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Blind decomposition of low-dimensional
multi-spectral image by sparse component
analysis
Ivica Koprivaa* and Andrzej Cichockib,c
J. Chemom
A multilayer hierarchical alternating least square nonnegative matrix factorization approach has been applied to
blind decomposition of low-dimensional multi-spectral image. The method performs blind decomposition exploit-
ing spectral diversity and spatial sparsity between materials present in the image and, unlike many blind source
separation methods, is invariant with respect to statistical (in)dependence among spatial distributions of the
materials. As opposed to many existing blind source separation algorithms, the method is capable of estimating
the unknown number of materials present in the image. This number can be less than, equal to, or greater than the
number of spectral bands. The method is validated on underdetermined blind source separation problems
associated with blind decomposition of experimental red-green-blue images composed of four materials. Achieved
performance has been superior when compared against methods based on minimization of the ‘1-norm: linear
programming and interior-point methods. In addition to tumor demarcation, as demonstrated in the paper, other
areas that can also benefit from the proposed method include cell, chemical, and tissue imaging. Copyright � 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Due to the variety of potential civilian and military applications,
blind decomposition of multi-spectral and hyper-spectral images
has drawn considerable attention in recent years [1–8]. Owing to
the fact that more than one material is expected to be present in
each pixel footprint, blind multi-spectral image decomposition is
a blind source separation (BSS) problem. A standard tool for the
solution of the BSS problems is independent component analysis
(ICA) [9–13], which is based on the assumption that materials are
mutually statistically independent. However, as shown in
Reference [14], this assumption is not fulfilled for the hyper-
spectral and multi-spectral data due to the fact that the sum of
the materials present in the pixel footprint must be constant [15].
Thus, materials must necessarily be statistically related. ICA also
requires the unknown number of materials present in the image
to be less than or equal to the number of spectral bands. This
assumption is easily satisfied in the case of hyper-spectral
imaging but is problematic when low-dimensional multi-spectral
images are considered. Therefore, we propose an algorithm for
blind decomposition of the low-dimensional multi-spectral
images. Its performance does not depend on statistical relations
among materials. The algorithm exploits spectral diversity of the
materials present in the image as well as sparsity between their
spatial distributions. The sparsity assumption implies that only a
small number of materials occupies the pixel footprint. This
constraint is necessary to narrow down the infinite number of
factorizations that satisfy the linear mixture model of the multi-
spectral image (defined in Section 2). Methods that solve BSS
problems based on sparseness assumption are known as sparse
component analysis (SCA) [16–18,41,42]. They solve related BSS
problems in two phases: using a data clustering algorithm to
etrics (2009) Copyright � 2009 John Wile
estimate spatial distributions of the materials present in the
image. Geometrical methods proposed in Reference [15,19] for
non-negative BSS problems cannot solve underdetermined BSS
problems. This is in principle also true for nonnegative matrix and
tensor factorization (NMF/NTF) methods [20–25], which exhibited
poor performance in solving underdetermined BSS problems.
This limitation has been alleviated recently through the
introduction of the local or hierarchical NMF algorithm [23,25].
It sequentially minimizes local cost functions in the source
recovery process. Because it employs alternating least squares
minimization to estimate mixing matrix and matrix of the
materials it has been coined the HALS NMF algorithm. When
employed in a multilayer mode [26], the HALS NMF algorithm has
demonstrated good performance in solving underdetermined
BSS problems. Thus, the multilayer HALS NMF algorithm and its
y & Sons, Ltd.
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application in blind multi-spectral image decomposition
represent the main contributions of this paper. More details
about this algorithm are presented in Section 3. Its capability to
solve underdetermined BSS problem is demonstrated in Section
4 on challenging problems of blind decomposition of exper-
imental red-green-blue (RGB) images. Very few algorithms exist
for solving the blind multi-spectral image decomposition
problem in underdetermined BSS scenario.
The rest of the paper is organized as follows. Section 2 introduces

the static linear mixture model of the multi-spectral image. Section
3 presents HALS NMF (SCA)-based approach to blind multi-spectral
image decomposition. Section 4 presents results of comparative
performance analysis betweenmultilayer HALS NMF algorithm and
linear programming and interior point based ‘1-normminimization
methods. Conclusions are given in Section 5.

2. STATIC LINEAR MIXTURE MODEL OF
THE MULTI-SPECTRAL IMAGE

Multi-spectral image is represented in a form of the static linear
mixture model [1–6]:

X ¼ AS (1)

where X 2 RN�T
0þ represents multi-spectral image consisting of N

spectral bands and T¼ P�Q pixels, A 2 RN�M
0þ represents

mixing matrix or matrix of spectral responses, and S 2 RM�T
0þ

represents matrix of the M materials present in the image scene.
Each row of X and S is a 1D image representation obtained from
corresponding spectral image by some 2D!1D mapping called
vectorization. Because we are concerned with an unsupervised
image decomposition problem X, A, and S are assumed to be
nonnegative.
Unsupervised decomposition of the linear mixture model (1) is

a challenging BSS problem because both mixing matrix A and
materials matrix S must be estimated having at disposal multi-
spectral image matrix X only. Many BSS problems are efficiently
solved by ICA [9–13] assuming materials smf gMm¼1 to be
statistically independent and non-Gaussian as well as that the
number of materials M is less than or equal to the number of
spectral bands N. As discussed in the introduction, these
assumptions are not fulfilled in a low-dimensional multi-spectral
imaging scenario. In such a scenario estimating the number of
materials M is a challenging problem as well. Many approaches
based the on ranking of the singular values of the sample data
covariance matrix RX�XXT [27–29] cannot be used, because the
number of singular values N is less than the number of materials
M. In the proposed HALS NMF algorithm we treat M as an
unknown variable that is estimated together with the mixing
matrix A by the to be described data clustering algorithm [18].

3. SCA-BASED BLIND MULTI-SPECTRAL
IMAGE DECOMPOSITION

When the linear system of Equation (1) is underdetermined the
null space of A is nontrivial. Thus, the inverse problem has many
solutions and additional constraints such as sparseness between
the components of the column vectors sðtÞf gTt¼1 are necessary to
narrow down the number of solutions. The SCA concept is used
to find a good approximation of the true solution to an
underdetermined system of linear equations subject to sparsity
constraints. A sparse signal is a signal with just few per cent of the
www.interscience.wiley.com/journal/cem Copyright � 200
samples that are nonzero. Signal that has at least k�M nonzero
components is called k-sparse. The SCA is carried out using the
two following approaches. The first one employs NMFalgorithms,
where mixing matrix A and source matrix S are estimated
simultaneously. This is achieved usually through alternating least
square methodology [22–25]. The second one referred in
Reference [17,18,30–32] breaks down BSS problem into two
separate problems: estimation of the mixing matrix A and the
number of materials M using the geometric concept known
as data clustering [15,17,18,30–32] and estimation of the
materials or source matrix S (based on estimated A) by solving
resulting underdetermined system of linear equations. This
last step is carried out as linear programming [16,30,31,32],
‘1-regularized least square problem [33,34], or ‘2-regularized
linear problem [35].
To solve underdetermined BSS problems, the majority of

clustering algorithms require that signal sðtÞf gTt¼1 is (N�1)-sparse
withM-Nþ1 zero components. By setting the number of mixtures
to be N¼ 3 (this corresponds with an RGB image) this implies
k¼ 2. It means that only two materials in the RGB image are
allowed to occupy each pixel footprint. However, in the blind
multi-spectral image decomposition problem considered in this
paper we shall assume that materials present in the image are on
average k¼ 1 sparse. This implies that at each pixel footprint in
average only one material is present. This assumption allows the
reduction of the computational complexity of the data clustering
algorithm [18]. It is, however, a correct assumption in the con-
sidered problem of medical imaging of the skin tumors [8,36].
There, due to the small field of view the pixel footprint is very
small (significantly less than 1mm2). Thus, it is not reasonable to
expect that more than one material will occupy such a small area
(for example see experimental RGB images of the skin tumor
shown in Figures 5 and 7).

3.1. Multilayer HALS NMF algorithm

The HALS NMF algorithm minimizes global cost function to
estimate mixing matrix A and set of local cost functions to
estimate the unknown materials

�
�S m

�M

m¼1. Global cost function
employed for the estimation of the mixing matrix is

D X ASkð Þ ¼ 1

2
X� ASk k22 þ aSJSðSÞ þ aAJAðAÞ (2)

where JS(S) and JA(A) represent sparseness constraint and aS and
aA represent corresponding regularization constants. Because no
constraints are imposed on A and because cost function (2) is
minimized with respect to A only, both regularization constants
in Equation (2) are set to zero, i.e., aS¼aA¼ 0. To estimate matrix
of materials Swe employ minimization of the local cost functions
[23,25]:

DðmÞ XðmÞ am�smk
� �

¼ 1

2
XðmÞ � am�sm

�� ��2
2
þ aðmÞs JSð�smÞ þ aðmÞa JaðamÞ

m ¼ 1; :::;M

(3)

where am represents columns of A and �sm represents rows of S
and XðmÞ ¼ X �

P
j 6¼m aj�s j . Because no constraints are

imposed on A we set a
ðmÞ
a ¼ 0. Since in the considered blind

multi-spectral image decomposition problem we have also
assumed that materials on average do not overlap in spatial
9 John Wiley & Sons, Ltd. J. Chemometrics (2009)
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domain, the sparseness constraint is imposed on them:
JSð�smÞ ¼

PT
t¼1 smt , where a

ðmÞ
s is a regularization constant.

Local learning rule for rows of S and global learning rule for A is
finally obtained as

�sm  aTmX
ðmÞ � a

ðmÞ
s 11�T

h i
þ

� �M

m¼1
A XST SST þ lIM

� 	�1h i
þ

am  am



amk k2
� �M

m¼1

(4)

where IM is an M�M identity matrix, 11�T is a row vector with all
entries equal to 1, and [j]þ¼max{e,j} (e.g., e¼ 10�16). Regular-
ization constant l changes as a function of the iteration index as:
lk ¼ l0 exp �k=tð Þ (with l0¼ 20 and t¼ 0.002 in the exper-
iments). ALS concept implies that cost functions (3) and (4) are
minimized in an alternating fashion. Significant improvement in
the performance of the NMF algorithms is obtained when they
are applied in the multilayer mode [26], whereas sequential
decomposition of the nonnegative matrices is performed as
follows. In the first layer, the basic approximation decomposi-
tion is performed X ffi Að1ÞSð1Þ 2 RN�T

0þ . In the second layer the
result from the first layer is used to build up a new input data
matrix for the second layer X  Sð1Þ 2 RM�T

0þ yielding Xð1Þ ffi
Að2ÞSð2Þ 2 RM�T

0þ . After L layers, the data decompose as follows:

X ffi Að1ÞAð2Þ � � �AðLÞSðLÞ (5)

Thus, learning rules (4) combined with the multilayer mode of
operation (5) is what constitutes the multilayer HALS NMF
algorithm.

3.2. ‘1-norm minimization algorithms

Presuming the mixing matrix A is estimated through the data
clustering algorithm, materials can also be estimated by means of
linear programming

ŝðtÞ ¼ arg min
sðtÞ

XM̂

m¼1 sm tð Þ subject to ÂsðtÞ ¼ xðtÞ

8t ¼ 1; :::; T

(6)

If the noise is present in the blind decomposition problem more
robust solution for sðtÞf gTt¼1 is obtained by solving the
‘1-regularized least square problem [33,34]:

ŝðtÞ ¼ arg min
sðtÞ

1

2
ÂsðtÞ � xðtÞ

�� ��2
2
þl sðtÞk k1

8t ¼ 1; :::; T

(7)

or the ‘2-regularized linear problem [35]:

ŝðtÞ ¼ arg min
sðtÞ

sðtÞk k1 subject to ÂsðtÞ � xðtÞ
�� ��2

2
� "

8t ¼ 1; :::; T

(8)

Note that all three formulations, (6–8), employed to solve the
resulting underdetermined system of linear equations are carried
out on the pixel level. Hence, they are well suited for massively
parallel implementation. Similarly, the clustering algorithm to be
described could also be parallelized by applying it on several
disjoint pixel regions and then merging clustering results.
J. Chemometrics (2009) Copyright � 2009 John Wiley & Sons, L
3.3. Data clustering algorithm

The importance of data clustering for the HALS NMF algorithm
and ‘1-norm minimization algorithms is very different. In the
former case, it is only important for estimating the number of
materials present in the image. In the latter case, it is also
important for estimating the mixing matrix that is necessary for
the solution of problems (6–8). Thus, the final performance of
blind image decomposition will be muchmore dependent on the
accuracy of data clustering when the ‘1-norm minimization
algorithms are employed than when the HALS NMF algorithm is
employed. This is an additional argument to advocate the use
of the HALS NMF algorithm in blind multi-spectral image
decomposition.
Because the solution of the BSS problem is generally

characterized by scale indeterminacy we shall assume the unit
norm constraint (in the sense of ‘2 norm) on the columns of the
mixing matrix A, i.e., amk k2 ¼ 1

� �M

m¼1. Since we have assumed
the number of mixtures to be N¼ 3, the normalized mixing
vectors amf gMm¼1 lie in a 3D space on the unit semi-sphere. They
are parameterized as

am ¼ ½cosð’mÞ sinðumÞ sinð’mÞ sinðumÞ cosðumÞ�T (9)

where wm and um represent azimuth and elevation angles
respectively. Due to the nature of the problem coefficients of the
mixing vectors are nonnegative. Consequently, the mixing angles
wm and um are confined in the interval [0,p/2].
By assuming 1-dimensional concentration subspaces the

clustering algorithm is outlined by the following steps:
(1) We remove all data points close to the origin for which
xðtÞk k2 � "

� �T

t¼1 is applicable, where e represents some
predefined threshold. This corresponds to the case when all
materials are close to zero.
(2) Normalize to unit ‘2 norm remaining data points x(t),

i.e., x tð Þ  x tð Þ



x tð Þk k2
� �T

t¼1, where T � T denotes the number
of data points that remained after the elimination process.
(3) Calculate function f(a), where a is defined with Equation (9):

f að Þ ¼
XT
t¼1

exp � d2 xðtÞ; að Þ
2s2

� �
(10)

where d xðtÞ; að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xðtÞ � að Þ2

q
and xðtÞ � að Þ denotes inner

product. Parameter s in equation (10) is called dispersion. If set to
sufficiently small value, in our experiments this turned out to be
s�0.05, the value of the function f(a) will approximately equal the
number of data points close to a. Thus, by varying mixing angles
0�w,u�p/2 we effectively cluster data.
(4) Number of peaks of the function f(a) corresponds with the

estimate of the number of materials M̂. Locations of the peaks
correspond with the estimates of the mixing angles

’̂m; ûm
� 	� �M̂

m¼1, i.e., mixing vectors âmgM̂m¼1
n

, where âm is given
with equation (9). The hat sign introduced here is used to denote
the estimate of the related quantity. Hence, at the end of data
clustering phase estimates of the number of materials M̂ and
mixing matrix A are obtained.
From the above exposition, it is evident that the value of

dispersion constant s in (10) will influence the number of clusters.
Therefore, in real world situations the number of clusters will
most likely be either over- or underestimated. Practical
experience with certain type of data sets will help in the proper
selection of the parameter s. Generally, if the number of clusters is
td. www.interscience.wiley.com/journal/cem
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underestimated, spectrally similar materials will be extracted
(segmented) together as one material. If the number of clusters is
overestimated some materials will be extracted several times.
This latter case is less dangerous than the former one, because in
the former case somematerials are lost. The existence of multiple
materials is checked easily by calculating how much they are
mutually correlated. Thus, one way to circumvent the difficulty
associated with the under- or overestimation of the number of
clusters is to run the algorithm twice with two different values of
dispersion constant s and check whether new mutually
uncorrelated spatial maps will be extracted or some of the
extracted maps will be repeated.

4. EXPERIMENTAL RESULTS

Two examples related to the blind decomposition of exper-
imental RGB images are used for comparative performance
analysis between: multilayer HALS NMF algorithm (4) and (5)
[23,26], linear programming method used to solve problem (6),
and interior-point method [33] used to solve problem (7). The
principal reason for using RGB images and not hyperspectral
images for performance evaluation is that the underdetermined
BSS problem is very likely to occur in this low-dimensional multi-
spectral case. Linear programming algorithm is implemented by
MATLAB command linprog, while MATLAB code for interior-point
method has been provided in Reference [37]. To cope with the
eventual presence of noise in the experimental RGB image
regularization constant in Equation (7) was set to l¼ 10. This is
due to the fact that the optimal value of the regularization
constant is proportional to the noise variance [38,39]. Both
examples were implemented in MATLAB environment on 2.4 GHz
Intel Core 2 Quad Processor Q6600 based desktop computer with
4GB RAM.

4.1. Experiment 1: RGB image consisting of four materials

Blind decomposition of the experimental RGB image shown in
Figure 1 that consists of four materials is an underdetermined BSS
problem. Because materials in the experimental RGB image do
not overlap in spatial domain, we can evaluate the performance
of the employed blind image decomposition methods via the
Figure 1. Experimental RGB image consisted of four different materials

1 to 4.

www.interscience.wiley.com/journal/cem Copyright � 200
correlation matrix defined as G¼ SST. For the perfect separation
the correlation matrix should be diagonal. Hence, separation
performance can be visualized as a deviation from the diagonal
matrix (see Figure 4). To quantify decomposition quality
numerically we compute the correlation index in dB scale as

CR ¼ �10 log
10

XM
i;j¼1
j 6¼i

g2ij (11)

where before calculating the correlation matrix G rows of S are
normalized to unit ‘2 norm. Tomake the extracted spatial maps of
the materials visually comparable, we have rescaled each
extracted material to the interval [0, 1], wherein 0 represents
the absence of the material and 1 represents the presence of the
material. Hence, the quality of the image decomposition is visible
immediately. Figure 2 shows the clustering function, Equation
(10), in the domain of mixing angles with the dispersion constant
s¼ 0.05. Four clusters confirm the existence of four materials
present in the RGB image.
Multilayer HALS NMF algorithm [23,26], with the sparseness

regularization constraint a
ðmÞ
s ¼ 0.5, 25 layers, and 500 iterations

per layer has been applied to perform the blind image
decomposition task. Figure 3 shows decomposition results
obtained by the multilayer HALS NMF algorithm, interior point
method, and linear programming method. Corresponding
correlation matrices are shown in Figure 4. Numerical values of
the correlation index in dB and computation times in seconds are
given in Table I. The multilayer HALS NMF algorithm out-
performed the other two SCA approaches in terms of the
separation quality keeping at the same time the same level of
computational complexity. The size of the RGB image shown in
Figure 1 was T¼ 384� 512¼ 196608 pixels. Computation times
are estimated only for the multilayer HALS NMF algorithm (4) and
(5), interior-point method employed to solve (7), and linear
program employed to solve (6). The computation time of data
clustering algorithm [18] was not taken into account because all
three SCA algorithms under consideration used results of data
clustering algorithm for their inputs. Thus, the data clustering
method contributed to the computational complexity of all three
methods equally.
Figure 2. Clustering function (10) in the domain of mixing angles for the
RGB image shown in Figure 1. Dispersion constant was s¼ 0.05. Four

clusters confirm the existence of the four materials in the RGB image.

9 John Wiley & Sons, Ltd. J. Chemometrics (2009)



Figure 3. Spatial maps of the materials extracted from the RGB image shown in Figure 1 by means of: a) multilayer HALS NMFalgorithm [23–26] with 25

layers, 500 iterations per layer, and sparseness constraints a
ðmÞ
s ¼ 0.5; b) interior point method [33, 37]; c) linear programming. Extracted materials were

rescaled to the interval [0, 1], wherein 0 represents the absence of the material and 1 represents the presence of the material.

Figure 4. Correlation maps of the extracted sources. From left to right: multilayer HALS NMF algorithm [23–26] with 25 layers, 500 iterations per layer

and sparseness constraints a
ðmÞ
s ¼ 0.5, interior point method [33,37], and linear programming.

Table I. Rows: CR performance, Equation (11), and compu-
tational time for: multilayer HALS NMF algorithm, [23,26]; ‘1-
regularized least square problem, [33,37]; linear programming.
Columns: Type of algorithm employed to solve blind RGB
image decomposition problem

Multilayer
HALS NMF
(4) and (5)

Interior-point
method (7)

Linear
program (6)

CR (dB) 13.67 9.97 7.77
CPU time (s) 3097 7751 3265

J. Chemometrics (2009) Copyright � 2009 John Wiley & Sons, L
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4.2. Experiment 2: RGB fluorescent images of the skin tumor

We now execute the comparative performance evaluation of the
presented methods on the RGB fluorescent image of the skin
tumor (basal cell carcinoma) [36]. Other image processing
methods widely used for the demarcation of the basal cell
carcinoma include thresholdbased imaging [43] and ratio imaging
[44]. However, as previously demonstrated in [8], the accuracy of
thesemethods depends heavily on the optimality of the threshold
parameter that is, to some extent, defined heuristically. For this
purpose of tumor demarcation, an image of a skin tumor is
recorded after the tumor was treated for 4 h with d-5-
aminolaevulinic acid (ALA). ALA is a photo-synthesizer that,
through the process of biosynthesis, causes formation of the
fluorophore protoporphyrin IX (PpIX) [40]. The tumor was
td. www.interscience.wiley.com/journal/cem



Figure 5. RGB fluorescent image of the skin tumor acquired after

illumination with high-intensity light.
Figure 7. RGB fluorescent image of the skin tumor acquired after

illumination with weak intensity light.
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illuminated with 405 nm light, which induces fluorescence of the
PpIX. The fluorescent image was recorded by a camera with an
attached filter used to filter out the reflected 405 nm light. In order
to evaluate the robustness of the image decomposition methods
against the variation of the intensity of fluorescence, fluorescent
RGB image of the tumor has been acquired after illumination with
high-intensity light (shown in Figure 5) aswell as after illumination
with weak-intensity light (shown in Figure 7). The size of the
images shown in Figures 5 and 7 was T¼ 856� 1144¼
979264 pixels. The high-intensity fluorescent image shown in
Figure 6. Spatial maps of the materials extracts from the fluorescent RGB ima

with 25 layers, 500 iterations per layer, and sparseness constraints a
ðmÞ
s ¼ 0.5

www.interscience.wiley.com/journal/cem Copyright � 200
Figure 5 was used to extract spatial binary maps of the tumor and
surrounding healthy tissue. They served as a ground truth for the
calculation of the receiver-operating-characteristic (ROC) curves
necessary to quantify the performance of the SCA algorithms. Like
in Figure 1, fluorescent RGB images shown in Figures 5 and 7 also
contain fourmaterials. They are: basal cell carcinoma, surrounding
healthy tissue, the ruler that was inserted into the scene to give
perspective about the spatial dimensions of the tumor and the
border region between tumor and surrounding tissue that is
spectrally distinct from both tumor and healthy tissue. Figure 6
ge shown in Figure 5 by means of multilayer HALS NMF algorithm [23–26]

.

9 John Wiley & Sons, Ltd. J. Chemometrics (2009)



Figure 8. Spatial maps of the tumor extracted from the fluorescent RGB image shown in Figure 7. a) multilayer HALS NMF algorithm [23–26] with 5

layers, 1000 iterations per layer, and sparseness constraints a
ðmÞ
s ¼ 0.1; b) interior point method [33,37]; c) linear programming. Extracted materials were

rescaled to the interval [0, 1], wherein 0 represents the absence of the material and 1 represents the presence of the material.

Figure 9. ROC curves calculated for spatial maps of the tumor shown in Figure 8 according to legend: circles—multilayer HALS NMF algorithm;

squares—linear programming method; diamonds—interior point method.

Blind decomposition of multi-spectral image
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shows spatial distributions of these materials extracted by the
multilayer HALS NMF algorithm [23,26] with sparseness regular-
ization constraint a

ðmÞ
s ¼ 0.5, 25 layers, and 500 iterations per layer.

Like in example 4.1, extracted spatial maps are rescaled to the
interval [0, 1],wherein0 represents theabsenceof thematerial and
1 represents the presence of the material. The image in the upper
right corner of Figure 6 represents the spatial map of the basal cell
carcinoma. All four extracted spatial maps have meaningful
interpretation and are consistent with our knowledge of the
structure of the RGB image shown in Figure 5. Extraction of the
tumor spatialmapwith the stableboundary fromthe low-intensity
fluorescent image (shown in Figure 7) was a challenge for blind
decomposition methods. Figures 8a to 8c, respectively, show
spatial maps of the tumor extracted from the RGB image shown in
Figure 7 by means of: multilayer HALS NMF algorithm (4) and (5)
with sparseness regularization constraint a

ðmÞ
s ¼ 0.1, 5 layers, and

1000 iterations per layer; interior point method (7) and linear
programming method (6). The multilayer HALS NMF algorithm
J. Chemometrics (2009) Copyright � 2009 John Wiley & Sons, L
yielded significantly larger separation margin between the tumor
material and the rest of the image than other twomethods. This is
confirmed in Figure 9 which shows ROC curves for the three
methods. For the same probability of false alarm, the HALS NMF
algorithm yields greater probability of detection.
5. CONCLUSION

Multilayer hierarchical alternating least square nonnegative
matrix factorization algorithm is proposed for the blind
decomposition of low-dimensional multi-spectral image. Per-
formance of the algorithm is invariant with respect to statistical
(in)dependence among materials present in the image which is
not the case with the majority of BSSmethods. Unlike many other
BSS methods, the proposed algorithm is capable of estimating
the unknown number of materials present in the image as well as
extracting spatial distributions of the materials when the number
td. www.interscience.wiley.com/journal/cem
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of materials is greater than the number of spectral bands. The
outlined capabilities have been experimentally demonstrated
on RGB images with the known ground truth. It has been
demonstrated quantitatively through comparative performance
analysis that multilayer HALS NMF algorithm outperforms other
state-of-the-art methods in solving underdetermined BSS
problems: interior point method and linear programming
method. In addition to the tumor demarcation problem that is
demonstrated in the paper, other areas that can also benefit from
the proposed method are cell and chemical imaging with
application in chemistry, biology, and medicine.
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A non-probabilistic approach to blind decomposition of low-dimensional
multi-spectral image is presented exploiting spectral diversity and spatial
sparsity between the materials resident in the image. The unknown
number of materials can be less than, equal to, or greater than the
number of spectral bands and is estimated using the data clustering
method. Materials are recovered by a multilayer hierarchical alternating
least square nonnegative matrix factorization algorithm that showed
best performance in comparison with methods based on ‘1-norm
minimization: linear programming and interior-point methods.
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