP-JADE), (d) DCA (SDICA), (e) ISA, (f) NMF, (g) NTF, and (h) BRL
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Table 1
No-reference quality assessment for the restored images in computer simulation..

ICA (JADE) DCA (IN-JADE) DCA (HP-JADE) DCA (SDICA) ISA NMF NTF BRL

PSA 3.53 3.90 4.44 3.18 2.87 3.44 2.45 2.66

I4 6.18 2.56 3.66 2.79 4.08 5.21 2.54 3.60

Fig. 4. Restored images from ICA and three DCA algorithms when using 5 conse-

cutive frames.

Fig. 5. Restored images from ICA and three DCA algorithms when using 10 conse-

cutive frames.

Fig. 6. Restored images from ICA and three DCA algorithms when using 20

consecutive frames.

Fig. 7. Restored images from ICA and three DCA algorithms when using 50 conse-

cutive frames.

Fig. 8. Restored images from ICA and three DCA algorithms when using 25 frames

with 2-frames spacing.

Fig. 9. Restored images from ICA and three DCA algorithms when using 10 frames

with 5-frames spacing.

Q. Du, I. Kopriva / Neurocomputing 72 (2009) 2682–26922688
with 10-frame spacing were used in [22]. In Figs. 4–12, we
compared the performance of the ICA (i.e., JADE) algorithm and
the three DCA algorithms in nine cases with different fashions
in frame selection. The number of Givens rotations was used to
evaluate the computational complexity, and the Laplacian metric
I4 was adopted to evaluate the image quality.
Case 1: using 5 consecutive frames (Fig. 4)
In this case, the observations were obviously dependent. So the

JADE algorithm yielded a poor result. The three DCA algorithms
provided better performance, but the result could be further
improved. This may be because the number of frames (i.e.,
observations) was not large enough to accommodate all the
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sources existing (the number of components that can be extracted
is up-bounded by the number of frames).

Case 2: using 10 consecutive frames (Fig. 5)
In this case, the observations were strongly dependent. So the

JADE algorithm yielded an even poorer result. Compared to Case 1,
the three DCA algorithms provided better performance with the
number of frames (i.e., observations) being increased.

Case 3: using 20 consecutive frames (Fig. 6)
The phenomenon was similar to that in Case 2. The

performance of the JADE algorithm became worse, and the
performance of the three DCA algorithms became better.
Fig. 10. Restored images from ICA and three DCA algorithms when using 20 frames

with 5-frames spacing.

Fig. 11. Restored images from ICA and three DCA algorithms when using 10 frames

with 10-frames spacing.

Fig. 12. Restored images from ICA and three DCA algorithms when using 5 frames

with 20-frames spacing.

Table 2
No-reference quality assessment for the restored images in real data experiment 1..

ICA (JADE) DCA (IN-JADE) DCA (HP-JADE)

PSA 2.74 2.74 2.76

I4 2.06 1.63 1.63
Case 4: using 50 consecutive frames (Fig. 7)
The phenomenon was similar to that in Case 2. The

performance of the JADE algorithm became even worse, and the
performance of the three DCA algorithms became even better.

Case 5: using 25 frames with 2-frames spacing (Fig. 8)
In this case, the observations became less dependent. But the

performance of the three DCA algorithms was still better than that
of the JADE algorithm.

Case 6: using 10 frames with 5-frames spacing (Fig. 9)
In this case, the observations became more independent. The

performance of the JADE algorithm became much better, and the
performance of the three DCA algorithms remained unchanged.

Case 7: using 20 frames with 5-frames spacing (Fig. 10)
It is similar to Case 6 but more frames were used. The

performance of the JADE algorithm became worse again due to
the increase of the number of frames; the performance of the
three DCA algorithms was slightly improved.

Case 8: using 10 frames with 10-frames spacing (Fig. 11)
In this case, the observations became quite independent. The

performance of the JADE algorithm became much better; the
performance of the three DCA algorithms remained unchanged.

Case 9: using 5 frames with 20-frames spacing (Fig. 12)
In this case, the observations became very independent. So the

performance of the JADE algorithm was improved; the perfor-
mance of the three DCA algorithms remained unchanged.

The observations in Cases 1-9 can be summarized as follows:
(1)
D

2

1

When the original JADE is applied, use of consecutive frames
causes the difficulty in source separation; it has to use the
frames with spacing; increasing the number of frames even
worsens the situation.
(2)
 The proposed DCA algorithms can relax the constraints on
frame selection, greatly simplifying future hardware imple-
mentation.
(3)
 Among the three DCA algorithms, the one using innovation
provides the best reconstruction result (due to the smallest I4

values in most cases).

(4)
 Among the three DCA algorithms, the SDICA requires the least

computation time (due to the smallest number of Givens
rotations in most cases).
(5)
 The three DCA algorithms may yield better results than the
original ICA even when the ICA performs well.
Note that increasing the frame spacing results in more
independent observations. Consequently, the mixing matrix A is
better conditioned. This certainly improves the performance of
the ICA algorithm. However, the performance of the DCA
algorithms is not influenced much by this strategy due to its
capability of handling source dependence. However, if spacing is
increased too much, then the slow quasi-periodic variation of
turbulence can make the measurements more linearly dependent,
which will degrade the ICA performance again. Hence, DCA
algorithms can significantly relax the constraints on the selection
of frames and the number of frames to be used in the restoration
process.

The data in Case 1, which includes five consecutive frames,
were used for comparative performance analysis with other
CA (SDICA) ISA NMF NTF BRL

.73 1.61 2.69 2.73 2.23

.82 3.53 2.10 9.10 7.29
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Fig. 13. A reconstructed frame for further enhancement.

Fig. 14. Multi-channel version of the original image in Fig. 13 produced by the 2D

Gabor filter bank with two spatial frequencies and four orientations.
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methods capable to separate dependent sources. The PSA and I4

were calculated for the restored images obtained from these
methods. As shown in Table 2, it is confirmed that ISA, NMF, NTF,
and BRL could not compete with the three DCA methods. Within
Fig. 15. Image enhancement for Fig. 13 using single-frame multi-channel filtering:

(a) Gabor+Wavelet+ICA (4 sources), (b) Gabor+Innovation+ICA (4 sources) and (c)

Gabor+Innovation+ICA (1 source).

Fig. 16. Results for real data experiment 2: (a) an original frame, (b) restored

image (JADE), (c) restored image (HP-JADE), (d) restored image (IN-JADE),

enhanced image for (d).
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Table 3
No-reference quality assessment for the restored images in real data experiment 2..

ICA (JADE) DCA (IN-JADE) DCA (HP-JADE) DCA (SDICA) ISA NMF NTF BRL

PSA 6.71 6.99 7.11 5.27 3.94 5.20 3.69 2.63

I4 2.56 2.52 2.56 3.57 5.26 5.19 4.38 5.19
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the three DCA methods, those using innovation and HP filtering
provided the best results.

Fig. 13 shows an original image obtained after restoration
with the previously described DCA approach. Fig. 14 shows the
16 versions (real and imaginary) obtained after 2D Gabor filtering
where two spatial frequencies and four orientations were
used [19]. Then there were 17 channels available for the further
processing.

The 17 channels ought to be processed by DCA, because the
high-resolution image and its spatial derivatives are statistically
dependent [19,28]. One extracted source will be the final
sharpened image. In order to automatically extract the finally
enhanced image, predictability metric is adopted as the selection
criteria. Predictability metric of an extracted image s(n) is defined
as

FðfsðnÞgÞ ¼ log
VðfsðnÞgÞ

UðfsðnÞgÞ
¼ log

Pnmax
n ðs̄ðnÞ � sðnÞÞ2Pnmax
n ðs̃ðnÞ � sðnÞÞ2

(16)

where V reflects the extent to which s(n) is predicted by a long-
term moving average s̄ðnÞ and U reflects the extent to which s(n) is
predicted by a short-term moving average s̃ðnÞ [34,35]. Because
the deconvolution method [19] extracts source image and its
spatial derivatives, the true source image should be the most
predictable and its derivatives should be less predictable. In other
words, the algorithm automatically chooses the source with the
lowest F value as the final sharpened image.

Fig. 15(a) shows the result when the wavelet transform was
applied for DCA (i.e., SDICA). Obviously, the final result was s1.
Fig. 16(b) shows the result when the innovation was applied for
DCA. Obviously, the final result was still s1. Comparing the s1 in
Fig. 15(b) with the s1 in Fig. 15(a), it implies that the result
obtained by innovation was better because it looked more natural,
and the enhancement around the window area was obvious.
Results shown on Fig. 15(a) and (b) were obtained when four
sources were extracted using JADE, i.e., it had been assumed that
in addition to the high-resolution image its three spatial
derivatives existed in the linear mixture model of the multi-
channel single frame image. If only one source was assumed, the
result looked even better as shown in Fig. 15(c). By comparing
Fig. 15(b) and (c) with Fig. 13, we can see that the image is
significantly enhanced with sharpened edges and enhanced
details such as the area around the window.

6.3. Real data experiment 2

To further investigate the performance of the DCA algorithms,
10 consecutive frames with 108�108 pixels were used in the
second experiment. One of degraded frames was shown in
Fig. 16(a). The restored images using JADE, IN-JADE, and HP-JADE
were shown in Fig. 16(b)–(d), where the improvement is evident
around road lamps. Fig. 16(e) is the enhancement result for the
image in Fig. 16(d) using the multi-channel filtering approach in
Section 4, where the details in tree profile and road lamp were
highlighted.

Table 3 lists the image quality assessment results for all the
methods. We can see that ICA (JADE) performed well in this case,
and SDICA did not perform as well as ICA. However, IN-JADE and
HP-JADE still outperformed the ICA. All these methods provided
better results than ISA, NMF, NTF, and BRL.
7. Conclusion

In our previous research, we applied ICA for the restoration of
image sequences degraded by atmospheric turbulence. The
degraded image was assumed to be composed of the original
high-resolution image and turbulent sources that exist at the
same space-time location (x,y,t0). The assumption made on
the high-resolution image and turbulent sources is that they
are mutually statistically independent despite the fact that
they are emitted from the same space-time location (x,y,t0).
Although the result was promising, the assumption of source
independence may not be true in practice. To make the ICA result
acceptable, we need to select frames with certain spacing. This
leads to problems in real-time or near real-time implementation.
In this paper, we propose to apply DCA, which can relax this
requirement. The experimental results using simulated and real
data demonstrate that DCA can significantly improve the restora-
tion performance, without imposing any requirement on the
selection of frames to be used in the restoration process. They
outperform other algorithms that can be applied to dependent
sources. Among the three DCA algorithms we discuss here,
the ones based on innovation and HP yield the better results
and the SDICA based on wavelet packet requires the smallest
computational times. In addition to that, the restored image can
be further sharpened through a post-processing step with a
single-frame multi-channel blind deconvolution method based on
2D Gabor-filter bank and DCA. It is noteworthy that DCA performs
similarly to ICA when the assumption of source independence is
satisfied.
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