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Roger Joseph Boskovich
http://en.wikipedia.org/wiki/Roger_Joseph_Boscovich

Ruñer Bošković (18 May 1711 – 13 February 1787) was a
physicist, astronomer, mathematician, philosopher, diplomat, poet,
theologian, Jesuit priest, and a polymath from the city of Dubrovnik
in the Republic of Ragusa (today Croatia), who studied and lived in
Italy and France where he also published many of his works.Italy and France where he also published many of his works.

Among his many achievements he was the first to suggest least
absolute deviation based regression (1757). That was studied by
Laplace (1793) and predated the least square technique originally
developed by Legendre (1805) and Gauss (1823):

P. Bloomfield and W. L. Steiger. Least Absolute Deviations: Theory, Applications, and
Algorithms. Birkhauser, Boston, MA, 1983.
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� Instantaneous blind source separation (BSS): problem definition and overview
of main methods.

� Nonlinear underdetermined BSS (uBSS): motivation, conversion to linear
uBSS. 

Talk outline

� uBSS and sparse component analysis (SCA):

� asymptotic results from compressed sensing theory, 

� SCA by sparseness constrained non-negative matrix factorization
(NMF),

� SCA/NMF in reproducible kernel Hilbert spaces (RKHS).

� Application: unsupervised decomposition of color (RGB) microscopic image of
unstained specimen in histopathology.
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Blind Source Separation – linear static problem

Recovery of signals from their multichannel linear superposition using minimum of 
a priori information i.e. multichannel measurements only [1-3].

Problem:

∈ ∈ ∈X=AS X∈RNxT, A∈RNxM, S∈RMxT N - number of sensors/mixtures;
M - unknown number of sources
T - number of samples/observations

Goal: find S, A and number of sources M based on X only.

1. A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
2. A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.
3. P. Comon, C. Jutten, editors, “Handbook of Blind Source Separation,” Elsevier, 2010.
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Blind Source Separation – linear static problem
X=AS and X=ATT-1S are equivalent for any square invertible matrix T. There
are infinitely many pairs (AT, T-1S) satisfying linear mixture model X=AS.

Independent component analysis (ICA) solves BSS problem provided that:

Solutions unique up to permutation and scaling indeterminacies, T=PΛ, are 
meaningful. For such solutions constraints must be imposed on A and/or S.

Independent component analysis (ICA) solves BSS problem provided that:
source signals S are statistically independent and non-Gaussian; mixing matrix A is 
full column rank i.e. M≤N.

Dependent component analysis (DCA) improves accuracy of ICA when
sources are not statistically independent. Linear high-pass filtering type of 
preprocessing transform is applied row-wise to X: L(X)=AL(S). ICA is applied to L(X) 
to estimate A and L(S). S is estimated from S≈A-1X.

Matlab implementation of  many ICA algorithms can be found in the ICALAB: 
http://www.bsp.brain.riken.go.jp/ICALAB/
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Blind Source Separation – linear static problem

Sparse component analysis (SCA) solves BSS problem imposing sparseness
constraints on source signals S. M can be less than, equal to or greater than N. 

Thus, SCA can be used to solve underdetermined BSS problems where number of
source signals is greater than number of mixtures.

Nonnegative matrix factorization (NMF) solves BSS problem imposing
nonnegativity, sparseness, smoothness or constraints on source signals. NMF 
algorithms that enforce sparse decomposition of X can be seen as SCA algorithms [4]

Matlab implementation of  many NMF algorithms can be found in the NMFLAB: 
http://www.bsp.brain.riken.jp/ICALAB/nmflab.html

4. A.  Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations-Applications 
to Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley, 2009.
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Underdetermined BSS: (nonlinear) static problem [3,2,5,6]

( )= =1,...,t t t Tx f s ;                          stands for nonnegative vector comprised 
of measurements acquired at T independent variables (pixel positions, m/z ratios, 
genes, etc.). 

stands for unknown vector of M sources.  M>N → uBSS problem

1
0
N

t
×
+∈x ℝ

1M ×∈s ℝ stands for unknown vector of M sources.  M>N → uBSS problem

is an unknown multivariate mapping such that:

and .

Linear problem:                        .

1
0
M

t
×

+∈s ℝ

0 0: M N
+ +f ℝ ֏ ℝ

( ) ( ) ( )1 ...
T

t t N tf f=   f s s s { }0 0 1
:

NM
n n

f + + =
→ℝ ℝ

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 
Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 
Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.
6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 
Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 .

( )t t=f s As



Soochow University, Medical Image Processing, Analysis and Visualisation Laboratory – October 29 ,2015, Suzhou City,  China.

“3rd International Workshop on Medcial Imaging at Suzhou”  

Linear Underdetermined BSS

• SCA-based solution of the linear uBSS problem is obtained in two stages: 

1) estimate basis or mixing matrix A using data clustering.

2) estimating sources, with estimated A, one at a time s t, t=1,…,T or 2) estimating sources, with estimated A, one at a time s t, t=1,…,T or 
simultaneously solving underdetermined linear systems of        
equations x t =As t. Provided that s t is sparse enough, solution is 
obtained  at the minimum of Lp-norm, , 0≤ p ≤1. 

Here:                             .

• NMF-based solution yields A and S simulatneously through sparseness and
nonnegativity constrained factorization of X.

t p
s

1

1

pM
p

t mtp
m

s
=

 =  
 
∑s
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When u BSS problems can(not) be solved?

Let us focus on underdetermined linear system:

x=As , x∈RN , s ∈RM , M>N

Let s be K-sparse i.e. K=s0 . Let s be K-sparse i.e. K=s0 . 

Provided that A is random, with entries from Gaussian or Bernoulli distributions, 
compressed sensing theory has established necessary and sufficient condition
on N, M and K to obtain, with probability one, unique solution at the minimum of
L1-norm of s, [7]:

N≈Klog(M/K) 

7. Candès E, Tao T. Near optimal signal recovery from random projections: universal encoding strategy?. IEEE 
Trans. Information Theory 2006; 52: 5406-5425.



Soochow University, Medical Image Processing, Analysis and Visualisation Laboratory – October 29 ,2015, Suzhou City,  China.

“3rd International Workshop on Medcial Imaging at Suzhou”  

When uBSS problems can (not) be solved ?

However in BSS problems A is not random matrix but deterministic matrix with
a structure. For example, in multispectral imaging it contains spectral profiles of
the objects/materials present in the image, [8].In chemometrics A contains
concentration profiles of pure components present in the mixtures, [9].

One result for deterministic A is given in [10]. For cyclic polynomial matrix A it 
applies N=O(K2). That is significantly worse than N≈Klog(M/K) for random A. K
correponds with number of sources that are active/present at the specific
coordinate t (time, pixel, m/z variable, frequency, etc). Thus, K is application
dependent. 

8. Kopriva I, Cichocki A. Blind decomposition of low-dimensional multi-spectral image by sparse component 
analysis. J. Chemometrics 2009; 23 (11): 590-597.
9. Kopriva I, Jerić I. Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass 
spectrometry: sparseness-based robust multicomponent analysis. Anal. Chem. 2010; 82: 1911-1920.
10. DeVore R A. Deterministic constructions of compressed sensing matrices. Journal of Complexity 2007; 23: 
918-925.
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In addition to sparseness requirement on s certain degree of incoherence of the mixing 
matrix A is required as well. Mutual coherence is defined as the largest absolute and 
normalized inner product between different columns in A, what reads as 

{ }
1 ,  and 

max
T
i j

i j M i j
µ

≤ ≤ ≠
=

a a
A

a a

When uBSS problems can (not) be solved ?

The mutual coherence provides a worst case measure of similarity between the basis 
vectors. It indicates how much two closely related vectors may confuse any pursuit 
algorithm (solver of the underdetermined linear system of equations). The worst-case
perfect recovery condition for s relates sparseness requirement on s and coherence of 
A, [11,12]: 

{ }
1 ,  and 

max
i j M i j

i j

µ
≤ ≤ ≠

=A
a a

{ }0

1 1
1

2 µ
 

< +  
 

s
A

11. R. Gribonval and M. Nielsen, "Sparse representations in unions of bases," IEEE Transactions on Information 
Theory 49, 3320-3325 (2003).
12. J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on Information 
Theory 50, 2231-2242 (2004).
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When the mutual coherence µ(A) is very close to 1 possibility to obtain
meaningful solution of x=As is reduced drastically. Such scenario occurs when,
as na example, X represent RGB microscopic image of unstained specimen in
histopathology, [13]. In such scenario µ(A)≈0.9999.

When uBSS problems can (not) be solved ?

Even though uniqueness condition holds formally, only small amount of noise
or modelling error will make the algorithms, such as basis pursuit denoising
algorithm [14, 15], unstable [16, 17].

13. I. Kopriva, M. Popović Hadžija, M. Hadžija, G. Aralica (2015). Unsupervised segmentation of low-contrast multi-channel 
images: discrimination of tissue components in microscopic images of unstained specimens. Scientific Reports 5: 11576, DOI: 
10.1038/srep11576. 
14. Bruckstein, A.M., Donoho, D.L., and Elad, M., "From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals 
and Images," SIAM Review 51 (1), 34-81 (2009).
15. Tibshirani, R., "Regression shrinkage and selection via the Lasso," J. Roy. Statist. Soc. B 58 (1), 267-288 (1996).
16. Chen, S.S., Donoho, D.L., and Saunders, M.A., "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput. 20, 33-61 
(1998).
17. Donoho, D.L., Elad, M., and Temlyakov, V., "Stable recovery of sparse overcomplete representations in the presence of noise," 
Information Theory, IEEE Transactions on 52, 6–18 (2006).
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When uBSS problems can (not) be solved ?

The amount of sparseness as a function of mutual coherence imposed by various
uniqueness/stability conditions. Circles: uniqueness condition without noise. Squares: stability
condition. Diamonds: uniqueness condition for basis pursuit denoising algorithm. For non-
overlapping (orthogonal) histological structures sparseness equals . Thus, while uniqueness
condition in the absence of noise is satisfied even when µµµµ(A)≈1 it is seen that approximately
µµµµ(A)<0.33 is required to satisfy uinqueness condition in the presence of modelling erros or noise .

0
1p =s
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For scenarios when mutual coherence µ(A)≈1 it was proposed in [13,5,6] to
transform problem:

X=AS or X=f(S)=GS
into:

When uBSS problems can (not) be solved ?

Ψ(X)≈BS

such that µ(B)<µ(A), resp. µ(B)<µ(G).

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 
Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 
Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.
6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 
Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 .
13. I. Kopriva, M. Popović Hadžija, M. Hadžija, G. Aralica (2015). Unsupervised segmentation of low-contrast
multi-channel images: discrimination of tissue components in microscopic images of unstained specimens. 
Scientific Reports 5: 11576, DOI: 10.1038/srep11576. 
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Nonlinear uBSS [5]

( )= =1,...,t t t Tx f s

1 1
0 0, , .N M

t t M N× ×
+ +∈ ∈ >x sℝ ℝ

: M Nf ℝ ֏ℝ

Nonlinear uBSS problem can be expanded into Taylor series around reference 
point s0. Without loss of generality let us assume s0=0M×1. Let us also assume 
f(s0)=0N×1. 

0 0: M N
+ +f ℝ ֏ℝ

( ) ( ) ( )1 ...
T

t t N tf f=   f s s s { }0 0 1
:

NM
n n

f + + =
→ℝ ℝ

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 
Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 
Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.
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Nonlinear uBSS

For non-overlapping binary sources: sisj=δ(i-j) , i,j = 1,…,M we obtain [5]:

( )= =x f s Gs

where G is a matrix such that:

( ) ( )
1

1

1...

1

...
...j

j

J
j

nj
jnm m

m m
j

f
m m

s s
=

 ∂ 
  = − −   ∂ ∂  

s
G δ

( ) (1)1
1 !

J j

j
j

=
=∑G G

Thus, nonlinear BSS problem x=f(s ) becomes linear one x=Gs .
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Nonlinear mapping of linear u BSS problem?

In [6] a new concept was proposed by mapping original uBSS problem X=AS
nonlinearly into new one:

( ){ } ( )0 01
( ) ( ) s.t. ( ) , ( )

T N N

t
t t t t and N N+ +=

→ ∈ ∈x x x xφ φℝ ℝ ≫

6. Kopriva I, Jerić I, Brkljačić, L. Nonlinear mixtures-wise expansion approach to underdetermined blind
separation of nonnegative depedent sources. J. Chemometrics 2013; 27: 189-197.

since mapping φ(x(t)) is nonlinear new measurements are linearly independent. 

The nonlinear mapping has the following algebraic structure:  

( ){ } ( )0 01
( ) ( ) s.t. ( ) , ( )

t
t t t t and N N+ +=

ℝ ℝ ≫

( ) { }1

1
1

... 1 ,..., 0
1

( ) ( )... ( ) such that , 1,.. ,..N

N
N

T NNqq
q q N nq q

n

t c x t x t q N t T
=

=

 = ≤ ∀ =
  

∑xφ
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Nonlinear mapping of linear u BSS problem?

The mapped problem becomes:

( ) 0 1 1

0
0

( ) 1,...,
( )

( )
HOT Mt c t T

t
t

φ ×

 
   = + + ∀ =   
   

x e B B 0
s

s

where s(t)HOT is                  column vector comprised of:

such that:                       .

( )
( )HOT

t
t    

s
s

1N M− − { }1

1
1 ,..., 2

( ) .. ( )M

M

Nq q
M q q

s t s t
=

× ×

1

M

mm
q N

=
≤∑
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Nonlinear mapping of linear u BSS problem?

The problem with using explicit feature maps φ(x(t)) is that can be very
large or even infinite. Thus, factorization problem:

N

( )
0
 
  
  

becomes computationally intractable. 

( )
{ }

1 2
1 2

0 1 0 1

, 1

...
MT times

m m m m

c c
×

=

 
  ≈ +
  

   
  

X e e B S

s s

τφ
�����
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Reproducible kernel Hilbert spaces

Definition 1. A real function                             is positive semi-definite if it is 
symmetric and satisfies for any finite set of points                    and real numbers 

:                               .

: N N× →κ ℝ ℝ ℝ

{ }
1

TN
t t=
∈x ℝ

{ } 1

T

t t=
α ( ), 1

, 0
T

i j i ji j=
≥∑ x xα α κ

.

Theorem 1. The Morre-Aronszjan theorem [18]. Given any nonnegative definite
function κ (x,y) there exists a uniquely determined RKHS Hκ consisting of real 
valued functions on set                such that: (i)                             ;
(ii)                                                    . Here,        denotes inner product
associated with Hκ .

18. Aronszajn, N., "The theory of reproducing kernels," Trans. of the Amer. Math. Soc. 68, 337-404 (1950).

N⊂X ℝ ( ), , H∀ ∈ ∈x X x κκ �

( ) ( ), , , ,
H

f H f f∀ ∈ ∀ ∈ =x X x x
κ

κ κ �
,� �
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Reproducible kernel Hilbert spaces

Definition 2. Replacing f(x) in (ii) in Theorem 1 by κ(°,x) it follows
. By selecting the nonlinear map as φ(x)= κ(°,x) it 

follows . That is known as kernel trick. The nonlinear
mapping φ(x) is known as as explicit feature map (EFM) associated with
kernel κ(°,x). 

( ) ( ) ( ), , , ,t t H
=x x x x

κ
κ κ κ� �

( ) ( ) ( ), ,t t H
=x x x x

κ
κ φ φ

kernel κ(°,x). 

Definition 3. Empirical kernel map (EKM), [19]. For a given set of patterns
,          , we call :

the EKM with respect to           .

19. Schölkopf, B., and Smola, A., Learning with kernels, MIT Press, 2002, pp. 42-45.

{ }
1

DN
d d =

∈ ⊂v Xℝ D∈ℕ : N D→ψ ℝ ℝ

( ) { } ( ) ( ){ }
1

1
1

, , ,..., ,D
d d

T
T

t t t D t
t= =

=   v
x x v x v xκ κ κ֏ � { } 1

D

d d =
v
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Nonlinear mapping of linear u BSS problem?

The problem with using explicit feature maps φ(x(t)) is that can be very
large or even infinite. Thus, factorization problem:

N

( )
0

...c c

 
  
  ≈ +X e e B Sφ

�����

becomes computationally intractable . That is fixed by projecting φ(x(t)) onto
φ(V) where stands for basis such that:

Then: 

{ }1

1

DN
d d

×

=
= ∈V v ℝ

{ } { }1 1

D T

d td t
span span

= =
≈v x

( ){ } ( ){ }
1 1

D T

d td t
span spanφ φ

= =
≈v x

( )
{ }

1 2
1 2

0 1 0 1

, 1

...
MT times

m m m m

c c
×

=

  ≈ +
  

   
  

X e e B S

s s
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Nonlinear mapping of linear u BSS problem?

Projection yields:

When φ(x)=k(°,x) it follows: <φ(v), φ(x)>=k(v,x ). It is shown in [13] that for non-

( ) ( ) ( ) ( ) ( ) ( ) ( )1 , ... ,
TT

t t t D tφ φ ψ φ φ φ φ = =  V
V x x v x v x

When φ(x)=k(°,x) it follows: <φ(v), φ(x)>=k(v,x ). It is shown in [13] that for non-
overlapped binary sources non-overlapping binary sources: sisj=δ(i-j) , i,j = 
1,…,M  :

( ) =
V

X BSψ

that is, the mapping Ψ(X)V is S-invariant. Hence, by parameters of the mapping
(kernel function κ(vd ,x t) and basis V) it is possible to tune µ(B).
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Nonlinear mapping of linear u BSS problem?

Basis                               needs to fulfill:{ }1

1

DN
d d

×

=
= ∈V v ℝ

{ } { }1 1

D T

d td t
span span

= =
≈v x

Thus, V can be found by clustering into D≤T clusters. That, for { }T
xThus, V can be found by clustering into D≤T clusters. That, for 

example, can be accomplished by kmeans algorithm.

When in addition to sparseness constraint nonnegativity constraint applies as 
well (that is the case in applications in imaging) sparseness constrained NMF 
algorithms can be applied to            to estimate source components.

{ } 1t t=
x

( )X τψ
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Nonnegative matrix factorization 

Many BSS problems arising in imaging, chemo- and/or bioinformatics are 
described by superposition of non-negative latent variables (sources):

where N represents number of sensors, M represents number of sources and T

N×T N×M M×T
0+ 0+ 0+, and= ∈ ∈ ∈X AS X A Sℝ ℝ ℝ

where N represents number of sensors, M represents number of sources and T
represents number of samples. 

Thus, solution of related decomposition problem can be obtained by imposing 
non-negativity constraints on A and S, to narrow down number of possible 
decomposition of X. This leads to NMF algorithms. 

Due to non-negativity constraints some other constraints (statistical 
independence) can be relaxed/replaced in applications where they are not 
fulfilled.
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Nonnegative matrix factorization
Modern approaches to NMF problems have been initiated by Lee-Seung’ 
Nature paper, [20], where it is proposed to estimate A and S through alternative 
minimization procedure of the two possibly different cost functions: 

Set Randomly initialize: A(0), S(0),

20. D D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401
(6755), 788-791 (1999). 

For k=1,2,…, until convergence do

Step 1:

Step 2:

( ) ( )

( 1) ( )

0
arg min

k

mt

k k

s
D+

≥
= s

S
S X A S

( ) ( )

( 1) ( 1)

0
arg min

k

nm

k k

a
D+ +

≥
= A

A
A X AS

If both cost functions represent squared Euclidean distance (Froebenius norm) 
we obtain alternating least square (ALS) approach to NMF.
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Nonnegative matrix factorization

( ) ( ) 2* *

,

1
, arg min . . ,

2 F
D s t= = − ≥ ≥

A S
A S X AS X AS A 0 S 0

ALS-based NMF: 

• Minimization of the square of Euclidean norm of approximation error E=X-• Minimization of the square of Euclidean norm of approximation error E=X-
AS is, from the maximum likelihood viewpoint, justified only if error 
distribution is Gaussian:

( )
2

2
2

1
, exp

22
p

σπσ

 −
 = −
 
 

X AS
X A S

• In many instances non-negativity constraints imposed on A and S do not 
suffice to obtain solution that is unique up to standard BSS indeterminacies: 
permutation and scaling. 
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Nonnegative matrix factorization
In relation to original Lee-Seung NMF algorithm additional constraints are 
necessary to obtain factorization unique up to permutation and scaling. 
Generalization that involves constraints is given in [20]:

( ) 21
( ) ( )

2 F
D J Jα α= − + +S S A AX AS X AS S A

where                        and                         are sparseness constraints that 
correspond with L1-norm of S and A respectively. αS and αA are regularization 
constants. Gradient components in matrix form are:

,
( ) mtm t

J s=∑S S
,

( ) nmn m
J a=∑A A

20. A.  Cichocki, R. Zdunek, and S. Amari, “Csiszár’s Divergences for Non-negative Matrix Factorization: Family of
New Algorithms,” LNCS 3889, 32-39 (2006).

( ) T T, ( )
nm

nm nm

D J

a a
α

∂ ∂
 = − + + ∂ ∂

Α

A

A S A
XS ASS

( ) T T, ( )
mt

mt mt

D J

s s
α

∂ ∂
 = − + + ∂ ∂

S
S

A S S
A X A AS

2 F
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Nonnegative matrix factorization
Since NMF problem deals with non-negative variables the idea is to 
automatically ensure non-negativity of A and S through learning. That can be
achieved by multiplicative learning equations:

( , )D−

+

∇← ⊗
∇

A A S
A A

( , )D−

+

∇← ⊗
∇

S A S
S S

( , )D+← ⊗
∇A

A A
A S ( , )D+← ⊗

∇S

S S
A S

where ⊗ denotes entry-wise multiplication,                      and                    
denote respectively negative and positive part of the gradient  . 
Likewise,                     and                    are negative and positive part of the 
gradient                      . 

When gradients converge to zero corrective terms converge to one. Since 
learning equations include multiplications and divisions of non-negative terms, 
non-negativity is ensured automatically.

( , )D−∇A A S ( , )D+∇A A S
( , )D∇A A S

( , )D−∇S A S
( , )D+∇S A S

( , )D∇S A S
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Nonnegative matrix factorization

Multiplicative learning rules for NMF based on regularized squared L2-norm of 
the approximation are obtained as: 

T ( )Jα
+

∂ − ∂ ← ⊗

S
S

S
A X

S
S S

T ( )Jα
+

∂ − ∂ ← ⊗

Α

A

A
XS

A
A A T

MTε
+∂ ← ⊗

+
S

S S
A AS 1

where [x]+=max{ε,x} with small ε. For L1-norm based regularization, derivatives 
of sparseness constraints in above expressions are equal to 1, i.e.:

T
NMε

+
 ∂ ← ⊗

+
A

A A
ASS 1

T

T

NM

NM

α
ε

+
 − ← ⊗

+
AXS 1

A A
ASS 1

T

T

MT

MT

α
ε

+
 − ← ⊗

+
SA X 1

S S
A AS 1
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Non-negative matrix under-approximation (NMU)
NMF algorithms outlined befor require a priori knowledge of sparseness
related regularization (trade off) constant.

A sequential approach to NMF has been recently proposed in [21] by
estimating rank-1 one factors amsm one at a time. Each time amsm is

21. N. Gillis, and F. Glineur, "Using underapproximations for sparse nonnegative matrix factorization," Patt. 
Recog., vol. 43, pp. 1676-1687, 2010.

m m m m

estimated it is removed from X� X-amsm. To prevent subtraction from being
negative the under-approximation constraint is imposed on amsm: amsm≤X.

Hence, the NMU algorithm is obtained as a solution of:

( )
( )

2* *

,

1
, arg min . . , , .

2 F
s t= − ≥ ≥ ≤

A S
A S X AS A 0 S 0 AS X
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Non-negative matrix under-approximation (NMU)

Theorem 1 in [21] proves that number of nonzero entries in A and S is less than
in X. Thus, the underapproximation constraint ensures sparse (parts based) 
factorization of X. This, however, does not imply that A and S obtained by
enforcing underapproximation constrain yields the sparseset decomposition of
X.X.

However, since no explicit regularization is used there are no difficulties 
associated with selecting values of regularization constants. 

MATLAB code for NMU algorithm is available at:
https://sites.google.com/site/nicolasgillis/code
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Non-negative matrix factorization with L 0-constraint (NMF_L0)
The NMF_L0 algorithm, [22], imposes explicit L0-constraint on entries of S, i.e. 
number of nonzero entries is tried to be  minimized explicitly by integrating 
nonnegativity constraint in the OMP algorithm. That is achieved through
modifications of the nonnegative least square (NNLS) algorithm, [23], called
sparse NNLS and recursive sparse NNLS. The mixing matrix is updated by
some of standards dictionary update methods.some of standards dictionary update methods.

The „weak” side of the NMF_L0 algorithm is that, in addition to number of
sources M, the maximal number of overlapped sources K has to be known a 
priori. Quite often that is hard to achieve in practice. For non-overlaped sources
K=1.
MATLAB code for NMF_L0 algorithm is available at:
http://www3.spsc.tugraz.at/people/robert-peharz .

22. R. Peharz, F. Pernkopf, "Sparse nonnegative matrix factorization with constraints," Neurocomputing, vol. 
80, pp. 38-46, 2012. 
23. C. Lawson, R. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974. 

0
ℓ
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Decomposition (segmentation ) of
multichannel (RGB) images composed of

spectrally (highly ) similar objects [13] spectrally (highly ) similar objects [13] 

13. I. Kopriva, M. Popović Hadžija, M. Hadžija, G. Aralica (2015). Unsupervised segmentation of low-contrast
multi-channel images: discrimination of tissue components in microscopic images of unstained specimens,” 
Scientific Reports 5: 11576, DOI: 10.1038/srep11576. 
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Image segmentation refers to the partitioning of an image into sets of pixels (segments) 
corresponding to distinct objects, [24]. Herein, distinct objects refer to spectrally distinct 
tissue components.

It is important to distinguish between single (grayscale)- and multi-channel images. In 

Segmentation of low -contrast images

It is important to distinguish between single (grayscale)- and multi-channel images. In 
the former case, segmentation is performed by detection of changes of intensity or 
texture by thresholding some type of spatial derivative of an image, [25-29]. 

24. Jain, V., Seung, S.H. & Turaga, S.C. Machines that learn to segment images: a crucial technology for connectomics. Curr. Opin. 
Neurobiol. 20, 653-666 (2010).
25. Marr, D. & and Hildredth, E. Theory of edge detecion. Proc. Royal Soc. London Series B Biol. Sci. 207, 187-217 (1980).
26. Geman, S. & Geman, D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern 
Anal. Mach. Intell. 6, 721-741 (1984).
27. Boykov, Y., Veksler, O. & Zabih, R. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 
23, 1222-1239 (2001).
28. Kass, M., Witkin, A. & Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis. 1, 321-331 (1988).
29. Osher, S. & Fedkiw, R.P. Level Set Methods: An Overview and Some Recent Results. J. Comput. Phys. 169, 463-502 (2001).
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Segmentation of low -contrast images
Images that comprise components with very similar profiles (spectral, density, and/or 
concentration) have very poor visual contrast . For an example, if staining is not used, 
the spectral similarity between the tissue components present in the specimen is very 
high and the visual contrast is very poor, i.e., tissue components appear colorless and 
virtually texture-less when viewed under a light microscope. 

Synthetic image: µ(A)=0.9995. Unstained specimen of human 
liver with hepatocellular
carcinoma: µ(A)>0.9999.

Unstained specimen of human 
liver with metastasis from colon
cancer µ(A)>0.9997.
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Segmentation of low -contrast images
When spectral vectors are plotted vs. their indices (corresponding red, green and blue 
colors) they are virtually parallel.

Unstained specimen of human liver with
hepatocellular carcinoma: µ(A)>0.9999.Synthetic image: µ(A)=0.9995.
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Segmentation of low -contrast images
The intensity and/or texture-based segmentation methods, [28, 29], fail to segment 
tissue components correctly. Segmentation of the color image by means of clustering in 
the CIE L*a*b* color space, [30], also fails for the same reason.

30.Chitade, A.Z. & Katiyar, S.K. Colour Based Image Segmentation Using K-Means Clustering.  Int. J. Eng. Sci. Tech. 2, 5319-5325 
(2010). 
31. Sandhu, R., Georgiu, T., and Tannebaum, A., "A New Distribution Metric for Image Segmentation,"  in Proc. SPIE 6914, Medical 
Imaging 2008: Image Processing, 691404 (11 March 2008); doi: 10.1117/12.769010.

Ustained specimen of human liver
with hepatocellular carcinoma: 
µ(A)>0.9999.

K-means in CIE L*a*b* color 
space

Geometric active contour method
after 6000 iterations, [31].
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Segmentation of synthtetic image
Mapping of the original image X by using EKM based on Gaussian kernel yields Ψ(X)=BS. Applying NMU [21], 
resp. NMF_L0 [22], algorithms to Ψ(X) executes image decomposition (segmentation). We name these methods
EKM-NMU, resp. EKM-NMF_L0. 

Synthetic image: µ(A)=0.9995. 
Per-channel SNR=70 dB.

Color coded ground truth. Color coded EKM-NMU (D=20, 
σ2=0.01 ). µ(B)=0.9807.

Color coded NMU. Color coded K-means in CIE 
L*a*b* color space.
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Segmentation of synthetic image

Average coherence for A 
(red) and B (blue). 

Spectral responses of 5 objects in RGB 
color space. µ(A)=0.9995. 
µ_average(A)=0.9956. 

Spectral responses of 5 objects in non-
physical color space. µ(B)=0.9807. 
µ_average(B)=0.3777. 

SNR [dB] SNR≥ 29 18≤SNR≤28 17≤SNR≤14

σ2 0.001 0.01 0.1

Variance σ2 of the Gaussian kernel based EKM as a function of the per-spectral-channel SNR. 
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Segmentation of image of unstained specimen of human live r with HCC

Ustained specimen of human liver with Color-coded EKM-NMF_L0 (D=50, Color-coded K-means in CIE Ustained specimen of human liver with
HCC: µ(A)>0.9999.

Color-coded EKM-NMF_L0 (D=50,
σ2=0.1). µ(B)=0.9760. Blue: HCC;
green: tumor fibrotic capsule; red:
blood vessel.

Color-coded K-means in CIE 
L*a*b* color space.

Staining with HepPar (different
slide). Brown: hepatocytes, white:
tumor fibrotic capsule; blue:
enodthelium of blood vessel.

Staining with H&E (the same slide). Blue
and dark pink: hepatocytes, light pink:
tumor fibrotic capsule; white pink: blood
vessel.
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Segmentation of image of unstained specimen of human live r with HCC

Average coherence for A 
(red) and B (blue). 

Spectral responses of 3 tissue
components in RGB color space. 
µ(A)>0.9999. µ_average(A)=0.9985. 

Spectral responses of 3 tissue
components in non-physical color space. 
µ(B)=0.9760. µ_average(B)=0.8937. 
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Segmentation of image of unstained specimen of human live r with
metastasis from colon cancer

Ustained specimen: µ(A)=0.9997, 
µ_average(A)=0.9993.

Color-coded EKM-NMF_L0 (D=50, σ2=0.1).
µ(B)=0.9998, µ_average(B)=0.9984. Blue:
colon cancer; green: hepatocytes; red: border
area between the tumor and liver tissue.

Staining with H&E (the same slide).  

Staining with HepPar (different
slide). Brown: hepatocytes, blue:
metastatic cells of colon cancer
and inflamatory cells.

Staining with CDX2 (different slide).
Brown: metastatic cells of colon cancer,
blue: hepatocytes and inflamatory cells.

Staining with CK20 (different slide).
Brown: metastatic cells of colon
cancers, blue: hepatocytes and
inflamatory cells.
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Segmentation of image of unstained specimen of human live r with
metastasis from gastric cancer

Ustained specimen: µ(A)=0.9999, 
µ_average(A)=0.9988.

Color-coded EKM-NMF_L0 (D=50, σ2=0.1).
µ(B)=0.9994, µ_average(B)=0.9917. Blue:
gastric cancer; green: hepatocytes; red:
border area of inflamation.

Staining with H&E (the same slide).  

Staining with HepPar (different
slide). Brown: hepatocytes, blue:
metastatic cells of gastric cancer
and inflamatory cells.

Staining with CDX2 (different slide).
Brown: metastatic cells of gastric
cancer, blue: hepatocytes and
inflamatory cells.

Staining with LCA (different slide).
Brown: inflamatory cells; blue:
hepatocytes and metastatic cells of
gastric cancer.
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Segmentation of image of unstained specimen of mouse fatt y liver

Ustained specimen. Color-coded EKM-NMF_L0 (D=50, σ2=0.1).
Yellow: vacuoles, green: liver parenchyma.

Staining with H&E (the same
slide).

Staining with SUDAN III (different slide).
Orange: fat storage granules.
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Segmentation of image of unstained specimen of mouse fatt y liver

Ustained specimen. Color-coded EKM-NMF_L0 (D=50, σ2=0.1).
Red: blood vessel, sky blue: sinusoids, green:
hepatocytes, magenta: reticular fiber.

Zoomed area

Staining with H&E (the same
slide). Brown: hepatocytes, blue:
metastatic cells of gastric cancer
and inflamatory cells.

Staining with SUDAN III (different slide).
Orange: fat storage granules.
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THANK YOU !!!!!!!!


