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Rudjer Boskovich Institute, Zagreb, Croatia 

https://www.irb.hr/eng 

The Ruđer Bošković Institute is regarded as Croatia’s leading 

scientific institute in the natural and biomedical sciences as well 

as marine and environmental research, owing to its size, 

scientific productivity, international reputation in research, and 

the quality of its scientific personnel and research facilities. 

 

The Institute is the leading and internationally most competitive 

Croatian institute by virtue of its participation in international 

research projects, such as the IAEA and EC FP5-7 programs 

funded by the European Commission, NATO, NSF, SNSF, 

DAAD and other international scientific foundations. 

 

Today, the Ruđer Bošković Institute has over 550 scientists and 

researchers in more than 80 laboratories pursuing research in 

theoretical and experimental physics, physics and materials 

chemistry, electronics, physical chemistry, organic chemistry 

and biochemistry, molecular biology and medicine, the sea and 

the environment, informational and computer sciences, laser 

and nuclear research and development. 
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Roger Joseph Boskovich 

http://en.wikipedia.org/wiki/Roger_Joseph_Boscovich 

Ruđer Bošković (18 May 1711 – 13 February 1787) was a 

physicist, astronomer, mathematician, philosopher, diplomat, poet, 

theologian, Jesuit priest, and a polymath from the city of Dubrovnik 

in the Republic of Ragusa (today Croatia), who studied and lived in 

Italy and France where he also published many of his works. 

 

Among his many achievements he was the first to suggest least 

absolute deviation based regression (1757). That was studied by 

Laplace (1793) and predated the least square technique originally 

developed by Legendre (1805) and Gauss (1823): 

 
P. Bloomfield and W. L. Steiger. Least Absolute Deviations: Theory, Applications, and 

Algorithms. Birkhauser, Boston, MA, 1983. 
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 Instantaneous blind source separation (BSS): problem definition and overview 

of main methods. 

 

 Nonlinear underdetermined BSS (uBSS): motivation, conversion to linear 

uBSS.  

 

 uBSS and sparse component analysis (SCA): 

 asymptotic results from compressed sensing theory,  

 SCA by sparseness constrained non-negative matrix factorization 

(NMF), 

 SCA/NMF in reproducible kernel Hilbert spaces (RKHS). 

 

  Applications: (i) pure components extraction from mass spectra of nonlinear 

chemical reactions; (ii) unsupervised decomposition of color (RGB) 

microscopic image of unstained specimen in histopathology. 

Talk outline  
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Blind Source Separation – linear static problem 

Recovery of signals from their multichannel linear superposition using minimum of 

a priori information i.e. multichannel measurements only [1-3]. 

Problem: 

X=AS X∈RNxT, A∈RNxM, S∈RMxT N - number of sensors/mixtures; 

M - unknown number of sources 

T - number of samples/observations 

Goal: find S, A and number of sources M based on X only. 

1. A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001. 

2. A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002. 

3. P. Comon, C. Jutten, editors, “Handbook of Blind Source Separation,” Elsevier, 2010.  
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Blind Source Separation – linear static problem 

X=AS and X=ATT-1S are equivalent for any square invertible matrix T. There 

are infinitely many pairs (AT, T-1S) satisfying linear mixture model X=AS. 

Independent component analysis (ICA) solves BSS problem provided that: 

source signals S are statistically independent and non-Gaussian; mixing matrix A is  

full column rank i.e. M≤N. 

Dependent component analysis (DCA) improves accuracy of ICA when 

sources are not statistically independent. Linear high-pass filtering type of  

preprocessing transform is applied row-wise to X: L(X)=AL(S). ICA is applied to L(X)  

to estimate A and L(S). S is estimated from S≈A-1X. 

 

Matlab implementation of  many ICA algorithms can be found in the ICALAB:  

http://www.bsp.brain.riken.go.jp/ICALAB/ 

Solutions unique up to permutation and scaling indeterminacies, T=PΛ, are  

meaningful. For such solutions constraints must be imposed on A and/or S. 
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Blind Source Separation – linear static problem 

Sparse component analysis (SCA) solves BSS problem imposing sparseness 

constraints on source signals S. M can be less than, equal to or greater than N.  

 

Thus, SCA can be used to solve underdetermined BSS problems where number of  

source signals is greater than number of mixtures. 

Nonnegative matrix factorization (NMF) solves BSS problem imposing  

nonnegativity, sparseness, smoothness or constraints on source signals. NMF  

algorithms that enforce sparse decomposition of X can be seen as SCA algorithms [4]. 

Matlab implementation of  many NMF algorithms can be found in the NMFLAB:  

http://www.bsp.brain.riken.jp/ICALAB/nmflab.html 

4. A.  Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations-Applications 

to Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley, 2009.  
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Underdetermined BSS: (nonlinear) static problem [3,2,5,6] 

 = =1,...,t t t Tx f s                                          ;                          stands for nonnegative vector comprised 

of measurements acquired at T independent variables (pixel positions, m/z ratios, 

genes, etc.).  

 

                      stands for unknown vector of M sources.  M>N  uBSS problem             

 

                               is an unknown multivariate mapping such that: 

 

                                                       and                                 . 

 

Linear problem:                        . 
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5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715. 

6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 

Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 . 

 t tf s As
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Underdetermined Blind Source Separation: motivation 

In biomarker identification studies number of mixture spectra of biological samples 

(urine, blood, tissue extract, saliva, etc.) is rather small, while number of 

components/analytes (some of them are candidates for biomarkers) can be large. 

 

For example, 326 analytes were quantified in extracts of Arabidopsis thaliana leaf tissue 

[7], while the independent gas chromatography-mass spectrometry (GC-MS) study of 

Arabidopsis thaliana leaves detected 497 unique chemical components [8]. 

 

Analysis of human adult urinary metabolome by liquid chromatography-mass 

spectrometry (LC-MS) revealed presence of 1484 components, while 384 of them were 

characterized by matching their spectra with references stored in libraries [9]. 

7. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey R N, Willmitzer L. Metabolite profiling for plant functional 

genomics. Nature Biotechnology 2000; 18: 1157-1161. 

8. Jonsson P, Johansson A I, Gullberg J, Trygg J, Jiye A, Grung B, Marklund S, Sjöström M, Antti H, Moritz T. 

High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based 

metabolomic analyses," Analytical Chem. 2005;  77: 5635-5642. 

9. Roux A, Xu Y, Heilier J-F, Olivier M-F, Ezan E, Tabet J-C, Junot C. Annotation of the human adult urinary 

metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear 

quadrupole ion trap-orbitrap mass spectrometer. Anal. Chem. 2012; 84: 6429−6437. 
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Nonlinear u-Blind Source Separation: motivation 

While linear mixture model is adequate for many scenarios, nonlinear model 

offers more accurate description of processes and interactions occurring in 

biological systems. 

 

Living organisms are best examples of complex nonlinear systems that function 

far from equilibrium. Internal and external stimuli (disease, drug treatment, 

environmental changes) cause perturbations in the system as a result of highly 

synchronized molecular interactions, [10]. 

 

Furthermore, interactions within genes in components that are parts of gene 

regulating networks are nonlinear, [11]. 

10. Walleczek J (ed). Self-organized biological dynamics and non-linear control. Cambridge University  Press: 

Cambridge, UK. 2000. 

 

11. Yuh, C. H., Bolouri, H., Davidson, E. H.: Genomic cis-regulatory logic: experimental and computational 

analysis of a sea urchin gene. Science 279, 1896-1902 (1998). 
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Linear Underdetermined BSS 

• SCA-based solution of the linear uBSS problem is obtained in two stages:  

 

         1) estimate basis or mixing matrix A using data clustering. 

 

         2) estimating sources, with estimated A, one at a time st, t=1,…,T or 

 simultaneously solving underdetermined linear systems of        

 equations xt =Ast. Provided that st is sparse enough, solution is 

 obtained  at the minimum of Lp-norm,          , 0≤ p ≤1.   

 

Here:                             . 

 

 

• NMF-based solution yields A and S simulatneously through sparseness and 

nonnegativity constrained factorization of X. 
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When uBSS problems can(not) be solved? 

Let us focus on underdetermined linear system: 

 

 x=As, xRN , s RM  , M>N 

 

Let s be K-sparse i.e. K=s0 .  

 

Provided that A is random, with entries from Gaussian or Bernoulli distributions, 

compressed sensing theory has established necessary and sufficient condition 

on N, M and K to obtain, with probability one, unique solution at the minimum of 

L1-norm of s, [12]: 

NKlog(M/K)  

12. Candès E, Tao T. Near optimal signal recovery from random projections: universal encoding strategy?.  IEEE 

Trans. Information Theory 2006; 52: 5406-5425.  
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When uBSS problems can(not) be solved? 

However in BSS problems A is not random matrix but deterministic matrix with 

a structure. For example, in multispectral imaging it contains spectral profiles of 

the objects/materials present in the image, [13].In chemometrics A contains 

concentration profiles of pure components present in the mixtures, [14]. 

 

One result for deterministic A is given in [15]. For cyclic polynomial matrix A it 

applies N=O(K2). That is significantly worse than NKlog(M/K) for random A. K 

correponds with number of sources that are active/present at the specific 

coordinate t (time, pixel, m/z variable, frequency, etc). Thus, K is application 

dependent.  

 

 

13. Kopriva I, Cichocki A. Blind decomposition of low-dimensional multi-spectral image by sparse component 

analysis. J. Chemometrics 2009; 23 (11): 590-597. 

14. Kopriva I, Jerić I. Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass 

spectrometry: sparseness-based robust multicomponent analysis. Anal. Chem. 2010; 82: 1911-1920. 

15. DeVore R  A. Deterministic constructions of compressed sensing matrices. Journal of Complexity 2007; 23: 

918-925. 
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In addition to sparseness requirement on s certain degree of incoherence of the mixing 

matrix A is required as well. Mutual coherence is defined as the largest absolute and 

normalized inner product between different columns in A, what reads as 

 

 

  

The mutual coherence provides a worst case measure of similarity between the basis 

vectors. It indicates how much two closely related vectors may confuse any pursuit 

algorithm (solver of the underdetermined linear system of equations). The worst-case 

perfect recovery condition for s relates sparseness requirement on s and coherence of 

A, [16,17]:  

 

 

 
1 ,  and 

max

T

i j

i j M i j
i j


  


a a

A
a a

 

 

When uBSS problems can(not) be solved? 

 0

1 1
1

2 

 
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 
s
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16. R. Gribonval and M. Nielsen, "Sparse representations in unions of bases," IEEE Transactions on Information 

Theory 49, 3320-3325 (2003). 

17. J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on Information 

Theory 50, 2231-2242 (2004).  
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When the mutual coherence (A) is very close to 1 possibility to obtain 

meaningful solution of x=As is reduced drastically. Such scenario occurs when, 

as na example, X represent RGB microscopic image of unstained specimen in 

histopathology, [18]. In such scenario (A)0.9999.  

 

Even though uniqueness condition holds formally, only small amount of noise 

or modelling error will make the algorithms, such as basis pursuit denoising 

algorithm [19, 20], unstable [21, 22].       

18. I. Kopriva, M. Popović Hadžija, M. Hadžija, G. Aralica, “Unsupervised segmentation of low-contrast multi-channel images: 

discrimination of tissue components in microscopic images of unstained specimens,” Scientific Reports  5: 11576, DOI: 

10.1038/srep11576.  

19. Bruckstein, A.M., Donoho, D.L., and Elad, M., "From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals 

and Images," SIAM Review 51 (1), 34-81 (2009). 

20. Tibshirani, R., "Regression shrinkage and selection via the Lasso," J. Roy. Statist. Soc. B 58 (1), 267-288 (1996). 

21. Chen, S.S., Donoho, D.L., and Saunders, M.A., "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput. 20, 33-61 

(1998). 

22. Donoho, D.L., Elad, M., and Temlyakov, V., "Stable recovery of sparse overcomplete representations in the presence of noise," 

Information Theory, IEEE Transactions on 52, 6–18 (2006). 

When uBSS problems can(not) be solved? 
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The amount of sparseness as a function of mutual coherence imposed by various 

uniqueness/stability conditions. Circles: uniqueness condition without noise. Squares: stability 

condition. Diamonds: uniqueness condition for basis pursuit denoising algorithm. For non-

overlapping (orthogonal) histological structures sparseness equals            .  Thus, while uniqueness 

condition in the absence of noise is satisfied even when (A)≈1 it is seen that approximately 

(A)<0.33 is required to satisfy uinqueness condition in the presence of modelling erros or noise. 

0
1p s

When uBSS problems can(not) be solved? 
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For scenarios when mutual coherence (A)1 it was proposed in [18,5,6] to 

transform problem: 

 

  X=AS or  

into: 

 

   

such that (B)<(A), resp. (B)<(G). For {0, 1} binary non-overlapping 

sources it was shown in [18]: X=f(S)=GS and (X)=BS.     

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715. 

6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 

Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 . 

18. I. Kopriva, M. Popović Hadžija, M. Hadžija, G. Aralica, “Unsupervised segmentation of low-contrast multi-

channel images: discrimination of tissue components in microscopic images of unstained specimens,” Scientific 

Reports  5: 11576, DOI: 10.1038/srep11576.  

When uBSS problems can(not) be solved? 

  X BS

( ) X f S GS
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Linear uBSS: summary 
Linear uBSS problem is characterized with a triplet (N, M, K). Under L1-norm 

constraints unique solution is possible if NKlog(M/K) . 

 

In biological experiments M corresponds with number of analytes (metabolites) 

present in mixture spectra and, thus, can be large. K represents maximal number of 

overlapping components. Depending on the resolution of the spectrometer it can be 

large as well. N stands for number of biological samples and is usually (very) small. 

Thus, requirement NKlog(M/K) can often failed to be fulfilled!!! 

 

In [6] solution was proposed to transform original uBSS problem x=As into new one            

                                                       , with maximal number of overlapping 

components equal to Q. Thus, uniqueness condition becomes: DQlog(P/Q). That 

is fulfilled if: (D/N) >>(P/M) as well as (D/N) >>(Q/K).  

  1

0 0, ,D P P 

    x As A s

6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 

Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 . 
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Nonlinear mapping of linear uBSS problem? 

6. Kopriva I, Jerić I, Brkljačić, L. Nonlinear mixtures-wise expansion approach to underdetermined blind 

separation of nonnegative depedent sources. J. Chemometrics 2013; 27: 189-197. 

In [6] a new concept was proposed by mapping original uBSS problem X=AS 

nonlinearly into new one: 

 

 

 

 

since mapping (x(t)) is nonlinear new measurements are linearly independent.  

 

The nonlinear mapping has the following algebraic structure:   
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Nonlinear mapping of linear uBSS problem? 

The mapped problem becomes: 

 

 

 

 

 

where s(t)HOT is                  column vector comprised of: 

 

such that:                       . 
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Sparse probabilistic model of sources 

 

 

       *( ) 1 1,..., 1,...,mt mt mt mtp s s s f s m M t T        

Let us assume sparse probabilistic model of the sources, i.e. each source 

signal is distributed according to p.d.f. based on mixed state random variable 

model [23, 24, 5]: 

 

 

 

where (smt ) is an indicator function and  *(smt ) =1- (smt ) is its complementary 

function.                           Thus,                             .  

23. Bouthemy P, Piriou C H G, Yao J. Mixed-state auto-models and motion texture modeling. J. Math Imaging  

Vision 2006; 25: 387-402. 

24. Caifa C, Cichocki A. Estimation of Sparse Nonnegative Sources from Noisy Overcomplete Mixtures Using  

MAP.  Neural Comput. 2009; 21: 3487-3518. 

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.   
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Sparse probabilistic model of sources 

Examples of mass spectra of 

sources (pure components, 

analytes,…). They are sparse in 

support and amplitude. We can 

use exponential distribution for:  

 

 

In [5] using mass spectra of 25 

pure components it has been 

estimated: 

   ˆ 0.27,0.74m 

     1 expmt mtm m
f s s  

 ˆ 0.0012,0.0014m 
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Nonlinear mapping of linear uBSS problem? 

Thus, with high probability at least one source will not be present at 

location t. Thus, many cross-products will vanish. Also, by assuming 0smt 

1 it follows that                      when qm  grows.  

 

Thus, by hard or soft thresholding of (x(t)) higher-order terms can be 

suppressed.  Under sparse probabilistic prior validated on experimental mass 

spectra mostly second order terms will survive. That yields:        
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where :                                         and P≈2M + M(M-1)/2.  
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Thus, linear uBSS problem characterized by (N,M,K) is converted into new one 

characterized by                 , where Q denotes maximal number of overlapping 

sources in mapped domain. If sources do not overlapp heavily and higher-order 

terms are suppressed we have:  

( / ) ( / ) and ( / ) ( / )N N P M N N Q K

Nonlinear mapping of linear uBSS problem? 

( , , )N P Q

where Q2K + K(K-1)/2. P 2M + M(M-1)/2 above condition becomes:  

 

 

 

The same procedure can be applied to equivalent linear representation              

of the nonlinear BSS problem x=f(s).   

x Gs

( / ) ( / 2 3/ 2) and ( / ) ( / 2 3/ 2)N N M N N K 



 

 
Faculty of  Mechanical Engineering and Naval Architecture, University of Zagreb – September 18,2015, Zagreb, Croatia 

“Nonlinear sparse component analysis: pure components extraction and multichannel image decomposition”   

 
                

 

 

Nonlinear mapping of linear uBSS problem? 

The problem with using explicit feature maps (x(t))  is that        can be very 

large or even infinite. Thus, factorization problem: 

 

 

 

 

 

 

becomes computationally intractable.  

N

 

 
1 2

1 2

0 1 0 1

, 1

0

...

MT times

m m
m m

c c





 
  
   
  

   
  

X e e B S

s s


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Reproducible kernel Hilbert spaces 

Definition 1. A real function                             is positive semi-definite if it is 

symmetric and satisfies for any finite set of points                    and real numbers  

          :                               . 

: N N 

 
1

T
N

t t
x

 
1

T

t t
  

, 1
, 0

T

i j i ji j
 x x 

.    

Theorem 1. The Morre-Aronszjan theorem [25]. Given any nonnegative definite 

function  (x,y) there exists a uniquely determined RKHS H consisting of real 

valued functions on set                such that: (i)                             ; 

 (ii)                                                    . Here,        denotes inner product 

associated with H . 

25. Aronszajn, N., "The theory of reproducing kernels," Trans. of the Amer. Math. Soc. 68, 337-404 (1950). 

NX  , , H  x X x 

   , , , ,
H

f H f f    x X x x


  ,
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Reproducible kernel Hilbert spaces 

Definition 2. Replacing f(x) in (ii) in Theorem 1 by (,x) it follows                                 

                                        . By selecting the nonlinear map as (x)= (,x) it 

follows                                         . That is known as kernel trick. The nonlinear 

mapping (x) is known as as explicit feature map (EFM) associated with 

kernel (,x).  

     , , , ,t t H
x x x x



  

     , ,t t H
x x x x



  

Definition 3. Empirical kernel map (EKM), [26]. For a given set of patterns                     

                         ,          , we call                    : 

 

                                                                 the EKM with respect to           . 

26. Schölkopf, B., and Smola, A., Learning with kernels, MIT Press, 2002, pp. 42-45. 

 
1

D
N

d d
 v X D : N D

 
 

    
1

1

1

, , ,..., ,D

d d

T
T

t t t D t

t 

   v
x x v x v x    

1

D

d d
v
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Nonlinear mapping of linear uBSS problem? 

The problem with using explicit feature maps (x(t))  is that        can be very 

large or even infinite. Thus, factorization problem: 

 

 

 

 

 

 

becomes computationally intractable. That is fixed by projecting (x(t)) onto  

(V)  where                               stands for basis such that: 

 

 

Then:       

N

 1
1

D
N

d d




 V v

   
1 1

D T

d td t
span span

 
v x

     
1 1

D T

d td t
span span 

 
v x

 

 
1 2

1 2

0 1 0 1

, 1

0

...

MT times

m m
m m
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
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 
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Nonlinear mapping of linear uBSS problem? 

Projection yields: 

 

 

 

When (x)=k(,x) it follows: <(v), (x)>=k(v,x). It is shown in [6] that when 

sources comply with sparse probabilistic model it applies: 

             1 , ... ,
TT

t t t D t          V
V x x v x v x

 

 
1 2

1 2

0 1 0 1

, 1

0

...

MT times

m m
m m

c c





 
  
   
  

   
  

X e e B S

s s




  0

D T


 

X 1

0

D P 

B and P≈2M + M(M-1)/2.   

Subscript  inidcates that some type of thresholding was applied on (X)  to 

suppress HOT. For {0, 1} binary non-overalpind sources: (X)=BS, [18]. 
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Nonlinear mapping of linear uBSS problem? 

Nonlinear uBSS problem (N, M, K) is substituted by the linear BSS problem 

(D, 2M + M(M-1)/2, Q), Q2K + K(K-1)/2. Equvalent linear BSS problem is 

solvable when: 

( / ) ( / ) and ( / ) ( / )D N P M D N Q K

Since P 2M + M(M-1)/2 and Q2K + K(K-1)/2  above condition becomes:  

( / ) ( / 2 3/ 2) and ( / ) ( / 2 3/ 2)D N M D N K 

That is possible to fulfill by finding basis                             with sufficiently large 

dimension D. 
 1

1

D
N

d d




 V v
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Nonlinear mapping of linear uBSS problem? 

Basis                               needs to fulfill:  1
1

D
N

d d




 V v

   
1 1

D T

d td t
span span

 
v x

Thus, V can be found by clustering             into DT clusters. That, for 

example, can be accomplished by kmeans algorithm. 

 

For D=T each data sample is a basis vector and clustering is not necessary. 

But, computational costs in matrix factorization stage (that follows) is very large. 

 

When in addition to sparseness constraint nonnegativity constraints apply as 

well (that is the case in applications in imaging and/or mass spectrometry) 

sparseness constrained NMF algorithms can be applied to            to estimate 

source components. 

 
1

T

t t
x

 X



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Nonnegative matrix factorization  

Many BSS problems arising in imaging, chemo- and/or bioinformatics are 

described by superposition of non-negative latent variables (sources): 

 

 

 

where N represents number of sensors, M represents number of sources and T 

represents number of samples.  

 

Thus, solution of related decomposition problem can be obtained by imposing 

non-negativity constraints on A and S, to narrow down number of possible 

decomposition of X. This leads to NMF algorithms.  

 

Due to non-negativity constraints some other constraints (statistical 

independence) can be relaxed/replaced in applications where they are not 

fulfilled. 

N×T N×M M×T

0+ 0+ 0+, and   X AS X A S
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Nonnegative matrix factorization 

27. D D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature  401 

(6755), 788-791 (1999).  

Modern approaches to NMF problems have been initiated by Lee-Seung’ 

Nature paper, [27], where it is proposed to estimate A and S through alternative 

minimization procedure of the two possibly different cost functions:  
  

Set Randomly initialize: A(0), S(0), 

 

For k=1,2,…, until convergence do 

 

Step 1:  

 

 

Step 2:  

 

  ( )

( 1) ( )

0

arg min
k

mt

k k

s

D



 s
S

S X A S

  ( )

( 1) ( 1)

0

arg min
k

nm

k k

a

D 



 A
A

A X AS

If both cost functions represent squared Euclidean distance (Froebenius norm) 

we obtain alternating least square (ALS) approach to NMF. 
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Nonnegative matrix factorization 

   
2* *

,

1
, arg min . . ,

2 F
D s t    

A S

A S X AS X AS A 0 S 0

ALS-based NMF:  

• Minimization of the square of Euclidean norm of approximation error E=X-

AS is, from the maximum likelihood viewpoint, justified only if error 

distribution is Gaussian: 

 
2

2

2

1
, exp

22
p



 
  
 
 

X AS
X A S

• In many instances non-negativity constraints imposed on A and S do not 

suffice to obtain solution that is unique up to standard BSS indeterminacies: 

permutation and scaling.   
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Nonnegative matrix factorization 

In relation to original Lee-Seung NMF algorithm additional constraints are 

necessary to obtain factorization unique up to permutation and scaling. 

Generalization that involves constraints is given in [28]: 

where                        and                         are sparseness constraints that 

correspond with L1-norm of S and A respectively. S and A are regularization 

constants. Gradient components in matrix form are: 

,
( ) mtm t

J sS
S

,
( ) nmn m

J aA
A

28. A.  Cichocki, R. Zdunek, and S. Amari, “Csiszár’s Divergences for Non-negative Matrix Factorization: Family of 

New Algorithms,” LNCS 3889, 32-39 (2006). 

  T T
, ( )

nm
nm nm

D J

a a


 
      

Α
A

A S A
XS ASS

  T T
, ( )

mt
mt mt

D J

s s


 
      

S
S

A S S
A X A AS

 

 

 
21

( ) ( )
2 F

D J J    S S A AX AS X AS S A
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Maximization of a-posterior probability (MAP) P(A,SlX) yields:  

Maximum a posteriori probability BSS/NMF 

       * *, max , max , ( ) . . ,P P P P s t
 

   
AS X AS X

A S A S X X A S A S A 0 S 0

Above formulation is equivalent to maximizing likelihood P(XІA,S) and 

maximizing prior probabilities P(A) and P(S).  Assuming normal distribution of 

approximation error E=X-AS this yields:  

 
 

2* *

,

1
, arg min ( ) ( ) . . , .

2 F
J J s t      

S S A A
A S

A S X AS S A A 0 S 0
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 1( ) exp ... MP    S s s

Maximum a posteriori probability BSS/NMF 

Assuming non-informative prior on A: P(A)=const and Laplacian (sparse) prior 

on S:                                     yields:  

 
 

2* *

1
,

1
, arg min . . , .

2 F
s t    

S
A S

A S X AS S A 0 S 0

It is possible to select for P(S) prior other than Laplacian. That leads to general 

sparseness constrained factorization:  

 
 

2* *

,

1
, arg min . . 0 1, , .

2 F p
s t p      

S
A S

A S X AS S A 0 S 0
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Nonnegative matrix factorization 

Since NMF problem deals with non-negative variables the idea is to 

automatically ensure non-negativity of A and S through learning. That can be 

achieved by multiplicative learning equations: 

( , )

( , )

D

D






 



A

A

A S
A A

A S

( , )

( , )

D

D






 



S

S

A S
S S

A S

where  denotes entry-wise multiplication,                      and                     

denote respectively negative and positive part of the gradient                    . 

Likewise,                     and                    are negative and positive part of the 

gradient                      .  

 

When gradients converge to zero corrective terms converge to one. Since 

learning equations include multiplications and divisions of non-negative terms, 

non-negativity is ensured automatically. 

( , )D
A

A S ( , )D
A

A S
( , )D

A
A S

( , )D
S

A S

( , )D
S

A S

( , )D
S

A S

 

 



 

 
Faculty of  Mechanical Engineering and Naval Architecture, University of Zagreb – September 18,2015, Zagreb, Croatia 

“Nonlinear sparse component analysis: pure components extraction and multichannel image decomposition”   

 
                

Nonnegative matrix factorization 

Multiplicative learning rules for NMF based on regularized squared L2-norm of 

the approximation are obtained as:  

T

T

( )

MT

J





 
  

 


S
S

S
A X

S
S S

A AS 1

where [x]+=max{,x} with small . For L1-norm based regularization, derivatives 

of sparseness constraints in above expressions are equal to 1, i.e.: 

T

T

( )

NM

J





 
  

 


Α
A

A
XS

A
A A

ASS 1

T

T

NM
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




  
 



AXS 1
A A

ASS 1

T

T

MT

MT






  
 



SA X 1
S S

A AS 1
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Non-negative matrix under-approximation (NMU) 

29. N. Gillis, and F. Glineur, "Using underapproximations for sparse nonnegative matrix factorization," Patt. 

Recog., vol. 43, pp. 1676-1687, 2010.  

NMF algorithms outlined befor require a priori knowledge of sparseness 

related regularization (trade off) constant.  

 

A sequential approach to NMF has been recently proposed in [29] by 

estimating rank-1 one factors amsm one at a time. Each time amsm is 

estimated it is removed from X X-amsm. To prevent subtraction from being 

negative the under-approximation constraint is imposed on amsm: amsmX.  

 

Hence, the NMU algorithm is obtained as a solution of:  

 
 

2* *

,

1
, arg min . . , , .

2 F
s t    

A S

A S X AS A 0 S 0 AS X
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Non-negative matrix under-approximation (NMU) 

Theorem 1 in [29] proves that number of nonzero entries in A and S is less than  

in  X. Thus, the underapproximation constraint ensures sparse (parts based)  

factorization of X. This, however, does not imply that A and S obtained by 

enforcing underapproximation constrain yields the sparseset decomposition of 

X. 

 

However, since no explicit regularization is used there are no difficulties 

associated with selecting values of regularization constants.  

 

MATLAB code for NMU algorithm is available at: 

https://sites.google.com/site/nicolasgillis/code 

 

 

 



 

 
Faculty of  Mechanical Engineering and Naval Architecture, University of Zagreb – September 18,2015, Zagreb, Croatia 

“Nonlinear sparse component analysis: pure components extraction and multichannel image decomposition”   

 
                

Non-negative matrix factorization with L0-constraint (NMF_L0) 

The NMF_L0 algorithm, [30], imposes explicit L0-constraint on entries of S, i.e. 

number of nonzero entries is tried to be  minimized explicitly by integrating 

nonnegativity constraint in the OMP algorithm. That is achieved through 

modifications of the nonnegative least square (NNLS) algorithm, [31], called 

sparse NNLS and recursive sparse NNLS. The mixing matrix is updated by 

some of standards dictionary update methods. 

 

The „weak” side of the NMF_L0 algorithm is that, in addition to number of 

sources M, the maximal number of overlapped sources K has to be known a 

priori. Quite often that is hard to achieve in practice.  

 

MATLAB code for NMF_L0 algorithm is available at: 

http://www3.spsc.tugraz.at/people/robert-peharz. 

30. R. Peharz, F. Pernkopf, "Sparse nonnegative matrix factorization with       constraints," Neurocomputing, vol. 

80, pp. 38-46, 2012.  

31. C. Lawson, R. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974.  

0
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Nonlinear underdetermined blind source separation: 

numerical experiments and separation of pure 

components mass spectra from mixtures of 

nonlinear chemical reactions [5] 

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from  

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.   
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Linear mixing model  
 

 X=AS          

 

In chemometrics (NMR spectroscopy or mass spectrometry) rows of X 

represent spectra of mixture samples, columns of A represent concentration 

profiles of analytes (a.k.a. pure components) present in mixture spectra X, while 

rows of S represent spectra of analytes present in mixture spectra X. 

   

The (u)BSS problem relates to extraction of anlytes (and their concentratios) 

using mixture spectra X only: 

 
 

 

 

 

 

Pure components can represent compounds indicative for disease. Thus, they 

can be useful for biomarker analysis. They can be isolated from spectra (NMR, 

mass) of biological samples (urine, blood, tissues). 

0 0 0, ,N T M T N M
X S A
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Implementation details 

Studies on numerical and experimental data reported below were executed on 

personal computer running under Windows 64-bit operating  system with 64GB 

of RAM using Intel Core i7-3930K processor and operating  with a clock speed 

of 3.2 GHz. MATLAB 2012b environment has been used for  programming. 

 

Electrospray ionization-mass spectrometry (ESI-MS) measurements operating 

in a positive ion mode were performed on a HPLC-MS triple quadrupole 

instrument equipped with an autosampler (Agilent Technologies, Palo Alto, CA, 

USA). The desolvation gas temperature was 3000C with flow rate of 8.0 L/min. 

The fragmentor voltage was 135 V and capillary voltage was 4.0 kV. Mass 

spectra were recorded in m/z segment of 10-2000. All data acquisition and 

processing was performed using Agilent MassHunter software. Acquired mass 

spectra are composed of intensities at T=9901 m/z coordinates. 
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Numerical experiment 

       *( ) 1 1,..., 1,...,mt mt mt mtp s s s f s m M t T        

Nonlinear uBSS problem characterized by N=3,M=8, K=3  andT=1000 is 

simulated:  

     1 expmt mtm m
f s s  

Each source signal is according to p.d.f. based on mixed state random variable 

model with exponential prior [5]:  

 

 

 

 

where m=0.8 and m=1.510-3   m=1,...,M.                                . 

3 2 1 2 3 3

1 1 2 3 4 5 6 7 8( ) tan ( ) tanh( ) sin( )f s s s s s s s s       s

3 3 1 2 2

2 1 2 3 4 5 6 7 8( ) tanh( ) tan ( ) tanh( ) sin( )f s s s s s s s s       s

1 2 3 3 1

3 1 2 3 4 5 6 7 8( ) sin( ) tan ( ) tanh( ) sin( ) tan ( )f s s s s s s s s        s
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Numerical experiment 
Comparative performance analysis of NMU, NMF_L0, EKM-NMU, EKM-NMF_L0, PTs-

EKM-NMU and PTs-EKM-NMF_L0 algorithms. Probability of zero state was m=0.8.  

 

Four metrics used in comparative performance analysis were: number of associated 

components with normalized correlation coefficient greater than or equal to 0.6, mean 

value of correlation coefficient over all associated components, minimal value of 

correlation coefficient and number of  pure components assigned incorrectly (that occurs 

due to poor separation).  

 

All four metrics were calculated with respect to predefined labeling of the pure 

components stored in the library. Incorrect assignment implies that, based on maximal 

correlation criterion, two or more pure components are assigned to the same separated 

component.  

 

Mean values and variance are reported and estimated over 10 Monte Carlo runs. The 

best result in each metric is in bold. The first three metrics are calculated only for 

correctly assigned components. That is why NMU and NMF_L0 appear to have 

comparable performance. 
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Numerical experiment 

NMU NMF_L0 EKM-NMU EKM-

NMF_L0 

PTs_EKM-

NMU 

PTs-EKM-

NMF_L0 

correlation 

G.E. 0.6 

2.8±0.92 2.3±1.34 3.7±0.48 3.2±0.63 3.8±0.42 3.7±0.48 

mean 

correllation 

0.70±0.03 0.61±0.11 0.69±0.02 0.64±0.03 0.70±0.03 0.69±0.04 

minimal 

correlation 

0.53±0.04 0.42±0.08 0.51±0.03 0.45±0.04 0.52±.04 0.49±0.06 

inccorect 

assignments 

3.4±0.70 3.1±0.57 2.4±0.97 2.2±0.63 2.0±0.88 1.5±1.43 
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Nonlinear chemical reaction 
9 nonlinear mixtures mass spectra were recorded in nonlinear chemical 

reaction related to peptide bond synthesis.  

25 pure components were present in the mixtures. They were separated  

chromatographically which enabled formation of pure components library and 

validation of the algorithms’ performances. 
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Pure components correlation matrix. 30  

pairs of pure components have correlation  

greater than or equal to 0.1.  

s2 s6 s7 s9 s10 s12 

s1 0.9839     0.1416     0.1218     0.1796     0.1072     0.3343     

s6 s7 s9 s10 s12  

s2 0.1418     0.1268     0.1797     0.1075     0.3305     

s16 s17 s18 

s3 0.3575     0.3103     0.1716    

s6 s19 s21 

s4 0.3077     0.3947     0.4005     

s7 

s5 0.7824 

s9 

s7 0.3297     

s13 

s8 0.1293     

s12 s22 

s11 0.2666     0.1622     

s17 

s14 0.1024     

s22 

s15 0.1349 

s17 

s16 0.9783 

s18 

s17 0.1186 

s21 

s19 0.9962 

s24 s25 

s23 0.4409 0.4339 

s25 

s24 0.3008 
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NMU NMF_L0 EKM-NMU PTs_EKM-NMU 

D=T=9901 

PTs-EKM-NMU 

D=4000 

correlation G.E. 0.6 8 14 16 18 18 

mean correlation 0.342 0.518 0.673 0.702 0.708 

minimal correlation 0.038 0.039 0.267 0.419 0.283 

inccorect assignments 15 7 0 0 1 

CPU time 1.3s 40 s  78.78h 478h* 413.7h* 

Nonlinear chemical reaction 

* Sparseness constrained NMF had to be executed 4 times because 4 methods 

for supression of HOT have been applied to (X): hard, soft and trimmed 

threshodling as well as robust PCA 
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Mass spectra of several true and  

estimated pure components.  
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Decomposition (segmentation) of 

multichannel (RGB) images composed of 

spectrally (highly) similar objects [19, 32]  

19. I. Kopriva, M. Popović Hadžija, M. Hadžija, G. Aralica (2015). Unsupervised segmentation of low-contrast 

multi-channel images: discrimination of tissue components in microscopic images of unstained specimens,” 

Scientific Reports  5: 11576, DOI: 10.1038/srep11576.  

32. A. G. Savić, S. Živković, K. K. Jovanović, L. Duponchel, I. Kopriva (2015).  Complete determination of plant 

tissues and advanced image analysis - study of needles and stamen. Journal of Chemometrics, doi: 

10.1002/cem/2735  
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Segmentation of nontrivial images is considered one of the most difficult tasks in image 

processing, [33].  

 

Image segmentation refers to the partitioning of an image into sets of pixels (segments) 

corresponding to distinct objects, [34]. Herein, distinct objects refer to spectrally distinct 

tissue components. 

 

It is important to distinguish between single (grayscale)- and multi-channel images. In 

the former case, segmentation is performed by detection of changes of intensity or 

texture by thresholding some type of spatial derivative of an image, [35-39].  

Segmentation of low-contrast images 

33. Gonzalez, R.C. & Woods, R.E. in Digital Image Processing (Prentice Hall, 2007). 

34. Jain, V., Seung, S.H. & Turaga, S.C. Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. 

Neurobiol. 20, 653-666 (2010). 

35. Marr, D. & and Hildredth, E. Theory of edge detecion. Proc. Royal Soc. London Series B Biol. Sci. 207, 187-217 (1980). 

36. Geman, S. & Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern 

Anal. Mach. Intell. 6, 721-741 (1984). 

37. Boykov, Y., Veksler, O. & Zabih, R. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 

23, 1222-1239 (2001). 

38. Kass, M., Witkin, A. & Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1, 321-331 (1988). 

39. Osher, S. & Fedkiw, R.P. Level Set Methods: An Overview and Some Recent Results. J. Comput. Phys. 169, 463-502 (2001). 
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Segmentation of low-contrast images 

Images that comprise components with very similar profiles (spectral, density, and/or 

concentration) have very poor visual contrast. For an example, if staining is not used, 

the spectral similarity between the tissue components present in the specimen is very 

high and the visual contrast is very poor, i.e., tissue components appear colorless and 

virtually texture-less when viewed under a light microscope.  

Synthetic image: (A)=0.9995. Unstained specimen of human 

liver with hepatocellular 

carcinoma: (A)>0.9999. 

Unstained specimen of human 

liver with metastasis from colon 

cancer  (A)>0.9997. 
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Segmentation of low-contrast images 

When spectral vectors are plotted vs. their indices (corresponding red, green and blue 

colors) they are virtually parallel. 

Ustained specimen of human liver with 

hepatocellular carcinoma: (A)>0.9999. Synthetic image: (A)=0.9995. 
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Segmentation of low-contrast images 
The intensity and/or texture-based segmentation methods, [35-39], fail to segment tissue 

components correctly. Segmentation of the color image by means of clustering in the 

CIE L*a*b* color space, [40], also fails for the same reason. 

40.Chitade, A.Z. & Katiyar, S.K. Colour Based Image Segmentation Using K-Means Clustering.  Int. J. Eng. Sci. Tech. 2, 5319-5325 

(2010).  

41. Sandhu, R., Georgiu, T., and Tannebaum, A., "A New Distribution Metric for Image Segmentation,"  in Proc. SPIE 6914, Medical 

Imaging 2008: Image Processing, 691404 (11 March 2008); doi: 10.1117/12.769010. 

Unstained specimen of human 

liver with hepatocellular 

carcinoma: (A)>0.9999. 

K-means in CIE L*a*b* color 

space 
Geometric active contour method 

after 6000 iterations, [541]. 
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Segmentation of synthetic image 
Mapping of the original image X by using EKM based on Gaussian kernel yields (X)=BS. Applying NMU [29], 

resp. NMF_L0 [30], algorithms to (X) executes image decomposition (segmentation). We name these methods 

EKM-NMU, resp. EKM-NMF_L0.  

Synthetic image: (A)=0.9995. 

Per-channel SNR=70 dB. 
Color coded ground truth.  Color coded EKM-NMU (D=20, 

2=0.01 ). (B)=0.9807.  

Color coded NMU.  Color coded K-means in CIE 

L*a*b* color space. 
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Segmentation of synthetic image 

Average coherence for A 

(red) and B (blue).  

Spectral responses of 5 objects in RGB 

color space. (A)=0.9995. 

_average(A)=0.9956.  

Spectral responses of 5 objects in non-

physical color space. (B)=0.9807. 

_average(B)=0.3777.  

SNR [dB] SNR 29 18SNR28 17SNR14 

2 0.001 0.01 0.1 

Variance 2 of the Gaussian kernel based EKM as a function of the per-spectral-channel SNR.  
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Segmentation of image of unstained specimen of human liver with HCC 

Unstained specimen of human liver 

with HCC: (A)>0.9999. 

Color-coded EKM-NMF_L0 (D=50, 

2=0.1). (B)=0.9760. Blue: HCC; 

green: tumor fibrotic capsule; red: 

blood vessel. 

 Color-coded K-means in CIE 

L*a*b* color space. 

Staining with HepPar (different 

slide). Brown: hepatocytes, white: 

tumor fibrotic capsule; blue: 

enodthelium of blood vessel. 

Staining with H&E (the same slide). Blue 

and dark pink: hepatocytes, light pink: 

tumor fibrotic capsule; white pink: blood 

vessel. 
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Segmentation of image of unstained specimen of human liver with HCC 

Average coherence for A 

(red) and B (blue).  

Spectral responses of 3 tissue 

components in RGB color space. 

(A)>0.9999. _average(A)=0.9985.  

Spectral responses of 3 tissue 

components in non-physical color space. 

(B)=0.9760. _average(B)=0.8937.  
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Segmentation of image of unstained specimen of human liver with 

metastasis from colon cancer 

 

 

Unstained specimen: 

(A)=0.9997, 

_average(A)=0.9993. 

Color-coded EKM-NMF_L0 (D=50, 2=0.1). 

(B)=0.9998, _average(B)=0.9984. Blue: 

colon cancer; green: hepatocytes; red: border 

area between the tumor and liver tissue. 

 Staining with H&E (the same slide).   

Staining with HepPar (different 

slide). Brown: hepatocytes, blue: 

metastatic cells of colon cancer 

and inflamatory cells. 

Staining with CDX2 (different slide). 

Brown: metastatic cells of colon cancer, 

blue: hepatocytes and inflamatory cells. 

Staining with CK20 (different slide). 

Brown: metastatic cells of colon 

cancers, blue: hepatocytes and 

inflamatory cells. 
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Segmentation of image of unstained specimen of human liver with 

metastasis from gastric cancer 

 

 

 

 

Unstained specimen: 

(A)=0.9999, 

_average(A)=0.9988. 

Color-coded EKM-NMF_L0 (D=50, 2=0.1). 

(B)=0.9994, _average(B)=0.9917. Blue: 

gastric cancer; green: hepatocytes; red: 

border area of inflamation. 

 Staining with H&E (the same slide).   

Staining with HepPar (different 

slide). Brown: hepatocytes, blue: 

metastatic cells of gastric cancer 

and inflamatory cells. 

Staining with CDX2 (different slide). 

Brown: metastatic cells of gastric  

cancer, blue: hepatocytes and 

inflamatory cells. 

Staining with LCA (different slide). 

Brown: inflamatory cells; blue: 

hepatocytes and metastatic cells of 

gastric cancer. 
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Segmentation of image of unstained specimen of mouse fatty liver 

 

 

 

 

 

 

 

 

Unstained specimen. Color-coded EKM-NMF_L0 (D=50, 2=0.1). 

Yellow: vacuoles, green: liver parenchyma. 

 

 

 

 

 

 

Staining with H&E (the same 

slide).  

Staining with SUDAN III (different slide). 

Orange: fat storage granules. 



 

 
Faculty of  Mechanical Engineering and Naval Architecture, University of Zagreb – September 18,2015, Zagreb, Croatia 

“Nonlinear sparse component analysis: pure components extraction and multichannel image decomposition”   

 
                

 

 

Segmentation of image of unstained specimen of mouse fatty liver 

 

 

 

 

 

 

Unstained specimen. Color-coded EKM-NMF_L0 (D=50, 2=0.1). 

Red: blood vessel, sky blue: sinusoids, green: 

hepatocytes, magenta: reticular fiber. 

 Zoomed area   

 

 

 

 

 

 

Staining with H&E (the same 

slide). Brown: hepatocytes, blue: 

metastatic cells of gastric cancer 

and inflamatory cells. 

Staining with SUDAN III (different slide). 

Orange: fat storage granules. 
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Segmentation of microscopic fluorescent image of plant spercimen 
Mapping of the original image X by using EFM based on Gaussian kernel yields (X)=BS. Applying NMF_L0 [30], 

algorithm to (X) executes image decomposition (segmentation). We named this method  EFM-NMF_L0.  The 

method has been demonstrated in segmentation of  a cross-section of a needle of Picea Omorika, [32].  

A – transmission image, B-E – fluorescence images obtained by application of DAPI, 

FAM, GFP and DsRED filter respectively. F – composite image made using 

fluorescence images according to CIE convention.  
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Segmentation of microscopic fluorescent image of plant spercimen 

A – Composite RBG images obtained by combining some of the extracted components as channels. Each 

combination (A-I) uncovers cell types and describes it . 

 A = C+H+ED+TT+X+P+S+GC, B = C+E+H+M+ED+X+S,                  

C = C+E+H+M+ED+TT+X+P+S+GC, D = C+H+M+GC, E = C+M+X+S+GC,         

F = C+ED+P+TT+S, G = C+H+ED+X+P, H = C+E+H+M+TT+X+S+GC,  I = C+E+H+M+TT+X+P+S+GC.  

11 tissue types were segmented 

and identified from 5-channel 

image. 
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