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The Ruđer Bošković Institute is regarded as Croatia’s leading 

scientific institute in the natural and biomedical sciences as well 

as marine and environmental research, owing to its size, 

scientific productivity, international reputation in research, and 

the quality of its scientific personnel and research facilities.

The Institute is the leading and internationally most competitive 

Croatian institute by virtue of its participation in international 

research projects, such as the IAEA and EC FP5-7 programs 

funded by the European Commission, NATO, NSF, SNSF, 

DAAD and other international scientific foundations.

Today, the Ruđer Bošković Institute has over 550 scientists and 

researchers in more than 80 laboratories pursuing research in 

theoretical and experimental physics, physics and materials 

chemistry, electronics, physical chemistry, organic chemistry 

and biochemistry, molecular biology and medicine, the sea and 

the environment, informational and computer sciences, laser 

and nuclear research and development.
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Ruđer Bošković (18 May 1711 – 13 February 1787) was a

physicist, astronomer, mathematician, philosopher, diplomat, poet,

theologian, Jesuit priest, and a polymath from the city of Dubrovnik

in the Republic of Ragusa (today Croatia), who studied and lived in

Italy and France where he also published many of his works.

Among his many achievements he was the first to suggest least

absolute deviation based regression (1757). That was studied by

Laplace (1793) and predated the least square technique originally

developed by Legendre (1805) and Gauss (1823):

P. Bloomfield and W. L. Steiger. Least Absolute Deviations: Theory, Applications, and

Algorithms. Birkhauser, Boston, MA, 1983.
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 Instantaneous blind source separation (BSS): problem definition and overview 

of main methods.

 Nonlinear underdetermined BSS (uBSS): motivation, conversion to linear 

uBSS. 

 uBSS and sparse component analysis (SCA):

 asymptotic results from compressed sensing theory, 

 SCA by sparseness constrained non-negative matrix factorization 

(NMF),

 SCA/NMF in reproducible kernel Hilbert spaces (RKHS).

 Applications: (i) unsupervised decomposition of multispectral, CT and PET 

images; (ii) pure components extraction from mass spectra of nonlinear 

chemical reactions; (iii) variable selection in genomics and proteomics.

Talk outline
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Blind Source Separation – linear static problem

Recovery of signals from their multichannel linear superposition using minimum of 

a priori information i.e. multichannel measurements only [1-3].

Problem:

X=AS X∈RNxT, A∈RNxM, S∈RMxT N - number of sensors/mixtures;

M - unknown number of sources

T - number of samples/observations

Goal: find S, A and number of sources M based on X only.

1. A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.

2. A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.

3. P. Comon, C. Jutten, editors, “Handbook of Blind Source Separation,” Elsevier, 2010.
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Blind Source Separation – linear static problem

X=AS and X=ATT-1S are equivalent for any square invertible matrix T. There

are infinitely many pairs (AT, T-1S) satisfying linear mixture model X=AS.

Independent component analysis (ICA) solves BSS problem provided that:

source signals S are statistically independent and non-Gaussian; mixing matrix A is 

full column rank i.e. M≤N.

Dependent component analysis (DCA) improves accuracy of ICA when

sources are not statistically independent. Linear high-pass filtering type of 

preprocessing transform is applied row-wise to X: L(X)=AL(S). ICA is applied to L(X) 

to estimate A and L(S). S is estimated from S≈A-1X.

Matlab implementation of  many ICA algorithms can be found in the ICALAB: 

http://www.bsp.brain.riken.go.jp/ICALAB/

Solutions unique up to permutation and scaling indeterminacies, T=PΛ, are 

meaningful. For such solutions constraints must be imposed on A and/or S.



Soochow University, Medical Image Processing, Analysis and Visualisation Laboratory – April 17,2015, Suzhou City, China.

“Nonlinear sparse component analysis with applications in medical image analyis, bioinfomatics and chemometrics”

Blind Source Separation – linear static problem

Sparse component analysis (SCA) solves BSS problem imposing sparseness

constraints on source signals S. M can be less than, equal to or greater than N. 

Thus, SCA can be used to solve underdetermined BSS problems where number of 

source signals is greater than number of mixtures.

Nonnegative matrix factorization (NMF) solves BSS problem imposing

nonnegativity, sparseness, smoothness or constraints on source signals. NMF 

algorithms that enforce sparse decomposition of X can be seen as SCA algorithms [4].

Matlab implementation of  many NMF algorithms can be found in the NMFLAB: 

http://www.bsp.brain.riken.jp/ICALAB/nmflab.html

4. A.  Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations-Applications 

to Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley, 2009.
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Underdetermined BSS: (nonlinear) static problem [3,2,5,6]

= =1,...,t t t Tx f s ;                          stands for nonnegative vector comprised 

of measurements acquired at T independent variables (pixel positions, m/z ratios, 

genes, etc.). 

stands for unknown vector of M sources.  M>N uBSS problem

is an unknown multivariate mapping such that:

and                                 .

Linear problem:                        .

1

0

N

tx
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ts

0 0: M N
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1 ...
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t t N tf ff s s s 0 0 1
:
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5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.

6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 

Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 

t tf s As
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Underdetermined Blind Source Separation: motivation

In biomarker identification studies number of mixture spectra of biological samples (urine,

blood, tissue extract, saliva, etc.) is rather small, while number of components/analytes

(some of them are candidates for biomarkers) can be large.

For example, 326 analytes were quantified in extracts of Arabidopsis thaliana leaf tissue

[7], while the independent gas chromatography-mass spectrometry (GC-MS) study of

Arabidopsis thaliana leaves detected 497 unique chemical components [8].

Analysis of human adult urinary metabolome by liquid chromatography-mass

spectrometry (LC-MS) revealed presence of 1484 components, while 384 of them were

characterized by matching their spectra with references stored in libraries [9].

7. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey R N, Willmitzer L. Metabolite profiling for plant functional 

genomics. Nature Biotechnology 2000; 18: 1157-1161.

8. Jonsson P, Johansson A I, Gullberg J, Trygg J, Jiye A, Grung B, Marklund S, Sjöström M, Antti H, Moritz T. 

High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based 

metabolomic analyses," Analytical Chem. 2005;  77: 5635-5642.

9. Roux A, Xu Y, Heilier J-F, Olivier M-F, Ezan E, Tabet J-C, Junot C. Annotation of the human adult urinary 

metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear 

quadrupole ion trap-orbitrap mass spectrometer. Anal. Chem. 2012; 84: 6429−6437.
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Nonlinear u-Blind Source Separation: motivation

While linear mixture model is adequate for many scenarios, nonlinear model

offers more accurate description of processes and interactions occurring in

biological systems.

Living organisms are best examples of complex nonlinear systems that function

far from equilibrium. Internal and external stimuli (disease, drug treatment,

environmental changes) cause perturbations in the system as a result of highly

synchronized molecular interactions, [10].

Furthermore, interactions within genes in components that are parts of gene

regulating networks are nonlinear, [11].

10. Walleczek J (ed). Self-organized biological dynamics and non-linear control. Cambridge University  Press: 

Cambridge, UK. 2000.

11. Yuh, C. H., Bolouri, H., Davidson, E. H.: Genomic cis-regulatory logic: experimental and computational 

analysis of a sea urchin gene. Science 279, 1896-1902 (1998).
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Linear Underdetermined BSS

• SCA-based solution of the linear uBSS problem is obtained in two stages: 

1) estimate basis or mixing matrix A using data clustering.

2) estimating sources, with estimated A, one at a time st, t=1,…,T or 

simultaneously solving underdetermined linear systems of        

equations xt =Ast. Provided that st is sparse enough, solution is 

obtained  at the minimum of Lp-norm, , 0≤ p ≤1. 

Here:                             .

• NMF-based solution yields A and S simulatneously through sparseness and

nonnegativity constrained factorization of X.

t p
s

1

1

p
M

p

t mtp
m

ss



Soochow University, Medical Image Processing, Analysis and Visualisation Laboratory – April 17,2015, Suzhou City, China.

“Nonlinear sparse component analysis with applications in medical image analyis, bioinfomatics and chemometrics”

When uBSS problems can(not) be solved?

Let us focus on underdetermined linear system:

x=As, x RN , s RM , M>N

Let s be K-sparse i.e. K= s 0 . 

Provided that A is random, with entries from Gaussian or Bernoulli distributions, 

compressed sensing theory has established necessary and sufficient condition 

on N, M and K to obtain, with probability one, unique solution at the minimum of 

L1-norm of s, [12]:

N Klog(M/K) 

12. Candès E, Tao T. Near optimal signal recovery from random projections: universal encoding strategy?. IEEE 

Trans. Information Theory 2006; 52: 5406-5425.
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When uBSS problems can(not) be solved?

However in BSS problems A is not random matrix but deterministic matrix with

a structure. For example, in multispectral imaging it contains spectral profiles of

the objects/materials present in the image, [13].In chemometrics A contains

concentration profiles of pure components present in the mixtures, [14].

One result for deterministic A is given in [15]. For cyclic polynomial matrix A it 

applies N=O(K2). That is significantly worse than N Klog(M/K) for random A. K

correponds with number of sources that are active/present at the specific

coordinate t (time, pixel, m/z variable, frequency, etc). Thus, K is application

dependent. 

13. Kopriva I, Cichocki A. Blind decomposition of low-dimensional multi-spectral image by sparse component 

analysis. J. Chemometrics 2009; 23 (11): 590-597.

14. Kopriva I, Jerić I. Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass 

spectrometry: sparseness-based robust multicomponent analysis. Anal. Chem. 2010; 82: 1911-1920.

15. DeVore R A. Deterministic constructions of compressed sensing matrices. Journal of Complexity 2007; 23: 

918-925.
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•Signal s is K-sparse if it has K non-zero components, i.e. K= s 0. Thereby,

•If uBSS problem is not sparse in original domain it ought to be transformed in domain 

where enough level of sparseness can be achieved: T(x)=AT(s). 

•Time-frequency and time-scale (wavelet) bases are employed for this purpose quite

often.

•In addition to sparseness requirement on s certain degree of incoherence of the mixing 

matrix A is required as well. Mutual coherence is defined as the largest absolute and 

normalized inner product between different columns in A, what reads as 

uBSS – Lp norm minimization: 0< p 1

1 ,  and 
max

T

i j

i j M i j
i j

a a
A

a a
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The mutual coherence provides a worst case measure of similarity between the

basis vectors. It indicates how much two closely related vectors may confuse

any pursuit algorithm (solver of the underdetermined linear system of

equations). The worst-case perfect recovery condition for s relates sparseness

requirement on s and coherence of A, [16,17]:

In [18] another uniqueness theorem has been stated. If A has unique

representation property, that is if all N N sub-matrices are full rank, the unique

solution of x=As exists if: .

0

1 1
1

2
s

A

uBSS – Lp norm minimization: 0< p 1

0
2Ns

16. R. Gribonval and M. Nielsen, "Sparse representations in unions of bases," IEEE Transactions on Information 

Theory 49, 3320-3325 (2003).

17. J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on Information 

Theory 50, 2231-2242 (2004).

18. I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data using FOCUSS, a re-

weighted minimum norm algorithm,” IEEE Trans. Signal Process., vol.45, no.3, pp. 600–616, Mar. 1997.
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uBSS – Lp norm minimization: 0< p 1
In BSS scenario properties of the mixing matrix A can not be predefined, i.e.

they are problem dependent. Yet, A dictates a level of sparseness of s that is

necessary to obtain possibly unique solution of the uBSS problem: x=As. To

obtain such solution it is necessary to:

 estimate A as accurately as possible.

 find representation (transformation) T(x)=AT(s) where T(s) is as sparse

as possible.

 construct algorithms for solving underdetermined system of equations

T(x)=AT(s) that are robust with respect to the presence of noise i.e.

errors in sparse approximation of T(s): T(s) is approximately K-sparse

with K dominant and number of small coefficients. If possible

performance of the algorithm should remain robust if K increases.
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uBSS – Lp norm minimization: 0< p 1

Solving underdetermined system of linear equations x=As amounts to solve:

2

0 2( )

ˆˆ( ) arg min ( ) s.t. ( ) ( ) 1,...,
t

t t t t t T
s

s s As x

or for problems with noise or approximation error:

2

02( )

1 ˆˆ( ) argmin ( ) ( ) ( ) 1,...,
2t

t t t t t T
s

s As x s

0
( )

ˆˆ( ) arg min ( ) s.t. ( ) ( ) 1,...,
t

t t t t t T
s

s s As x

Direct minimization of L0–norm of s is combinatorial problem that is NP-hard. 

For larger dimension M it becomes computationally infeasible. 
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Replacement of L0-norm by L1-norm is done quite often. That is known as 

convex relaxation of the minimum L0-norm problem. It leads to linear program:

ˆ

1
( )

ˆˆ( ) arg min s.t. ( ) ( ) 1,..., s.t.  ( ) 0
M

mm
t

t s t t t t t
s

s As x s

uBSS – L1 norm minimization

L1-regularized least square problem ref.[19,20]:

and L2-regularized linear problem [20,21]:

2

12( )

1 ˆˆ( ) arg min ( ) ( ) ( ) 1,...,
2t

t t t t t T
s

s As x s

2

1 2( )

ˆˆ( ) arg min ( ) s.t. ( ) ( ) 1,...,
t

t t t t t T
s

s s As x

19. S..J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale -Regularized Least Squares,” 

IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007), http://www.stanford.edu/~boyd/l1_ls/. 

20. E. van den Berg, M.P. Friedlander, “Probing the Pareto Frontier for Basis Pursuit Solutions,” SIAM J. Sci. Comput. 31, 890-912 

(2008).

21. M.A.T. Figuiredo, R.D. Nowak, S.J. Wright, "Gradient Projection for Sparse Reconstruction: Application to Compressed 

Sensing and Other Inverse Problems," IEEE Journal on Selected Topics in Signal Processing 1, 586-597 (2007).
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Linear uBSS: summary
Linear uBSS problem is characterized with a triplet (N, M, K). Under L1-norm 

constraints unique solution is possible if N Klog(M/K) .

In biological experiments M corresponds with number of analytes (metabolites) 

present in mixture spectra and, thus, can be large. K represents maximal number of 

overlapping components. Depending on the resolution of the spectrometer it can be 

large as well. N stands for number of biological samples and is usually (very) small. 

Thus, requirement N Klog(M/K) can often failed to be fulfilled!!!

In [6] solution was proposed to transform original uBSS problem x=As into new one           

, with maximal number of overlapping 

components equal to Q. Thus, uniqueness condition becomes: D Qlog(P/Q). That 

is fulfilled if: (D/N) >>(P/M) as well as (D/N) >>(Q/K).

1

0 0, ,D P P
x As A s

6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 

Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 .
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Nonlinear uBSS: Taylor expansion up to aribtrary order J, [5]

= =1,...,t t t Tx f s

1 1

0 0, , .N M

t t M Nx s

Nonlinear uBSS problem can be expanded into Taylor series around reference 

point s0. Without loss of generality let us assume s0=0M 1. Let us also assume 

f(s0)=0N 1. 

0 0: M N
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5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear 

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from 

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.
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Nonlinear uBSS: Taylor expansion up to aribtrary order J

In the literature one mostly finds Taylor expansion based on first- (Jacobian) and 

second (Hessian) order derivatives of vector valued function with vector argument 

and first derivative of matrix function with matrix argument. 

It is argued in [22] that very occasionally one might need third- and higher-order 

derivatives of vector- or matrix-valued functions with vector or matrix arguments. 

The main reason for that is notational complexity. It is argued in [23] and [24], in 

chapters 9 and 10, to use procedure based on differentials when calculating first 

and second derivatives of discussed functions. For higher order terms no 

recommendation is given. 

22. Magnus J R. On the concept of matrix derivative.  J. Multivariate Analysis 2010; 101, 2200-2206.

23. Magnus J R, Neudecker H. Matrix Differential Calculus with Applications to Simple, Hadamard, and Kronecker 

Products. J. Mathematical Psychology 1985; 29: 474-492.

24. Magnus J R, Neudecker H. Matrix Differential Calculus with Applications in Statistics and Economics. Revised 

edition. John Wiley: Chichester, UK, 1999.
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Nonlinear uBSS: Taylor expansion up to aribtrary order J

In [5] an approach is presented to derivation of the Taylor expansion of vector 

valued function with vector argument up to arbitrary order J by using tensorial 

notation, [25]. 

That is legitimate given the fact that jth term, j=1,…,J, in Taylor expnasion of vector 

valued function with vector argument is a tensor of order j+1. 

To this end, higher-order arrays (tensors) will be denoted with underlined

uppercase bold letters. For example refers to a third order nonnegative 

tensor with dimensions I1, I2 and I3. Uppercase bold letters, X, denote matrices, 

lowercase bold letters, x, denote vectors and italic lowercase letters, x, denote 

scalars. 

25. Kiers H A L. Towards a standardized notation and terminology in multiway analysis. J. Chemometrics 2000; 

14: 105-122.

1 2 3

0

I I I
X
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Nonlinear uBSS: Taylor expansion up to aribtrary order J

We can write jth order derivative as a tensor of the order j+1:

...

0

j times

j N M MG

Element of the derivative tensor indexed by (n, m1, ... , mk), where n=1, ... , N,  

m1=1,..., M, ... , mk=1,..., M is given as:

1

1

... ...j

j

j

nj

nm m
m m

f

s s

s
G

We now introduce mode-r product of an Rth order tensor and a 

matrix that is defined when number of columns of matrix is equal to 

the dimension of the tensor in mode r, that is J2=Ir. That yields a new tensor

such that                                   , [26].

1 2 ... RI I I
T

1 2J J
W

rY T W 1 1 2 1... ...r r RI I J I I
Y

26. Kolda T G, Bader B W. Tensor Decompositions and Applications.  SIAM Review 2009; 51: 455-500.
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Nonlinear uBSS: Taylor expansion up to aribtrary order J

For example, mode-2 product of a 3-way tensor and a matrix  

is a 3-way tensor , calculated element-wise as: .

We can now express contribution of the jth order term in Taylor expansion as:

1 2 3I I I
T 2D I

W
1 3

2

I D I
Y T W

2

1 3 1 2 3 2

2

, , , , ,

1

I

i d i i i i d i

i

y t w

27. Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika 1966; 31: 279-311.

2 1

1
...

!

j j T T

j
j

x G s s

where T denotes transpose operation and expression above is known as Tucker 

tensor model [26, 27]. Thereby,                stands for a core tensor and sT stand for 

factors.

Since sT is 1 M row vector mode-2 to mode-(j+1) multiplications of derivative

tensor  with row vectors sT contracts higher order dimensions yielding as final 

result an N 1 column vector. 

1 ! jj G

j
G
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Nonlinear uBSS: Taylor expansion up to aribtrary order J

We can also use mode-1 unfolding of                            that yields:2 1...j T T

jG s s

(1)

1

1
...

!

j j

j timesj
x G s s

where                       denotes a matrix obtained by mode-1 unfolding of tensor        , 

denotes Kronecker product, and               yields M(j) 1 vector, such that   

. 

Hence, we can formally write a Jth order Taylor expansion of vector valued function 

with vector argument as:

( )

(1) 0

jN Mj
G j

G

1

...
j times

s s

( )
1

j
M j

M
j

2 1 (1)

1 1 1

1 1
... ...

! !

J J
j T T j
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j j j timesj j
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Nonlinear uBSS: Taylor expansion up to aribtrary order J

Elements of                 are monomials of order j:
1

...
j times

s s

1

1
1

;

1
,..., 1; 1

11

... ... . . ,..., 0,1,..., andp

p
p

pM j
qq

m m p i
m m p

ij times

s s s t q q p q js s

Thus, nonlinear mapping f(s) induces higher order (nonlinear) terms. For linear 

mapping, j=1, above expression becomes s. Formally, Taylor expansion of f(s) can 

be written as:

x Gs

( )

1

0

J j

j
N M

Gwhere                         is a block matrix                             .                     is a column 

vector:

1 2

(1) (1) (1)

1 1
...
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J

J
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( ) 1
1

0

jJ M
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1
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T
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Nonlinear uBSS: Taylor expansion up to aribtrary order J

Nonlinear uBSS problem x=f(s) characterized with a triplet (N, M, K), M>N, is 

represented with linear uBSS problem             characterized with a triplet              

(N,     , Q), whereat                       and  Q>>K. 

If linear uBSS problem x=As characterized with (N, M, K), M>N, is impossible to 

solve without additional constraints imposed on s, solution of linear uBSS problem          

characterized with (N,    , Q), demands even harder constraints to be 

imposed on s.

However, Taylor expansion of x=f(s) up to arbitrary order J substitutes study of 

nonlinear uBSS problem x=f(s) with its linear equivalent            .

1

1J

j

M j
M

j

x Gs

M

Mx Gs

x Gs
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Linear uBSS
Linear uBSS problem x=As is characterized with a triplet (N, M, K). Under L1-norm 

constraints on s unique solution is possible if N Klog(M/K) .

In biological experiments M corresponds with number of analytes (metabolites) 

present in mixture spectra and, thus, can be large. K represents maximal number of 

overlapping components. Depending on the resolution of the spectrometer it can be 

large as well. N stands for number of biological samples and is small. Thus, 

requirement N Klog(M/K) can often failed to be fulfilled!!!

In [6] solution was proposed to transform original uBSS problem x=As into new one           

, with maximal number of overlapping 

components equal to Q. Thus, uniqueness condition becomes: D Qlog(P/Q). That 

is fulfilled if: (D/N) >>(P/M) as well as (D/N) >>(Q/K).

1

0 0, ,D P P
x As A s

6. I. Kopriva, I. Jerić, L. Brkljačić, (2013). Nonlinear Mixture-wise Expansion Approach to Underdetermined Blind 

Separation of Nonnegative Dependent Sources. J. of Chemometrics, vol. 27, pp.189-197 .
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Nonlinear mapping of linear uBSS problem?

6. Kopriva I, Jerić I, Brkljačić, L. Nonlinear mixtures-wise expansion approach to underdetermined blind

separation of nonnegative depedent sources. J. Chemometrics 2013; 27: 189-197.

In [6] a new concept was proposed by mapping original uBSS problem X=AS

nonlinearly into new one:

since mapping (x(t)) is nonlinear new measurements are linearly independent. 

The nonlinear mapping has the following algebraic structure:  

0 01
( ) ( ) s.t. ( ) , ( )

T N N

t
t t t t and N Nx x x x

1

1
1

... 1
,..., 0

1

( ) ( )... ( ) such that , 1,.. , ..N

N
N

T NN
qq

q q N n
q q

n

t c x t x t q N t Tx
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Nonlinear mapping of linear uBSS problem?

The mapped problem becomes:

where s(t)HOT is                  column vector comprised of:

such that:                       .

0 1 1

0
0

( ) 1,...,
( )

( )

HOT M

HOT

t c t T
t

t

x e B B 0
s

s

1N M
1

1
1

,..., 2
( ) .. ( )M

M

N
q q

M
q q

s t s t

1

M

mm
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Sparse probabilistic model of sources

*( ) 1 1,..., 1,...,mt mt mt mtp s s s f s m M t T

Let us assume sparse probabilistic model of the sources, i.e. each source 

signal is distributed according to p.d.f. based on mixed state random variable 

model [28, 29, 5]:

where (smt ) is an indicator function and *(smt ) =1- (smt ) is its complementary 

function. Thus,                             . 

28. Bouthemy P, Piriou C H G, Yao J. Mixed-state auto-models and motion texture modeling. J. Math Imaging

Vision 2006; 25: 387-402.

29. Caifa C, Cichocki A. Estimation of Sparse Nonnegative Sources from Noisy Overcomplete Mixtures Using

MAP.  Neural Comput. 2009; 21: 3487-3518.

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.

1
0

T

mt t
P s

1
0 1

T

mt t
P s
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Sparse probabilistic model of sources

Examples of mass spectra of 

sources (pure components, 

analytes,…). They are sparse in 

support and amplitude. We can 

use exponential distribution for: 

In [5] using mass spectra of 25 

pure components it has been 

estimated:

ˆ 0.27,0.74m

1 expmt mtm m
f s s

ˆ 0.0012,0.0014m
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Nonlinear mapping of linear uBSS problem?

Thus, with high probability at least one source will not be present at location t. 

Thus, many cross-products will vanish. Also, by assuming 0 smt 1 it follows 

that                      when qm grows. 

Thus, by hard or soft thresholding of (x(t)) higher-order terms can be 

suppressed.  Under sparse probabilistic prior validated on experimental mass 

spectra mostly second order terms will survive. That yields:

1 2
1 2

0 1 0 1

, 1

0

...

MT times

m m
m m

c cX e e B S

s s

0

N TX
1

0

N PB

( ) 0mq

ms t

where :                                           and P≈2M + M(M-1)/2.
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Thus, linear uBSS problem characterized by (N,M,K) is converted into new one 

characterized by                 , where Q denotes maximal number of overlapping 

sources in mapped domain. If sources do not overlapp heavily and higher-order

terms are suppressed we have:

( / ) ( / ) and ( / ) ( / )N N P M N N Q K

Nonlinear mapping of linear uBSS problem?

( , , )N P Q

where Q 2K + K(K-1)/2. P 2M + M(M-1)/2 above condition becomes: 

The same procedure can be applied to equivalent linear representation              

of the nonlinear BSS problem x=f(s).  

x Gs

( / ) ( / 2 3/ 2) and ( / ) ( / 2 3/ 2)N N M N N K
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Nonlinear mapping of linear uBSS problem?

The problem with using explicit feature maps (x(t)) is that can be very

large or even infinite. Thus, factorization problem:

becomes computationally intractable. 

N

1 2
1 2

0 1 0 1

, 1

0

...

MT times

m m
m m

c cX e e B S

s s
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Reproducible kernel Hilbert spaces

Definition 1. A real function                             is positive semi-definite if it is 

symmetric and satisfies for any finite set of points                    and real numbers 

:                               .

: N N

1

T
N

t t
x

1

T

t t , 1
, 0

T

i j i ji j
x x

.

Theorem 1. The Morre-Aronszjan theorem [30]. Given any nonnegative definite 

function (x,y) there exists a uniquely determined RKHS H consisting of real 

valued functions on set                such that: (i)                             ;

(ii)                                                    . Here,        denotes inner product 

associated with H .

30. Aronszajn, N., "The theory of reproducing kernels," Trans. of the Amer. Math. Soc. 68, 337-404 (1950).

N
X , , Hx X x

, , , ,
H

f H f fx X x x ,
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Reproducible kernel Hilbert spaces

Definition 2. Replacing f(x) in (ii) in Theorem 1 by ( ,x) it follows                                

. By selecting the nonlinear map as (x)= ( ,x) it 

follows                                         . That is known as kernel trick. The nonlinear 

mapping (x) is known as as explicit feature map (EFM) associated with kernel 

( ,x). 

, , , ,t t H
x x x x

, ,t t H
x x x x

Definition 3. Empirical kernel map (EKM), [31]. For a given set of patterns                    

,          , we call                    :

the EKM with respect to           .

31. Schölkopf, B., and Smola, A., Learning with kernels, MIT Press, 2002, pp. 42-45.

1

D
N

d d
v X D : N D

1
1

1

, , ,..., ,D

d d

T
T

t t t D t

t
v

x x v x v x
1

D

d d
v
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Nonlinear mapping of linear uBSS problem?

The problem with using explicit feature maps (x(t)) is that can be very

large or even infinite. Thus, factorization problem:

becomes computationally intractable. That is fixed by projecting (x(t)) onto

(V) where stands for basis such that:

Then: 

N

1

1

D
N

d d
V v

1 1

D T

d td t
span spanv x

1 1

D T

d td t
span spanv x

1 2
1 2

0 1 0 1

, 1

0

...

MT times

m m
m m

c cX e e B S

s s
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Nonlinear mapping of linear uBSS problem?

Projection yields:

When (x)=k( ,x) it follows: < (v), (x)>=k(v,x). It is shown in [6] that when 

sources comply with sparse probabilistic model it applies:

1 , ... ,
TT

t t t D tV
V x x v x v x

1 2
1 2

0 1 0 1

, 1

0

...

MT times

m m
m m

c cX e e B S

s s

0

D TX 1

0

D P
B and P≈2M + M(M-1)/2. 

Subscript inidcates that some type of thresholding was applied on (X)    to 

suppress HOT.
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Nonlinear mapping of linear uBSS problem?

Nonlinear uBSS problem (N, M, K) is substituted by the linear BSS problem 

(D, 2M + M(M-1)/2, Q), Q 2K + K(K-1)/2. Equvalent linear BSS problem is 

solvable when:

( / ) ( / ) and ( / ) ( / )D N P M D N Q K

Since P 2M + M(M-1)/2 and Q 2K + K(K-1)/2  above condition becomes: 

( / ) ( / 2 3 / 2) and ( / ) ( / 2 3 / 2)D N M D N K

That is possible to fulfill by finding basis                             with sufficiently large 

dimension D.

1

1

D
N

d d
V v
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Nonlinear mapping of linear uBSS problem?

Basis                               needs to fulfill:1

1

D
N

d d
V v

1 1

D T

d td t
span spanv x

Thus, V can be found by clustering             into D T clusters. That, for example, 

can be accomplished by kmeans algorithm.

For D=T each data sample is a basis vector and clustering is not necessary. 

But, computational costs in matrix factorization stage (that follows) is very large.

When in addition to sparseness constraint nonnegativity constraints apply as 

well (that is the case in applications in imaging and/or mass spectrometry) 

sparseness constrained NMF algorithms can be applied to            to estimate 

source components.

1

T

t t
x

X
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Nonnegative matrix factorization 

Many BSS problems arising in imaging, chemo- and/or bioinformatics are 

described by superposition of non-negative latent variables (sources):

where N represents number of sensors, M represents number of sources and T

represents number of samples. 

Thus, solution of related decomposition problem can be obtained by imposing 

non-negativity constraints on A and S, to narrow down number of possible 

decomposition of X. This leads to NMF algorithms. 

Due to non-negativity constraints some other constraints (statistical 

independence) can be relaxed/replaced in applications where they are not 

fulfilled.

N×T N×M M×T

0+ 0+ 0+, andX AS X A S
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Nonnegative matrix factorization

32. D D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401

(6755), 788-791 (1999). 

Modern approaches to NMF problems have been initiated by Lee-Seung’ 

Nature paper, [32], where it is proposed to estimate A and S through alternative 

minimization procedure of the two possibly different cost functions: 

Set Randomly initialize: A(0), S(0),

For k=1,2,…, until convergence do

Step 1:

Step 2:

( )

( 1) ( )

0

arg min
k

mt

k k

s

Ds
S

S X A S

( )

( 1) ( 1)

0

arg min
k

nm

k k

a

DA
A

A X AS

If both cost functions represent squared Euclidean distance (Froebenius norm) 

we obtain alternating least square (ALS) approach to NMF.
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Nonnegative matrix factorization

2* *

,

1
, arg min . . ,

2 F
D s t

A S

A S X AS X AS A 0 S 0

ALS-based NMF: 

• Minimization of the square of Euclidean norm of approximation error E=X-

AS is, from the maximum likelihood viewpoint, justified only if error 

distribution is Gaussian:

2

2

2

1
, exp

22
p

X AS
X A S

• In many instances non-negativity constraints imposed on A and S do not 

suffice to obtain solution that is unique up to standard BSS indeterminacies: 

permutation and scaling. 
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Nonnegative matrix factorization

In relation to original Lee-Seung NMF algorithm additional constraints are 

necessary to obtain factorization unique up to permutation and scaling. 

Generalization that involves constraints is given in [33]:

where                        and                         are sparseness constraints that 

correspond with L1-norm of S and A respectively. S and A are regularization 

constants. Gradient components in matrix form are:

,
( ) mtm t

J sS S
,

( ) nmn m
J aA A

33. A.  Cichocki, R. Zdunek, and S. Amari, “Csiszár’s Divergences for Non-negative Matrix Factorization: Family of

New Algorithms,” LNCS 3889, 32-39 (2006).

T T
, ( )

nm
nm nm

D J

a a

Α
A

A S A
XS ASS

T T
, ( )

mt
mt mt

D J

s s

S
S

A S S
A X A AS

21
( ) ( )

2 F
D J JS S A AX AS X AS S A
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Maximization of a-posterior probability (MAP) P(A,SlX) yields:

Maximum a posteriori probability BSS/NMF

* *, max , max , ( ) . . ,P P P P s t
AS X AS X

A S A S X X A S A S A 0 S 0

Above formulation is equivalent to maximizing likelihood P(XІA,S) and 

maximizing prior probabilities P(A) and P(S). Assuming normal distribution of 

approximation error E=X-AS this yields: 

2* *

,

1
, arg min ( ) ( ) . . , .

2 F
J J s tS S A A

A S

A S X AS S A A 0 S 0
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1( ) exp ... MP S s s

Maximum a posteriori probability BSS/NMF

Assuming non-informative prior on A: P(A)=const and Laplacian (sparse) prior 

on S: yields:

2* *

1
,

1
, arg min . . , .

2 F
s tS

A S

A S X AS S A 0 S 0

It is possible to select for P(S) prior other than Laplacian. That leads to general 

sparseness constrained factorization:

2* *

,

1
, arg min . . 0 1, , .

2 F p
s t pS

A S

A S X AS S A 0 S 0
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Nonnegative matrix factorization

Since NMF problem deals with non-negative variables the idea is to 

automatically ensure non-negativity of A and S through learning. That can be

achieved by multiplicative learning equations:

( , )

( , )

D

D

A

A

A S
A A

A S

( , )

( , )

D

D

S

S

A S
S S

A S

where denotes entry-wise multiplication,                      and                    

denote respectively negative and positive part of the gradient  . 

Likewise,                     and                    are negative and positive part of the 

gradient                      . 

When gradients converge to zero corrective terms converge to one. Since 

learning equations include multiplications and divisions of non-negative terms, 

non-negativity is ensured automatically.

( , )DA A S ( , )DA A S
( , )D

A
A S

( , )DS A S

( , )DS A S

( , )D
S

A S
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Nonnegative matrix factorization

Multiplicative learning rules for NMF based on regularized squared L2-norm of 

the approximation are obtained as: 

T

T

( )

MT

JS
S

S
A X

S
S S

A AS 1

where [x]+=max{ ,x} with small . For L1-norm based regularization, derivatives 

of sparseness constraints in above expressions are equal to 1, i.e.:

T

T

( )

NM

JΑ
A

A
XS

A
A A

ASS 1

T

T

NM

NM

AXS 1
A A

ASS 1

T

T

MT

MT

SA X 1
S S

A AS 1
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Non-negative matrix under-approximation (NMU)

34. N. Gillis, and F. Glineur, "Using underapproximations for sparse nonnegative matrix factorization," Patt. 

Recog., vol. 43, pp. 1676-1687, 2010.

NMF algorithms outlined befor require a priori knowledge of sparseness

related regularization (trade off) constant.

A sequential approach to NMF has been recently proposed in [34] by

estimating rank-1 one factors amsm one at a time. Each time amsm is

estimated it is removed from X X-amsm. To prevent subtraction from being

negative the under-approximation constraint is imposed on amsm: amsm X.

Hence, the NMU algorithm is obtained as a solution of:

2* *

,

1
, arg min . . , , .

2 F
s t

A S

A S X AS A 0 S 0 AS X
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Non-negative matrix under-approximation (NMU)

Theorem 1 in [34] proves that number of nonzero entries in A and S is less than 

in  X. Thus, the underapproximation constraint ensures sparse (parts based) 

factorization of X. This, however, does not imply that A and S obtained by

enforcing underapproximation constrain yields the sparseset decomposition of 

X.

However, since no explicit regularization is used there are no difficulties 

associated with selecting values of regularization constants. 

MATLAB code for NMU algorithm is available at:

https://sites.google.com/site/nicolasgillis/code
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Non-negative matrix factorization with L0-constraint (NMF_L0)

The NMF_L0 algorithm, [35], imposes explicit L0-constraint on entries of S, i.e. 

number of nonzero entries is tried to be  minimized explicitly by integrating 

nonnegativity constraint in the OMP algorithm. That is achieved through 

modifications of the nonnegative least square (NNLS) algorithm, [36], called 

sparse NNLS and recursive sparse NNLS. The mixing matrix is updated by 

some of standards dictionary update methods.

The „weak” side of the NMF_L0 algorithm is that, in addition to number of 

sources M, the maximal number of overlapped sources K has to be known a 

priori. Quite often that is hard to achieve in practice. 

MATLAB code for NMF_L0 algorithm is available at:

http://www3.spsc.tugraz.at/people/robert-peharz.

35. R. Peharz, F. Pernkopf, "Sparse nonnegative matrix factorization with       constraints," Neurocomputing, vol. 

80, pp. 38-46, 2012. 

36. C. Lawson, R. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974. 

0
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Nonlinear underdetermined blind source separation: 

numerical experiments and separation of pure 

components mass spectra from mixtures of 

nonlinear chemical reactions [5]

5. I. Kopriva, I. Jerić, M. Filipović, L. Brkljačić (2014). Empirical Kernel Map Approach to Nonlinear

Underdetermined Blind Separation of Sparse Nonnegative Dependent Sources: Pure Components Extraction from

Nonlinear Mixtures Mass Spectra. J. of Chemometrics , vol. 28, pp. 704-715.
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Linear mixing model 

X=AS 

In chemometrics (NMR spectroscopy or mass spectrometry) rows of X

represent spectra of mixture samples, columns of A represent concentration 

profiles of analytes (a.k.a. pure components) present in mixture spectra X, while 

rows of S represent spectra of analytes present in mixture spectra X.

The (u)BSS problem relates to extraction of anlytes (and their concentratios) 

using mixture spectra X only:

Pure components can represent compounds indicative for disease. Thus, they 

can be useful for biomarker analysis. They can be isolated from spectra (NMR, 

mass) of biological samples (urine, blood, tissues).

0 0 0, ,N T M T N MX S A
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Implementation details

Studies on numerical and experimental data reported below were executed on

personal computer running under Windows 64-bit operating system with 64GB

of RAM using Intel Core i7-3930K processor and operating with a clock speed

of 3.2 GHz. MATLAB 2012b environment has been used for programming.

Electrospray ionization-mass spectrometry (ESI-MS) measurements operating

in a positive ion mode were performed on a HPLC-MS triple quadrupole

instrument equipped with an autosampler (Agilent Technologies, Palo Alto, CA,

USA). The desolvation gas temperature was 3000C with flow rate of 8.0 L/min.

The fragmentor voltage was 135 V and capillary voltage was 4.0 kV. Mass

spectra were recorded in m/z segment of 10-2000. All data acquisition and

processing was performed using Agilent MassHunter software. Acquired mass

spectra are composed of intensities at T=9901 m/z coordinates.
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Numerical experiment

*( ) 1 1,..., 1,...,mt mt mt mtp s s s f s m M t T

Nonlinear uBSS problem characterized by N=3,M=8, K=3 andT=1000 is

simulated: 

1 expmt mtm m
f s s

Each source signal is according to p.d.f. based on mixed state random variable 

model with exponential prior [5]: 

where m=0.8 and m=1.5 10-3 m=1,...,M. .

3 2 1 2 3 3

1 1 2 3 4 5 6 7 8( ) tan ( ) tanh( ) sin( )f s s s s s s s ss

3 3 1 2 2

2 1 2 3 4 5 6 7 8( ) tanh( ) tan ( ) tanh( ) sin( )f s s s s s s s ss

1 2 3 3 1

3 1 2 3 4 5 6 7 8( ) sin( ) tan ( ) tanh( ) sin( ) tan ( )f s s s s s s s ss
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Numerical experiment
Comparative performance analysis of NMU, NMF_L0, EKM-NMU, EKM-NMF_L0, PTs-

EKM-NMU and PTs-EKM-NMF_L0 algorithms. Probability of zero state was m=0.8. 

Four metrics used in comparative performance analysis were: number of associated 

components with normalized correlation coefficient greater than or equal to 0.6, mean 

value of correlation coefficient over all associated components, minimal value of 

correlation coefficient and number of  pure components assigned incorrectly (that occurs 

due to poor separation). 

All four metrics were calculated with respect to predefined labeling of the pure 

components stored in the library. Incorrect assignment implies that, based on maximal 

correlation criterion, two or more pure components are assigned to the same separated 

component. 

Mean values and variance are reported and estimated over 10 Monte Carlo runs. The 

best result in each metric is in bold. The first three metrics are calculated only for 

correctly assigned components. That is why NMU and NMF_L0 appear to have 

comparable performance.
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Numerical experiment

NMU NMF_L0 EKM-NMU EKM-

NMF_L0

PTs_EKM-

NMU

PTs-EKM-

NMF_L0

correlation

G.E. 0.6

2.8±0.92 2.3±1.34 3.7±0.48 3.2±0.63 3.8±0.42 3.7±0.48

mean 

correllation

0.70±0.03 0.61±0.11 0.69±0.02 0.64±0.03 0.70±0.03 0.69±0.04

minimal 

correlation

0.53±0.04 0.42±0.08 0.51±0.03 0.45±0.04 0.52±.04 0.49±0.06

inccorect 

assignments

3.4±0.70 3.1±0.57 2.4±0.97 2.2±0.63 2.0±0.88 1.5±1.43
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Nonlinear chemical reaction
9 nonlinear mixtures mass spectra were recorded in nonlinear chemical 

reaction related to peptide bond synthesis. 

25 pure components were present in the mixtures. They were separated 

chromatographically which enabled formation of pure components library and 

validation of the algorithms’ performances.
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Pure components correlation matrix. 30 

pairs of pure components have correlation 

greater than or equal to 0.1 

s2 s6 s7 s9 s10 s12

s1 0.9839 0.1416    0.1218    0.1796    0.1072    0.3343    

s6 s7 s9 s10 s12

s2 0.1418    0.1268    0.1797    0.1075    0.3305    

s16 s17 s18

s3 0.3575    0.3103    0.1716   

s6 s19 s21

s4 0.3077    0.3947    0.4005    

s7

s5 0.7824

s9

s7 0.3297    

s13

s8 0.1293    

s12 s22

s11 0.2666    0.1622    

s17

s14 0.1024    

s22

s15 0.1349

s17

s16 0.9783

s18

s17 0.1186

s21

s19 0.9962

s24 s25

s23 0.4409 0.4339

s25

s24 0.3008
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NMU NMF_L0 EKM-NMU PTs_EKM-NMU

D=T=9901

PTs-EKM-NMU

D=4000

correlation G.E. 0.6 8 14 16 18 18

mean correlation 0.342 0.518 0.673 0.702 0.708

minimal correlation 0.038 0.039 0.267 0.419 0.283

inccorect assignments 15 7 0 0 1

CPU time 1.3s 40 s 78.78h 4 78h* 4 13.7h*

Nonlinear chemical reaction

* Sparseness constrained NMF had to be executed 4 times because 4 methods 

for supression of HOT have been applied to (X): hard, soft and trimmed 

threshodling as well as robust PCA
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Mass spectra of several true and 

estimated pure components. 
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A Nonlinear Mixture Model Based Unsupervised 

Variable Selection in Genomics and Proteomics [37]

37. I. Kopriva, "A Nonlinear Mixture Model Based Unsupervised Variable Selection in Genomics and Proteomics," 

Bioinformatics 2015 - 6th Int. Conf. on Bioinformatics Models, Methods and Algorithms, pp. 85-92, Lisbon, 

Portugal, January 12-15, 2015. DOI: 10.5220/0005161700850092.
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Motivation 

Disease diagnosis in proteomics and genomics is characterized by small 

number of samples (experiments) and large number of features (variables). 

That results in classical “small N large p problem”, in which case classifiers 

and regression models are overly tuned to the training data (ovefitting). 

Linear mixture models, often used in bioinformatics data analysis, represent

samples as additive mixture of components.

State-of-the-art matrix factorization methods are used to extract those 

components using mixture samples only. 
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Sparseness constrained NMF for BSS problems with sufficiently sparse

sources is applied to microarray data analysis [38, 39].

Sparseness constrained NMF is used to decompose set of N gene expression

profiles (mixtures in BSS) into M metagenes (sources in BSS). That yields

metagenes comprised of small number of co-expressed genes. This indicates

that they can be involved in disease (cancer) [40]. Thus, sparseness constraint

is biologically justified. Extracted metagenes were confimed meaningful through

subsequent biological analysis.

SCA in bioinformatics

38. Stadtlthanner K, Theis FJ, Lang EW, Tomé AM, Puntonet CG, Górriz JM: Hybridizing Sparse Component 

Analysis with Genetic Algorithms for Microarray Analysis. Neurocomputing 2008, 71: 2356-2376. 

39. Gao Y, Church G: Improving molecular cancer class discovery through sparse non-negative matrix 

factorization. Bioinformatics 2005, 21: 3970-3975.

40. Lee SI, Batzoglou S: Application of independent component analysis to microarrays. Genome Biology 2003, 4: 

R76.
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How to automatically select/recognize metagene (component) comprised of

disease relevant genes?

In state-of-the-art SCA/ICA algorithms [38-40] component associated with basis

vector that is most colinear with the vector of labels (diagnosis) is selected as

disease relevant component.

However, use of label information in component selection process prohibits

usage of selected component for learning/training prediction models (label

information cannot be used twice: for component selection and cross-

validation).

Novel type of additive linear mixture model comprised of test and reference

sample has been proposed in [41] to enable automatic selection of component

with disease specific features on a sample-by-sample basis.

SCA in bioinformatics

41. I. Kopriva, M. Filipović, “A mixture model with a reference-based automatic selection of components for 

disease classification from protein and/or gene expression levels,” BMC Bioinformatics, vol. 12, pp. 496 (17 

pages), 2011.
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Linear mixture model with a reference sample
Novel linear mixture model is comprised of actual test sample under

consideration and a reference sample representing disease and/or control

group. Number of additive components M is unknown and is estimated by

cross-validation.

control

control control

2 2

control control

:

, , 2T M M TR R R M

x
A S

x

X A S

Component with specific features is selected automatically in mixing angles 

domain by exploiting geometry of linear mixture model.
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Nonlinear mixture model with a reference sample

However, it is known that interactions within gene regulatory networks can be

nonlinear [11].

In metabolomics living organisms are examples of complex nonlinear systems

that function far from equilibrium. Internal and external stimuli (disease, drug

treatment, environmental changes) cause perturbations in the system as a

result of highly synchronized molecular interactions [10].

Thus, the question is can linear mixture model with a reference sample [41] be

generalized to the nonlinear one?

11. Yuh, C. H., Bolouri, H., and Davidson, E. H, “Genomic cis-regulatory logic: experimental and computational

analysis of a sea urchin gene,” Science, vol. 279, pp.1896-1902, 1998.

10. Walleczek J(ed). Self-organized biological dynamics and non-linear control. Cambridge University Press:

Cambridge, UK. 2000
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Nonlinear mixture model with a reference sample

,

; 1,...,
ref t

n t n

nt

x
t T

x
A s
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Nonlinear mapping of linear uBSS problem?

How to choose nonlinear mapping ?  One, smart (?), way is to select by 

factorizing positive semi-definite symmetric kernel function k(x,y) on the basis 

of reproducibility condition:

For Gaussian kernel                                                we obtain: 

( , ) ( ), ( )k x y x y

0
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Nonlinear mapping of linear uBSS problem?

Example. For              approximate EFM of order d=3 associated with Gaussian

kernel:  

Thus, 3D vector is mapped into 20D vector. Second order mapping yields 10D

vector.

3
x

2

2

2

T

2 2 2

1 2 3 1 2 3 1 2 1 3 2 32 2 2 2 2 2 3

3 3 3 2 2 2 2 2 2

1 2 3 1 2 1 3 1 3 1 2 2 3 2 3 1 2 33 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 1
1 ...

ˆ

4 1 4 1 4 2 2 2 2 2 2 8

3 3 3

x x x x x x x x x x x x

e

x x x x x x x x x x x x x x x x x x

x
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Nonlinear mixture model with a reference sample

Regarding we have found that when data are scaled to [-1, 1] interval, can 

be approximately set to 1.

Dimension D of mapping induced space depends on order of the mapping d 

through: D=(d+2)(d+1)/2.

Mapped sample can also be written in Cartesian coordinate system as:

where , j=1,…,D are unit vector in standard Euclidean basis.

,

1 1 , 2 2 3 3 , 4 ...
ref k

ref k nk ref k nk

nk

x
c x c x c x x

x
e e e e

D

j Re
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Nonlinear mixture model with a reference sample

We can calculate cosines of the angles that mixing vectors close with

a reference sample according to:

When reference sample represents negative (healthy) class, component

comprised of disease (cancer) relevant features is associated with a mixing

vector that closes largest angle with a reference sample. Hence after executing

sparseness constrained factorization of

component with disease relevant features is selected automatically:

; 0

D

m n Ra

; ; 2 ;cos , ,m n ref m n m na x a e a

ref

n n

n

x
A S

x

; ;arg min cos ,cancer n m n ref
m

s a x
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Nonlinear mixture model with a reference sample

After each sample is decomposed components comprised of cancer relevant 

variables are stored row-wise in a matrix .

Variables (columns of ) are ranked by their variance accross sample

dimension yielding:                   .

N T

cancer RS

. 

cancerS
ranked N K

cancer RS

Let us denote by I a corresponding index set. Variables ranked in original space

of samples are obtained by indexing each sample by I, that is:                     , 

n=1,…,N.  

ranked

n nx x

Samples with ranked variance form rows of the matrix:                      . That

matrix when paired with a vector of labels y is used to learn SVM-based

diagnostic models.

ranked N TRX
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Sparseness constrained decomposition

Sample dependent sparseness constrained factorization of linear mixtutre

model in mapped space:

is peformed in two steps.

ref

n n

n

x
A S

x

Step 1. Mixing matrix is estimated first. That is achieved by separable NMF 

algorithm [42] which also estimates number of components Mn. MATAB code is 

available at: https://sites.google.com/ site/nicolasgillis/publications. There is no 

parameter reuquired to be tuned of defined a priori.

nA

42. Gillis, N., and Vavanis, S. A., “Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix

Factorization,” IEEE Trans. on Pattern Analysis and Machine Intelligence 36, 698--714 (2014).
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2

n 1

1ˆ ˆ
min

2n

ref

n n n

n F

S

x
S A S S

x

Step 2. Based on estimated mixing matrix matrix of componnets (sources)    

is estimaed by solving sparseness constrained optimization problem:

Sparseness constrained decomposition

ˆ
nA

nS

where stands for regularization constant and has to be cross-validated. We 

have used the iterative shrinkage thresholding (IST) type of method [43] to 

solve this optimization problem. MATLAB code is available at: 

http://ie.technion.ac.il/Home/Users/ becka.html. 

43. Beck, A., and Teboulle, M., “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,”

SIAM J. on Imag. Sci., vol. 2, pp.183-202, 2009.
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Comparative performance analysis

Proposed unsupervised variable selection method has been compared with 3 

supervised vairable selection methods: maximum mutual information minimal 

redundancy (MIMR) [44] , HITTON_PC and HITTON_MB methods [45, 46] , 

and its linear counterpart [41]. 

To comply with reproducible research principles Gene Expression Model 

Selector (GEMS) software system [47], has been used for cross-validation and 

learning of SVM-based diagnostic models with polynomial and Gaussian 

kernels the parameters of which were optimized in cross-validation loop as well.

The system is available online at: http://www.gems-system.org/. HITON_PC 

and HITON_MB algorithms are implemented in GEMS software system while 

implementation of the MIMR algorithm is available at MATLAB File Exchange. 

44. Brown, G., “A New Perspective for Information Theoretic Feature Selection,” J. Mach. Learn. Res., vol. 5, pp. 49-56, 2009.

45. Aliferis, C. F., et al., “Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification -

Part I: Algorithms and Empirical Evaluation,” J. Mach. Learn. Res., vol. 11, pp.171-234, 2010.

46. Aliferis, C. F., et al., “Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification -

Part II: Analysis and Extensions,” J. Mach. Learn. Res., vol. 11, pp. 235-284, 2010.

47. Statnikov, A., et al., “GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression

data,” Int. J. Med. Informatics, vol. 74, pp.491-503, 2005.
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Comparative performance analysis

Variable selection methods

were compared on three well

known datasets in genomics: 

colon cancer [48], diffuse large 

b-cell lymphoma and follicular 

lymphomas (DLBCL/FL) [49] 

and prostate cancer [50], and

two well known datasets in

proteomics: ovarian cancer

[51] and prostate cancer [52]. 

48. Alon, U., et al., “Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues

probed by oligonucleotide arrays,” Proc. Natl. Acad. Sci. USA, vol. 96, pp.6745-6750, 1999.

49. Shipp, M. A., et al., ”Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine

learning. Nature Med., vol. 8, pp.68-74, 2002.

50. Singh, D., et al., ”Gene expression correlates of clinical prostate cancer behavior,” Cancer Cell, vol. 1, pp.203-209, 2002.

51. Petricoin, E.F., et al., “Use of proteomic patterns in serum to identify ovarian cancer,” The Lancet, vol. 359, pp. 572-577, 2002.

52. Petricoin, E.F., et al. ,“Serum proteomic patterns for detection of prostate cancer,” J. Natl. Canc. Institute, vol. 94, pp.1576-

1578, 2002.

Dataset Number of 
samples 

(cancer/normal)

Number of 
variables

Reference

1. Prostate 
cancer

52 /50 10509 [50]

2. Colon cancer 40/22 2000 [48]

3.DLBCL/FL 58/19 5469 [49]

4. Ovarian 
cancer

100/100 15152 [51]

5. Prostate 
cancer

69/63 15154 [51]
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Comparative performance analysis
For each dataset we report the best result

achieved by one of these supervised

methods. The results were obtained by 10-

fold cross-validation. For each of five

datasets proposed method achieves result

that is worse than but comparable with the

result of state-of-the-art supervised

algorithm and much better than its linear

unsupervised counterpart. Since reported

results are achieved with small number of

variables the probability of overfitting is

reduced. Thus, it is reasonable to expect

that performance on unseen data of the

same cancer type by proposed

unsupervised method will be better than the

one achieved with supervised algorithms.

Dataset Proposed 
method

Supervised 
method

[41]

1. Prostate 
cancer [50]

91.27% / 38
genes (d=2,
=0.4).

MIMR:
98.09% / 10
genes.

94.27% /
477
genes.

2. Colon cancer
[48]

91.91% / 24
genes (d=5,
=0.1).

HITON_MB:
93.33% 4
genes.

90.48% /
30 genes,
=0.05.

3. DLBCL/FL
[49]

96.25% / 14
genes (d=2,
=0.2).

HITON_PC:
100% / 6
genes.

98.57% /
169
genes,
=0.01.

4. Ovarian 
cancer [51]

93% / 7 m/z
lines (d=4,

[0.4, 0.7]).

HITON_PC:
99.5% / 7
m/z lines.

82% / 25
m/z lines,
=0.2.

5. Prostate 
cancer [52]

94.06% / 14
m/z lines
(d=4, =0.2).
.

MIMR: 100%
/ 10 m/z
lines

94.01% /
85 m/z
lines, =0.
2.
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Nonlinear decomposition of RGB image of 

unstained specimen in histopatology 

53. I. Kopriva, M. Hadžija, M. Popović-Hadžija, M. Korolija, A. Cichocki (2011). Rational Variety 

Mapping for Contrast-Enhanced Nonlinear Unsupervised Segmentation of Multispectral Images 

of Unstained Specimen, The American Journal of Pathology, vol. 179, No. 2, pp. 547-553.
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Decomposition of objects with spectrally similar profiles is hard problem. That 

occurs due to poor spectral resolution or due to physiological reasons. 

“Standard” way of enhancing visual contrast is by means of staining i.e.using 

contrast agens to treat a specimen. 

This, possibly, can also be achieved by digital image analysis through nonlinear

sparse component analysis (NSCA).

RGB image is first mapped nonlinearly by means of EFM: X (X). Afterwards, 

sparseness constrained NMF is executed in induced space: S≈sNMF( (X)). 

EFM of order d:

Decomposition of RGB image in histopatology 

1

1
1
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RGB  image of a nerve (nervus ischiadicus)

bluered green

Nerves in RGB image of unstained specimen

Spectral channels of RGB image of unstained specimen
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Image of unstained specimen at  510 nm 

wavelength (green color). White crosses denote 

false positive spots.

Active contours
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Top left: EFM2 and DCA decomposition; Bottom left: DCA decomposition only.

Top right: EFM3 and NMU decompsoition; Bottom right: NMU decomposition only.
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Active contours for decomposed nerve component

Top left: EFM2 and DCA decomposition; Bottom left: DCA decomposition only.

Top right: EFM3 and NMU decompsoition; Bottom right: NMU decomposition only.
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Nonlinear decomposition of RGB image of 

skin cancer

54. I. Kopriva, A. Peršin (2009) Unsupervised decomposition of low-intensity low-dimensional 

multi-spectral fluorescent images for tumour demarcation, Medical Image Analysis , vol.13, 

pp.507-518.

55. I. Kopriva, Method for real time tumour visualisation and demarcation by means of 

photodynamic diagnosis, US Patent 8,224,427, 17. 7. 2012.
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Decomposition of objects with spectrally similar profiles is hard problem. That 

occurs due to poor spectral resolution or due to physiological reasons. 

In fluorescent imaging that occurs when intensity of fluorescence is weak. 

As an example that may happen when intensity of illuminating (laser) light is 

low (we do not to cause damage).

RGB image is first mapped nonlinearly by means of 2nd order explicit feature

map (EFM2). Afterwards, dependent component analysis (DCA) is executed in

induced space. 

Nonlinear decomposition of RGB image of skin 

cancer
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Left: Experimental high-intensity fluorescent RGB image of the skin tumour (basal cell carcinoma).

Mid: linear ICA algorithm; Right: Nonlinear DCA algorithm.

2nd order EFM and dependent component analysis
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Left: Experimental low-intensity fluorescent RGB image of the skin tumour (basal cell carcinoma).

Mid: linear ICA algorithm; Right: Nonlinear DCA algorithm.

2nd order EFM and dependent component analysis
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Nonlinear projection on orthonormal basis and ICA?

1 1T T T

c D D D D D DD DV I 1 1 V I 1 1 UΛU

If centered basis in RKHS is orthogonalized:

we can project centered data in RKHS onto             :
c V

1/2 1 1T T T

D D D D TD DY Λ U I 1 1 X V 1 1

Thus, Y contains decorrelated components. By applying some linear ICA 

algorithm on Y we obtain nonlinear ICA of X.
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Nonlinear projection on orthonormal basis and ICA?
We have applied “temporal predictability” ICA algorithm, [56], on RKHS-

deccorelated version of the low-intensity fluorescent RGB image of basal cell 

carcinoma.

[56] Stone, J.V., 2001. Blind source separation using temporal predictability. Neural Comput. 13, 1559-1574.

Left: high-intensity fluorescent RGB image of BCC. Right: low-intensity fluorescent image of BCC.
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Nonlinear projection on orthonormal basis and ICA?

Background and ruler numbers. Left: Nonlinear ICA extracted component; Right: binarized version.
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Nonlinear projection on orthonormal basis and ICA?

Background and ruler numbers. Left: Nonlinear ICA extracted component; Right: binarized version.
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Nonlinear projection on orthonormal basis and ICA?

Tumor demarcation line and ruler body. Left: Nonlinear ICA extracted component; Right: binarized 

version.
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Nonlinear projection on orthonormal basis and ICA?

Basal cell carcinoma. Left: Nonlinear ICA extracted component. Right: binarized version.
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Nonlinear projection on orthonormal basis and ICA?

I. Kopriva, A. Peršin (2009) Medical Image 

Analysis , vol.13, pp.507-518.
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Nonlinear projection on orthonormal basis and ICA?

We have applied “AMUSE” ICA algorithm, [57], on RKHS-deccorelated version 

of the multi-phase CT of abdomen. (D=100, Gaussian kernel, 2=103.

Slide 114 displayed in window [-100 200] Hounsfield unit. 

[57] L. Tong, R.W. Liu, V.C. Soon, and Y. F. Huang, “Indeterminacy and identifiability of blind identification,” IEEE 

Trans. on Circuits and Systems, 38:499-509, 1991. 

Non-contrast Arterial Venous 1 Venous 2
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Top row:components decomposed by nonlinear ICA algorithm.

Bottom row: assignment according to maximal value criterion (occlusions).  

Liver Kidneys – renal cortex Kidneys – renal medula 



Soochow University, Medical Image Processing, Analysis and Visualisation Laboratory – April 17,2015, Suzhou City, China.

“Nonlinear sparse component analysis with applications in medical image analyis, bioinfomatics and chemometrics”

skin aorta 
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Nonlinear projection on orthonormal basis and ICA?

Nonlinear ICA can, possibly, be applied on unsupervised decomposition 

(segmentation) of multichannel medical images with good spatial resolution 

and low-sensitivity (contrast).

One imaging modaility of immediate relevance is multi-phase computed 

tomography (CT) imaging, where soft tissues (liver, kidneys, …) have low 

contrast. 

In particular, nonlinear ICA can be used to reduce number of phase-contrast 

images!!!

Nonlinear ICA can also be used on multimodal images (e.g. CT and PET)?
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THANK YOU !!!!!!!!


