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ABSTRACT

We propose a method for unsupervised linear feature extrac-

tion through tensor decomposition. The linear feature extrac-

tion can be formulated as a canonical polyadic decomposition

(CPD) of a third-order tensor when transformation matrix is

constrained to be equal to the Khatri-Rao product of two ma-

trices. Therefore, standard algorithms for computing CPD de-

composition can be used for feature extraction. The proposed

method is validated on publicly available low-resolution mass

spectra of cancerous and non-cancerous samples. Obtained

results indicate that this approach could be of practical im-

portance in analysis of protein expression profiles.

Index Terms— Feature extraction, tensor decomposition,

cancer prediction.

1. INTRODUCTION

One of the most important problems in machine learning and

data analysis is feature extraction or dimension reduction.

This is essential problem in various areas, such as text mi-

ning, combinatorial chemistry, and computational biology

[1]. A well chosen dimension reduction preprocessing can

have a significant impact on the computational cost and in-

terpretation of the originally high-dimensional samples. In

classification problems feature extraction is crucial, with of-

ten greater impact on the overall performance than the type

of the classifier used [2]. Suitable feature extraction prior to

learning can improve generalization of the trained model, by

reducing overfitting, even for regularized techniques such as

support vector machines (SVM).

Here we will consider problem of linear feature extraction

(LFE), although feature extraction can be performed through

a nonlinear transformation of the data. The goal of LFE is

to find a linear transformation of the original samples that re-

sults in a low-dimensional representation, while retaining all

information for predicting class labels. This can be done in

supervised or unsupervised manner, the difference being in

utilization of labels provided in the training set. Classical ap-

proach for unsupervised LFE is principal component analysis

(PCA), while linear discriminant analysis (LDA) is used for

supervised LFE. In this paper we propose a method for un-

supervised linear feature extraction, that can be performed by

decomposing a three-way tensor constructed using samples in

the training set.

Modern applications often result in multi-way data that

is naturally represented in tensor form [3]. This type of data

is commonly encountered in psychometry, neuroscience, che-

mometrics, computer vision and analysis of social networks.

Consequently, numerous algorithms for tensors were develo-

ped, with applications in signal processing, data analysis and

machine learning [3, 4]. Also, several algorithms for feature

extraction for tensor objects were proposed recently, with ap-

plications in EEG analysis and image classification [5, 6, 7].

Contribution of this paper is application of canonical

polyadic decomposition for linear feature extraction. More

specifically, we propose to perform unsupervised LFE with

structural constraint on the transformation matrix. Con-

sequently, LFE is formulated as tensor decomposition of a

three-way tensor. The proposed approach is tested on binary

classification of protein expression profiles acquired by the

low-resolution surface-enhanced laser desorption ionization

time-of-flight (SELDI-TOF) mass spectrometry, and compa-

red to our previous approach that used a more general Tucker3

model [8]. Obtained results are also compared with recently

developed methods for feature extraction in bioinformatics

[9, 10]. Experiments show that the proposed method could

provide an interesting alternative to existing LFE approac-

hes for protein expression levels, but also possibly for other

data with large number of variables such as gene expression

profiles.

2. METHODS

In the following scalars will be denoted by italic letters (e.g.,

), vectors by bold lowercase letters (e.g., ), matrices by

bold capital letters (e.g., ) and tensors by bold underlined

capital letters (e.g., ). We will mainly consider three-way

tensors, with notation as in [3, 4].



2.1. Preliminaries

Tensor is a multi-way generalization of matrix and vector, and

order of tensor is equal to the number of its indices, with

each index defining a way or mode of tensor. For example,

is an order- or -way tensor, with ele-

ments . A fiber of a tensor is a vector obtained by

fixing all indices except one, i.e., generalization of matrix co-

lumn and row. Mode- fibers are obtained by fixing all indi-

ces but . Mode- unfolding of a tensor is obtained by ar-

ranging all mode- fibers as columns of a matrix, and is deno-

ted as . Ordering of columns is not important as long as

it is consistent in all computations. Matricization is transfor-

mation of a vector to a matrix ,

denoted as . This is inverse to the

operation, that turns matrix into a vector by stacking the co-

lumns into one long vector. The operation divides vector

into parts, and stacks them as columns in matrix :

(1)

for . Mode- product of tensor and matrix

is new tensor denoted as . It is defined as

(2)

The mode- multiplication is commutative when applied in

distinct modes, while repeated multiplication in the same

mode can be expressed as

(3)

Three-way rank- tensor can be written as the outer product

of three vectors , , , as

(4)

where denotes outer product. Tensor rank of a general ten-

sor is defined as follows

(5)

As opposed to matrix rank, tensor rank is hard to compute [4].

Norm of tensor is defined as , and it

is compatible with the Frobenius norm in matrix case.

One of the most common tensor decomposition is the ca-

nonical polyadic decomposition (CPD) [11], where the origi-

nal tensor is decomposed into a sum of rank- tensors. For

tensor the CPD model can be written as

(6)

with , , for . The

CP decomposition (6) can be expressed as

(7)

with factor matrices , ,

and , and diagonal core tensor

with ones on the diagonal. When the core in (7) is not cons-

trained to be cubic and diagonal we obtain Tucker3 model.

The model (7) can also be written as

(8)

where is the -th frontal slice of the tensor

, and is a diagonal matrix with the -th row

of matrix on its diagonal. Expression (8) can be written as

(9)

where is Khatri-Rao product, defined as

, i.e., column-wise Kronecker product. An

important property of the CPD is that it is essentially unique

(up to permutation and scaling of factors) under mild conditi-

ons [12]. Sufficient condition for uniqueness is

(10)

where denotes Kruskal rank of a matrix, that is equal

to the maximal number such that every columns of are

linearly independent.

In practical applications, it is often convenient to approxi-

mate given tensor with model of lower rank, . This

low rank approximation is usually found through minimiza-

tion of the residual

(11)

that boils down to least squares problem in case of previously

defined norm, although other norms can be used.

2.2. CPD for linear feature extraction

Let be a given set of

training samples paired with their labels

, where is number of classes. Commonly, the LFE

is formulated as optimization of some criterion that measures

goodness of the extracted features. The optimization proce-

dure is usually performed over the set of column-orthogonal

matrices , , with . The extrac-

ted features are obtained by projecting samples onto column-

space of the transformation matrix as

(12)

Then optimal linear transformation (in some sense) can be

found by solving

(13)

where is the selected criterion calculated over the training

set . In supervised approaches, is a function of both fe-

atures and class labels, while in unsupervised methods de-

pends only on the extracted features. In LDA, is calculated



as the ratio of between class variance and within class vari-

ance, while in PCA quantifies the proportion of the vari-

ance preserved in the features. Recently, several methods for

LFE based on maximization of information-theoretic criteria

were presented [13, 14], achieving high performance but at

the cost of very high computational complexity.

The LFE can be formulated in similar way as

(14)

where columns of can be seen as a dictionary used to

approximate the input samples, e.g., in least squares sense.

Also, column-orthogonality constraint for the matrix can

be relaxed, requiring only to have a full (column) rank.

The dictionary is learned from the given training data sam-

ples, in supervised or unsupervised manner [15].

In several applications (e.g., high resolution mass spectro-

metry) the input samples have a very large number of entries,

meaning that their dimension is huge. In this situation LFE

(12) can become computationally difficult, due to size of the

matrix . However, this problem can be alleviated by in-

troducing structure into the transformation matrix. Here we

propose to constrain to be equal to Khatri-Rao product of

two smaller matrices, i.e.,

(15)

with , , , and .

This assumption enables formulation of feature extraction as

a CPD of a three-way tensor. While this enables use of the

CPD, the features are now constrained to lie in a subspace

spanned by matrix in form . Taking (15) into acco-

unt, relation between the extracted features and the input

sample can be written as

(16)

If we use (9) and transform sample to matrix

, as , then (16) can be

written as

(17)

Using (7) and (8), the joint diagonalization (17) can be expre-

ssed as a CPD of a three-way tensor

(18)

where is composed of transformed samples

as frontal slices, i.e., , . In

(18), the mode-3 factor matrix contains features

for each of the samples, with each row of being equal to

a vector of features, .

Matrices and are learned by CPD of a three-way

tensor formed from the training set. However, note that fac-

tor matrices in decomposition can be determined only up to

permutation and scaling, as also stated in the uniqueness con-

dition (10). Therefore, we scale matrices and to have

unit norm of columns, so the features in carry all the

variance. When faced with an unseen test sample ,

features are obtained by solving a linear system, and

expressed as

(19)

where denotes Moore-Penrose psudoinverse.

2.3. Some practical issues

One of the practical problems is selection of the algorithm

for canonical polyadic decomposition. The most common

algorithm for solving (11) is based on alternating least squ-

ares (ALS), called CP-ALS. In each step, all factor matrices

except one are kept fixed and optimization is performed with

respect to a single factor matrix, reducing a nonlinear least

squares problem (11) to linear least squares (for more details

see [16]). Also, several advanced methods that minimize (11)

were proposed [16]. However, CP-ALS remains a workhorse

algorithm in a wide range of applications and we used it in

our experiments because of its speed and simplicity.

Another practical issue is the number of selected features

, that is equal to rank of the model (18). Several methods

exist for estimation of number of components, such as COR-

CONDIA [17] and DIFFIT [18]. However, they are aimed

for situations where ultimate goal is low-rank approximation

in terms of fit of the model. In this paper we deal with cla-

ssification problem, so optimal number of features is selected

by finding that gives best classification performance esti-

mated through cross-validation. In our previous approach [8]

we used Tucker3, where core tensor is not constrained to be

cubic and diagonal. In that case, number of features is de-

termined as a product of two parameters (dimensions of the

core tensor in modes 1 and 2). Important practical advantage

when using CPD model is that only one parameter ( ) deter-

mines number of the extracted features. Also, in context of

feature extraction uniqueness of CPD model is an important

theoretical advantage over Tucker3.

3. EXPERIMENTS

The proposed method for LFE is validated on prediction of

prostate and ovarian cancer from protein expression profi-

les. We used CP-ALS algorithm implemented in [19]. Ob-

tained features were classified using nonlinear support vec-

tor machine with Gaussian kernel (rbfSVM), implemented in

[20], with parameters and tuned through cross-validation

(CV). Overall performance was estimated by two-fold CV,

that was repeated on 20 random partitions of the dataset.

3.1. Description of data

We used samples obtained by analysis of proteins in serum

of different patients by low-dimensional mass spectroscopy



[21]. Each sample in the dataset is labeled as control (cor-

responding to a healthy individual) or disease (patient with

cancer confirmed through biopsy). Prostate cancer dataset

consists of 69 disease samples and 63 control samples, while

ovarian cancer dataset consists of 100 disease and 100 con-

trol samples. In both cases each sample is represented by

intensity levels at ratios. Original samples

were preprocessed by hand, and the baseline was subtracted

[21]. We discarded last 25 elements (corresponding to the

highest ratios) in each sample, yielding vector samples

with . Each sample is transformed to

matrix with 1.

3.2. Results

We performed evaluation of the proposed approach for num-

ber of extracted features in range , with step size .

Estimated performance on both datasets in terms of sensiti-

vity and specificity is presented in Figure 1. The best result in

classification of prostate cancer samples was obtained using

features, yielding sensitivity of and specifi-

city . The best result in classification of ovarian cancer

samples was obtained using features, yielding sen-

sitivity of and specificity . Table 1 contains

comparison with results reported previously in the literature.

Note that methods presented in [9, 8, 10] were evaluated on

the same datasets as the proposed method, using the same

validation procedure (two-fold CV). It can be seen that the

proposed approach achieves competitive performance. When

compared to [8], for the same number of features LFE based

on CPD achieves better results.

4. CONCULUSIONS

Feature extraction is of critical importance in machine lear-

ning, especially in scenarios with small number of samples

with large number of variables that are typical for medical

applications. Here we propose unsupervised LFE method ba-

sed on canonical polyadic decomposition of a three-way ten-

sor. The method is validated on publicly available data, with

results indicating practical importance for analysis of protein

expression profiles. However, we conjecture that the propo-

sed approach would be useful in analysis gene expression le-

vels and other data with large number of variables. An in-

teresting direction of future research would be to develop a

supervised method for CPD, that uses labels provided in the

training set. Linear transformation obtained in this way wo-

uld provide more discriminative features, possibly resulting

in better classification performance.

1The number of discarded elements is negligible with respect to the total

number of elements in a sample. However, in this way we could fold each

sample to a square matrix.
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Fig. 1. Classification performance vs. number of features.

Table 1. Reported results for cancer prediction

Prostate cancer SE [%] SP [%]

Petricoin et al. [22] 94.7 75.9

Xu et al. [23] 97.1 96.8

Henneges et al. [9] 86 67.8

Kopriva and Filipović [10] 97.6 99

Kopriva et al. [8], 100 features 98.2 95.6

Proposed method, 95 features 99.3 97.2

Ovarian cancer SE [%] SP [%]

Petricoin et al. [24] 100 95

Li et al. [25] 98 95

Henneges et al. [9] 81.4 71.7

Kopriva and Filipović [10] 96.2 93.6

Kopriva et al. [8], 100 features 91.1 87.7

Proposed method, 100 features 93 92
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with a reference-based automatic selection of compo-

nents for disease classification from protein and/or gene

expression levels,” BMC Bioinformatics, vol. 12, pp.

496, 2011.

[11] F. L. Hitchcock, “The expression of a tensor or a polya-

dic as a sum of products,” Journal of Mathematics and

Physics, , no. 7, pp. 164–189, 1927.

[12] J Kruskal, “Three-way arrays: rank and uniqueness of

trilinear decompositions, with application to arithmetic

complexity and statistics,” Linear Algebra and Its Ap-

plications, vol. 18, pp. 95–138, 1977.

[13] K. Torkkola, “Feature extraction by non-parametric mu-

tual information maximization,” Journal of Machine Le-

arning Research, vol. 3, pp. 1415–1438, 2003.

[14] J. M. Leiva-Murillo and A. Artès-Rodrı̀gues, “Maxi-

mization of mutual information for supervised linear

feature extraction,” IEEE Transactions on Neural

Networks, vol. 18, no. 5, pp. 1433–1441, 2007.

[15] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary

learning,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, pp. 791–804, 2012.

[16] G. Tomasi and R. Bro, “A comparison of algorithms for

fitting the PARAFAC model,” Computational Statistics

& Data Analysis, vol. 50, no. 7, pp. 1700–1734, 2006.

[17] R. Bro and H. A. L. Kiers, “A new efficient method for

determining the number of components in PARAFAC

models,” Journal of Chemometrics, vol. 17, pp. 274–

286, 2002.

[18] H. A. L. Kiers and A. der Kinderen, “A fast met-

hod for choosing the number of components in tucker3

analysis,” British Journal of Mathematical and Statisti-

cal Psychology, vol. 56, pp. 119–125, 2003.

[19] B. Bader, T. Kolda, et al., “MATLAB tensor toolbox

version 2.5,” Available online, January 2012.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for

support vector machines,” ACM Transactions on Intel-

ligent Systems and Technology, vol. 2, pp. 27:1–27:27,

2011.

[21] Center for Cancer Research, National Cancer Institute,

“Clinical Proteomics Program,” Available online.

[22] E. F. Petricoin et al., “Serum proteomic patterns for

detection of prostate cancer,” Journal of the National

Cancer Institute, vol. 94, no. 20, pp. 1576–1578, 2002.

[23] Q. Xu et al., “Mass spectrometry-based proteomic pat-

tern analysis for prostate cancer detection using neural

networks with statistical significance test-basedd feature

selection,” pp. 837–842, 2009.

[24] E. F. Petricoin et al., “Use of proteomic patterns in se-

rum to identify ovarian cancer,” The Lancet, , no. 359,

pp. 572–577, 2002.

[25] L. Li et al., “Application of the GA/KNN method to

SELDI proteomics data,” Bioinformatics, vol. 20, no.

10, pp. 1638–1640, 2003.


