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Automated Target Detection and Discrimination
Using Constrained Kurtosis Maximization

Qian Du, Senior Member, IEEE, and Ivica Kopriva, Senior Member, IEEE

Abstract—Exploiting hyperspectral imagery without prior in-
formation is a challenge. Under this circumstance, unsupervised
target detection becomes an anomaly detection problem. We pro-
pose an effective algorithm for target detection and discrimination
based on the normalized fourth central moment named kurtosis,
which can measure the flatness of a distribution. Small targets
in hyperspectral imagery contribute to the tail of a distribution,
thus making it heavier. The Gaussian distribution is completely
determined by the first two order statistics and has zero kurtosis.
Consequently, kurtosis measures the deviation of a distribution
from the background and is suitable for anomaly/target detection.
When imposing appropriate inequality constraints on the kurtosis
to be maximized, the resulting constrained kurtosis maximization
(CKM) algorithm will be able to quickly detect small targets with
several projections. Compared to the widely used unconstrained
kurtosis maximization algorithm, i.e., fast independent component
analysis, the CKM algorithm may detect small targets with fewer
projections and yield a slightly higher detection rate.

Index Terms—Constrained kurtosis maximization (CKM),
hyperspectral imagery, target classification, target detection.

I. INTRODUCTION

TARGET detection is one of the major tasks in hyperspec-
tral image analysis. With very high spectral resolution,

it is possible to detect targets based on the subtle spectral
features. When the spatial resolution is low or the target size
is relatively small compared to the spatial resolution, we must
resort to spectral-analysis-based techniques. Target detection
methods can be divided into two categories: supervised and
unsupervised. The former relies on available target signatures,
while the latter does not require prior target information.

This research focuses on unsupervised target detection,
which can be achieved by finding pixels with distinct spectral
features from those in their neighborhood, i.e., anomalies [1].
An anomaly usually has a small size and occupies only several
pixels. In general, anomaly detection seeks to find unknown
targets from an unknown background. Several approaches have
been proposed for this purpose. For instance, Reed and Yu
[2] developed the well-known Reed-Xiaoli (RX) algorithm to
analyze an image using the second-order statistics; Ashton [3]
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proposed an adaptive Bayesian classifier; the Projection Pursuit
method developed by Ifarraguerri and Chang [4] employed the
information divergence to find the best projector for anomaly
detection; Chiang et al. [5] and Chang et al. [6] used skewness
and kurtosis for target detection; Schweizer and Moura [7] pre-
sented an anomaly detection method based on Gauss–Markov
random field; Robila and Varshney [8], [9] applied independent
component (IC) analysis (ICA) for target detection, which is
based on the minimization of mutual information. However,
these techniques are relatively time-consuming and some (e.g.,
the RX algorithm) can only detect anomalies but cannot dis-
criminate them from each other. The goal of this research is to
develop an efficient unsupervised algorithm for hyperspectral
imagery, which not only quickly detects targets but also auto-
matically distinguishes between them.

In this research, we employ kurtosis, the most frequently
used high-order moment, for unsupervised target detection. It
is known that kurtosis is the normalized fourth central moment,
which can measure the flatness of a probability distribution. If
an image background can be modeled as a Gaussian distribu-
tion, anomalies or small man-made targets can be viewed as
outliers because their sizes are relatively small and spectral
features are very different compared to their surroundings.
Therefore, the corresponding pixels will contribute to the tail of
the distribution and make it heavier. As a result, anomalies can
be detected by searching the deviation from a Gaussian distribu-
tion, which has zero kurtosis. In other words, anomaly detection
can be achieved by searching the direction of non-Gaussianity.
We found that kurtosis is sensitive to the outliers and works
very efficiently in small target/anomaly detection. When the
background cannot be modeled perfectly as a Gaussian distrib-
ution, some background classes will be detected as well. As a
preprocessing step, data need to be whitened by mean removal
and decorrelation to prevent the first- and second-order statistics
from interfering with the following high-order statistics-based
analysis [10].

A distribution having a negative kurtosis is called “sub-
Gaussian,” which is flatter than a Gaussian one; a distribution
with a positive kurtosis is called “super-Gaussian,” which has
a sharper peak and longer tails than a Gaussian one [10]. In
general, the presence of targets in a hyperspectral image makes
the distribution appear to be super-Gaussian. Thus, small targets
and anomalies correspond to the directions with very large pos-
itive kurtosis. Objects with large sizes are related to the kurtosis
with small values, which can even be negative. To prevent
classes with large kurtosis from becoming the obstacle in the
target detection process, an inequality constraint on the value
of kurtosis may need to be imposed. Multiple-target detection
and discrimination can be achieved by using a Gram–Schmidt
orthogonalization type of process.
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It is noteworthy that the developed constrained kurtosis
maximization (CKM) algorithm has a close relationship with
ICA, where non-Gaussianity is a metric of independence [10].
There are two types of ICA algorithms in terms of the order
of ICs generated: parallel and sequential. Most ICA algorithms
use the parallel mode, where all the ICs are determined si-
multaneously, such as the well-known joint approximate di-
agonalization of eigenmatrices and Bell–Sejnowski’s InfoMax
algorithms [10]. For mathematical tractability, the number of
generated ICs is equal to the number of bands in most cases.
In general, parallel ICA algorithms have very high computa-
tional complexity. Without dimension reduction, they cannot
be directly applied to hyperspectral imagery. The commonly
used dimension reduction approaches are principal component
analysis (PCA) [8], [9] and noise-adjusted PCA [4]. However,
these processes result in lost spectral information. Another
problem of the parallel mode is that when the number of ICs
(which is generally unknown) is changed, all the ICs have to
be regenerated. The CKM algorithm uses the sequential mode,
where ICs are determined one after the other. This is computa-
tionally more efficient because: 1) dimension reduction is not
a must-do step, and 2) it is less sensitive to the choice of the
number of ICs since all the generated ICs remain unchanged.
It is similar to Hyvärinen’s fast ICA (FastICA) algorithm [12].
The major differences are the following: 1) the FastICA does
not impose any constraint, and 2) the FastICA employs the
negentropy approximation (which is reduced to kurtosis when a
cubic function is selected for nonlinearity measurement) as the
searching criterion. Because the CKM directly uses kurtosis as
the searching criterion with inequality constraints, it is more
sensitive to small targets and can capture them more quickly.

Although other algorithms exist based on unconstrained
kurtosis maximization (e.g., [5] and [6]), their computational
efficiency cannot compete with the FastICA algorithm because
they either use the parallel mode or their convergence speed
is slow. Therefore, in this letter, only the FastICA algorithm is
chosen as the basis of comparison for the CKM algorithm.

II. CONSTRAINED KURTOSIS MAXIMIZATION

Assume there are N original data points {un}N
n=1 with

dimensionality L and U = [u1,u2, . . . ,uN ] is an L × N data
matrix. Let w be a projector and y = wTU = (y1, y2, . . . , yN )
represents the projected data. The task is to find an optimal
w such that κ(y) is maximal, and then a target can be easily
detected by projecting the data onto the direction of w. The
sample mean is preremoved and the original data U are decor-
related by a data-whitening process. The resulting whitened
data set is denoted as Z. With a slight abuse of notation, the
transformed data set is still denoted as y, i.e., y = wTZ =
(y1, y2, . . . , yN ). If w is a unity vector, the variance of y is
unity as well. Then, κ(y) becomes

κ(y) = E
[
(y)4

]
− 3. (1)

A. Unconstrained Kurtosis Maximization

The aforementioned optimization problem can be formulated
as the following unconstrained objective function:

J(w) = max
w

{|κ(y)|} = max
w

{∣∣κ(wTz)
∣∣} . (2)

Here, | · | represents the absolute value operation, which en-
sures that the absolute maximum value is searched in both
super-Gaussian and sub-Gaussian cases. Taking the derivative
with respect to w yields

∆w =
∂|κ|
∂w

= sign(y)
∂E

(
(wTz)4

)

∂w
= 4sign(y)E(y3z)

(3)

where sign(·) represents the sign function.
Gradient-descent-based adaptation is a standard procedure

for the adaptation of w. To speed-up the convergence, the
fixed-point adaptation is adopted rather than the gradient-based
adaptation [11], where the new update of w is the gradient
value ∆w followed by w normalization. Therefore, the update
equations for w are

w ← ∆w w ← w/‖w‖. (4)

B. Constrained Kurtosis Maximization

As mentioned earlier, the kurtosis of a super-Gaussian signal
can have a very large positive value (the maximum is infinity
in principle), but the negative value of the kurtosis of a sub-
Gaussian signal is bounded below with the minimal possible
value being −2 (when variance is normalized to unity). Thus,
comparing the non-Gaussianity of super-Gaussian and sub-
Gaussian signals with each other using plain kurtosis is not
appropriate. When searching the direction for maximum kurto-
sis, it is necessary to specify if it is for super-Gaussian classes
(κ > 0) or for sub-Gaussian classes (κ < 0). Therefore, an
inequality constraint needs to be imposed. In many cases, it is of
interest to find a target/class whose kurtosis is in a certain range.
For instance, anomalies (κ > κref , e.g., κref = 100) or super-
Gaussian classes with large size (0 < κ < κref , e.g., κref = 10)
may need to be extracted. For a general case, the constraint can
be represented as κ2 ≤ κ ≤ κ1.

Now, the new objective function is to maximize the kurtosis
in (2) subject to κ2 ≤ κ ≤ κ1. The constraint can be further
decomposed into two inequality constraints

g1(y) = κ(y) − κ1 ≤ 0 g2(y) = κ(y) − κ2 ≥ 0. (5)

Then, the Lagrangian can be constructed as

L(y,w) = |κ(y)| + λ1g1(y) + λ2g2(y) (6)

where λ1 and λ2 are two Lagrange multipliers. The variation of
w is given by

∆w =
∂L

∂w
= [sign (κ(y)) + λ1 + λ2]

∂κ

∂w
(7)

where

∂κ

∂w
=

∂

∂w
E

[
(wTz)4

]
= 4E

[
(wTz)3z

]
.

In order to derive the adaptation rules for the Lagrange mul-
tipliers λ1 and λ2, the Karush–Kuhn–Tucker (KKT) conditions
can be used [13], which define the necessary conditions for
the optimality of general optimization problems with inequal-
ity and/or equality constraints. For a constrained optimization
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problem defined on a function f(x) with constraints gi(x) for
i = 1, 2, . . . , n, the objective function is

max
x∈X

f(x)

subject to g
i
(x) ≤ 0 ∀i = 1, . . . , m

g
i
(x) ≥ 0 ∀i = m + 1, . . . , n (8)

where X is an open set and the feasible region is defined as
S = {x ∈ X : gi(x) ≤ 0, i = 1, . . . , m; gi(x) ≥ 0, i = m +
1, . . . , n}. The necessary KKT conditions for a local optimum
(i.e., maximum in this case) of f(x) at the feasible point
x ∈ S state that there exists a set of Lagrange multipliers
{λ1, . . . , λn} such that

∇f(x) +
m∑

i=1

λi∇gi(x) +
n∑

i=m+1

λi∇gi(x) = 0

λi∇gi(x) = 0 ∀i = 1, . . . , n

λi ≤ 0 ∀i = 1, . . . ,m

λi ≥ 0 ∀i = m + 1, . . . , n (9)

where ∇f(x) and ∇gi(x) represent gradients of f and gi at
x = x, respectively. The gradients ∇gi(x) are assumed to be
linearly independent. In this case, m = 1 and n = 2 and linear
independence assumption of ∇gi(x) is obviously satisfied
because there is only one inequality constraint of each type.
The first-order KKT conditions give only necessary conditions
for local maxima but not an algorithm for the adaptation of the
Lagrange multipliers. Here, the same reasoning is followed
since the fixed-point update is used to find w. Thus, the
variation of the Lagrangian with respect to multipliers λ1 and
λ2 is given as

∆λi =
∂L

∂λi
= gi(y), for i = 1, 2 (10)

and the update equations for λ1 and λ2 are

λ1 ← −g1(y) λ2 ← g2(y) (11)

where the minus sign is to penalize the Lagrangian in (6)
whenever inequality constraints are not satisfied. Due to the
nature of the inequality constraints, the first-order necessary
KKT optimality conditions in (10) require λ1 ≤ 0 and λ2 ≥ 0
[13]. Thus, the complete learning rule for λ1 and λ2 becomes

λ1 ← min (−g1(y), 0) λ2 ← min (g2 (y), 0) . (12)

The problem defined in (5) and (6) is very general. When
only the inequality constraint g1(y) is active, λ2 in (7) is set to
zero and λ1 adaptation follows (12); when only the inequality
constraint g2(y) is active, λ1 in (7) is set to zero and λ2

adaptation follows (12).

C. Extension to Multiple Targets

Using (3), (4) or (7), (4), and (12), only one w is found,
which suffices for detecting one target. To detect more targets,
the whitened data Z are projected onto the orthogonal subspace
of w using the orthogonal subspace projector (OSP) P⊥

W =
I − W(WTW)−1WT, to eliminate the detected target, where
I is an L × L identity matrix and W = [w]. If p − 1 targets
have been detected, then W = [w1,w2, . . . ,wp−1], where wi

is the projector for detecting the ith target. To detect the pth
target, the OSP is used to eliminate all the p − 1 ones. In this
way, the pth target is also separated from others.

D. CKM Algorithm

Step 1) Set ε, κref , and p. Let k = 1 and j = 0.
Step 2) Obtain centered and whitened data Z.
Step 3) Initialize the projector wk denoted as w0

k.
Step 4) Calculate y = (wj

k)TZ.
Step 5) Update the Lagrange multipliers using (12).
Step 6) Update wj

k according to (7) and (4).
Step 7) Check if ‖wj

k − wj−1
k ‖ < ε. If yes, go to step 8).

Otherwise, j ← j + 1, and go to step 4).
Step 8) If k = p, terminate the algorithm; otherwise, Z ←

the projection of Z onto the orthogonal subspace of
w1, . . . ,wk, k ← k + 1, and go to step 3).

E. Practical Considerations

1) Inequality Constraint and κref Selection: The kurtosis
value corresponding to a target is related to many factors, such
as the abundance of the target component contained in a pixel,
the target size relative to the image size, and the number of
spectral bands. Empirically, the typical constraint for detecting
small targets from hyperspectral imagery is κ > κref = 100,
and for objects with large size κ > κref = 0. In practice, if
small targets are to be detected, one can start with a small
positive value as κref ; then gradually increase this value until
only small targets remain to be extracted.
2) Initial Conditions: λ1 and λ2 can be simply initialized as

zero. In general, w can be randomly initialized. w can converge
very quickly to the small targets if any. When there are only
objects with large size present in an image scene, this random
condition may result in a low convergence speed. One way to
increase the convergence speed is to use the eigenvectors of
the data covariance matrix. Since the eigenvectors represent the
directions where the data energy is concentrated, using them
as initial conditions can confine the search to the appropriate
directions.
3) Stopping Criterion: The number of targets p is unknown

in many cases. Even when p is known, it cannot be guaranteed
that the first p extracted classes are exactly these p targets. To be
conservative, one can use a reference number (e.g., the number
of distinct signals in the image scene [14]) which is larger than
p in the algorithm. The targets of interest can be separated in a
postprocessing step with target-related prior information.
4) Stability and Convergence Speed: It was shown that the

convergence speed of the fixed-point adaptation in the FastICA
algorithm is cubic, and it converges for any non-Gaussian
distribution [11]. In [15], the average convergence behavior of
the FastICA was analyzed, and it was proved that the FastICA
is very robust with respect to random fluctuation in initial
conditions. In [16], it was shown that the FastICA is statistically
efficient in achieving the Cramér–Rao lower bound for linear
ICA under certain conditions. Following this analysis, it can be
proved that the CKM algorithm theoretically has equally fast
convergence to that of the FastICA when the constraints can
be easily satisfied, wherein the Lagrange multipliers are zero in
(7). Stability is preserved because the update of the Lagrange
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Fig. 1. (a) HYDICE scene (Band 30). (b) Spatial locations of 30 panels.

Fig. 2. Target detection and discrimination using the CKM algorithm.

multipliers using (12) satisfies the first-order KKT conditions
in (9), which guarantee the convergence toward local maxima.
The convergence speed of the CKM may be slow when the
inequality constraints are tight.

III. EXPERIMENT

The HYDICE Forest subimage scene of size 128 × 64 shown
in Fig. 1(a) was collected in Maryland in 1995 with about
1.5-m spatial resolution and 0.4–2.5 µm spectral coverage.
One hundred sixty-nine bands were used after bad bands were
removed. This scene has 30 panels. The three panels in the same
row pia, pib, pic were made from the same material of sizes 3 ×
3 m, 2 × 2 m, and 1 × 1 m, respectively, and are considered as
one class, Pi for 1 ≤ i ≤ 10. The ground-truth map in Fig. 1(b)
shows the precise locations of pure panel pixels (dark centers).
These ten panel classes have close spectral signatures and are
difficult to discriminate.

Fig. 2 shows the targets detected and discriminated using
the CKM with inequality constraint κ > 100. This constraint
was imposed because small man-made targets are of interest.
The algorithm was randomly initialized. As shown, all the ten
rows of panels were detected and separated into ten different
classes (and a target in trees was also detected). Because the
panel signatures are similar, sometimes another row of panels
is displayed in light shade in the detection map of a specific row
of panels. For instance, P3 was perceivable when detecting P8.
Given the CKM’s unsupervised nature, this result is satisfying
because generally panels were well detected and separated.

There were four classes related to strong sensor noise, which
looks like a “scratch line.” We have manually removed the
bands with strong sensor noise before data analysis, but some
bands may still contain sensor noise, which is why the CKM al-
gorithm picked up this information. This demonstrates that the
kurtosis-based algorithm has a higher capability of extracting
outliers with low energy. After these outliers are extracted, the
OSP is used to eliminate them for cleaner data.

Fig. 2 also lists the kurtosis for each target (in the parenthe-
sis) in one realization. Overall, the kurtosis was decreasing. In
other words, the targets with high kurtosis had higher chances
to be extracted first. However, it is possible that the kth target
may have a slightly smaller kurtosis than the (k + 1)th target.
Targets detected in two different realizations may be in different
orders. For instance, P5 was detected as the first target in
the realization shown in Fig. 2 with κ = 1279.6. If in the
next realization P5 was detected as the third target, then the
kurtosis would be slightly decreased, for example, κ = 1270.
This decrease occurred because in the second realization P5 was
detected after two orthogonal subspace projections that were
used to annihilate the first two targets. During these processes,
some energy of P5 that is horizontal to the projections was
eliminated as well, which makes the final kurtosis somewhat
smaller. However, the kurtosis values of individual targets from
different realizations were always in the same range.

To investigate the stability and convergence speed of the
CKM algorithm, we show the convergence curves of the 11
targets (ten panel classes plus the target in trees) in Fig. 3, in
comparison with Fig. 2. When the w’s were initialized using
small random values as in Fig. 3(a), most of them converged
after four to five iterations. The convergence speed was very
fast, particularly for those distinctive targets with large kurtosis,
such as the unknown target in the trees. Some targets, such as
P3, P4, and P7, needed more iterations to converge. We found
that these targets with relatively lower kurtosis were detected
very last, as shown in Fig. 2. For a projector w to converge to a
direction different from the existing directions for the detected
eight targets, the algorithm has to be executed for longer
adaptation. Fig. 3(b) shows the case when the eigenvectors
of the data covariance matrix were used as initial conditions.
Then, the speed of convergence was increased, i.e., all the
targets were detected within five iterations and most within
three iterations. This is because: 1) the eigenvectors represent
the directions where energy is concentrated and using them as
initials confines the searching along the appropriate directions;
and 2) eigenvectors are mutually orthogonal, which can speed
up the convergence of the late detected targets.

To compare with the FastICA algorithm without a constraint,
both algorithms were run 100 times with random initials. We
found that, on average, 18 projections were needed for the
FastICA to detect and discriminate all the ten panel classes,
while 14 projections were needed for the CKM algorithm to
do the same. The detection result from the FastICA algorithm
with 18 projections was compared with that from the CKM
algorithm with 14 projections. The probability of detection and
probability of false alarm were estimated by thresholding the
normalized detection maps with the threshold being changed
from 0.1 to 0.9 and comparing with the available pixel-level
ground truth. The resulting receiver operating characteristic
(ROC) curves are shown in Fig. 4, where the performance of the



42 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 5, NO. 1, JANUARY 2008

Fig. 3. Convergence curves in the HYDICE experiment. (a) Using random vectors as initials. (b) Using eigenvectors as initials.

Fig. 4. ROC curves in the HYDICE experiment.

CKM algorithm is slightly better than that of the FastICA. This
may be because the portion of the pixel signatures that is along
the direction of the projection is sacrificed during project pur-
suit. This gradually reduces the energy of target pixels and may
influence the final detection result. Therefore, it is desirable to
extract targets with fewer projections whenever possible.

IV. CONCLUSION

The major advantages of using the CKM for automated target
detection and discrimination are summarized as follows.

1) A very general inequality constraint is imposed when
searching for a projector w that maximizes the kurto-
sis, which not only automatically separates the super-
Gaussian and sub-Gaussian classes but also provides the
flexibility for finding targets within different ranges of
kurtosis.

2) Different from other widely used methods—such as the
RX algorithm, which can only detect small targets—the
CKM algorithm can separate multiple targets by incorpo-
rating the OSP concept. Compared to the unconstrained
kurtosis maximization algorithms such as the FastICA,
which can also detect and separate multiple targets, the
CKM can complete the task with fewer projections, i.e.,
higher computational efficiency.

3) By substituting the random initial conditions with the
eigenvectors of the data covariance matrix that corre-
spond to large eigenvalues, the convergence speed of the
CKM algorithm can be increased. This is particularly

important when applying the CKM algorithm to extract
large objects.
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