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 
Abstract—In this paper, we propose a novel method for 

single-channel blind separation of non-overlapped sources and, to 
the best of our knowledge, apply it for the first time to automatic 
segmentation of lung tumors in Positron Emission Tomography 
(PET) images. Our approach first converts 3D PET image into a 
pseudo multichannel image. Afterwards, regularization free 
sparseness constrained nonnegative matrix factorization is used to 
separate tumor from other tissues. By using complexity based 
criterion, we select tumor  component as the one with minimal 
complexity. We have compared the proposed method with 
threshold based on 40% and 50% maximum standardized uptake 
value (SUV), graph cuts (GC), random walks (RW) and affinity 
propagation (AP) algorithms on 18 non-small cell lung cancer 
datasets with respect to ground truth provided by two 
radiologists. Dice similarity coefficient averaged with respect to 
two ground truths is: 0.780.12 by the proposed algorithm, 
0.780.1 by GC, 0.770.13 by AP, 0.770.07 by RW, and 0.750.13 
by 50% maximum SUV threshold. Since the proposed method 
achieved performance comparable with interactive methods, 
considering the unique challenges of lung tumor segmentation 
from PET images, our findings support possibility of using our 
fully automated method in routine clinics. The source codes will 
be available at www.mipav.net/English/research/research.html . 
 

Index Terms—Single-channel blind source separation, 
nonnegative matrix factorization, sparseness, lung tumor 
delineation, positron emission tomography (PET).  
 

I. INTRODUCTION 

UNG tumor is the main cause of cancer death in men and the 
second main cause of cancer death in women [1]. The 
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overall five-year survival rate of lung cancer for all stages is 
only approximately 15%. However, if the primary tumor is 
resectable, survival rate is improved [2], [3]. Accurate staging 
is critical to characterize tumors such as understanding the 
stage of the tumor or its suitability for resection. To this end, 
positron emission tomography (PET)-computed tomography 
(CT) are widely used [4]. CT provides anatomical information 
but it lacks metabolic information [5]. PET yields increased 
uptake of fluorodeoxyglucose (FDG) in tumor tissues relative 
to surrounding normal tissues. This is typical for non-small cell 
lung cancer (NSCLC) [3], [6]. On the other hand, NSCLC 
tumors show high regulation of glucose metabolism such that 
labeling glucose with FDG enables detectability of NSCLC [7]. 
Increased FDG uptake is often referred to as a "hot spot". Due 
to limited spatial resolution of PET images, the boundary of a 
tumor lesion usually appears fuzzy and indistinct. That is why 
tumor delineation using sole PET images is still considered 
suboptimal [8], [9], [10]. In this regard, Figure 1 illustrates 
difficulties associated with segmentation of lung tumor with 
complex shape and fuzzy boundary.  

Nevertheless, PET can detect sites of disease in non-enlarged 
lymph nodes within the thorax and in structures outside the 
thorax, which may not appear abnormal in CT images [3]. 
There has been increased research undertaken to improve 
accuracy of lung tumor delineation using PET [9], [11], [12]. 
One way to improve boundary definition is to combine PET 
and CT information and jointly segment boundaries from CT 
and PET [3], [8], [9], [10], [13]. Compared with segmentation 
results obtained by random walks (RW) [14], graph cuts (GC) 
[15], affinity propagation (AP) [16], [17] and thresholding 
based on 50% of the maximum tumor FDG uptake (TH50), the 
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Fig. 1. Comparative results for a slice of PET study. Top row from left to right: 
input PET image, ground truth 1, ground truth 2,  segmentation result obtained 
by proposed algorithm.  Bottom row from left to right: segmentation results 
obtained by random walks, affinity propagation, graph cuts and thresholding 
based on 50% of maximum tumor FDG uptake. 
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method proposed herein achieves the same performance as GC 
and better performance than RW which are interactive methods. 
It is also better than AP method that requires postprocessing. 
Proposed method yields comparable results as RW and GC 
co-segmentation method in [13] that uses both PET and CT 
modalities. However, while method in [13] is interactive, 
proposed method is fully automatic.  
 There is no PET image segmentation method that is optimal 
for all applications [9]. Methods that segment PET image only 
are divided in the following groups: manual segmentation, 
thresholding-based, region-based, stochastic and 
learning-based [9]. Manual segmentation is inefficient and 
highly subjective with substantial intra- and inter-operator 
disagreement rates [18], [19], [9]. Thresholding is widely used 
in PET images due to its simplicity and good contrast of the 
PET images. Because of the large variability of pathologies, 
low resolution and uncertainty in fuzzy object boundaries, there 
is no consensus on the selection of a thresholding level [9]. The 
range of suggested thresholds is commonly between 40%-50% 
of the maximum tumor FDG uptake [19]-[22]. However, not 
always primary NSCLCs display highest FDG uptake and 
benign conditions such as pneuomonia can also have high FDG 
uptake [6]. That is why a single threshold method is not 
considered satisfactory [23], [24], [9]. Many adaptive 
thresholding methods [25], [26], [9] and iterative thresholding 
strategies [27], [9] were developed to address the challenges of  
single thresholding methods. Although improvements were 
obtained, none of these strategies were generalized due to the 
need for developing more advanced and robust techniques.  
 Stochastic methods, as an alternative and more powerful 
methods, exploit differences between uptake regions and 
surrounding tissues statistically. In this category, three groups 
of methods are distinguished: mixture models based methods 
[28], [29], fuzzy locally adaptive Bayesian method [29], and 
clustering/classification of PET image intensities methods [16], 
[17], [30], [31]. Since clustering methods are grouping voxels 
according to chosen similarity metric, they are geometry 
independent and are, therefore, particularly useful when the 
shapes of the uptakes regions are non-convex with a 
heterogeneous background. Non-convex regions are quite 
common and that is cause of growing interest in the use of 
clustering methods to segment complex shapes uptake regions 
[9]. In particular, recent AP method was demonstrated to 
address difficult problem related to segmentation of the 
multi-focal uptake pattern in the PET image [16], [17]. The 
method proposed herein belongs to the class of clustering 
methods. 
 The region-based segmentation methods are using 
homogeneity of the intensities in the image for determining 
object boundaries [9]. In this group, graph-based methods were 
shown particularly more suitable for segmentation of PET 
images than other methods due to incorporation of a priori 
knowledge into segmentation process. That is accomplished by 
using foreground and background seeds specified by the user, 
or automatically, to locate objects in the image [9]. The two 
most prominent graph-based methods used for PET image 
segmentation are GC [15] and RW [16]. The advantage of RW 

over GC is to be more robust against noise and weak 
boundaries. Despite automated seeding process [10], it is 
believed that human incorporation may still be necessary for 
some extreme cases [9]. A comprehensive review for PET 
segmentation methods can be found in [9]. 
 Herein, we propose a method for automatic delineation of 
lung tumor from PET images. That is motivated with efforts to 
develop automatic segmentation methods as a substitute for 
time-consuming manual delineation performed by radiologists 
[32]. It is also motivated by the clinical cases which may not 
appear abnormal in CT images and only PET can detect such 
sites [3]. Furthermore,  it is motivated by the non-convex shape 
of NSCLC what is hard to segment. As opposed to multivariate 
data analysis methods such as principal component analysis 
(PCA) [33] and independent component analysis (ICA) [34] 
which yield separated components with physically not 
interpretable mixed signs, the proposed method yields 
physically meaningful nonnegative separated components. 
Compared with sparseness regularized nonnegative matrix 
factorization (NMF) such as [35], the proposed method is free 
of regularization constant and that is important for automatic 
segmentation. The same comment applies to subspace 
clustering algorithms such as normalized cut  (Ncut) [36], since 
Ncut can be implemented through orthogonality constrained 
NMF [37]. The automatic segmentation method proposed by us 
is based on blind source separation (BSS) approach [38]. It 
performs decomposition of 3D PET images into tumor and 
non-tumor parts. Since BSS is multivariate data analysis 
methodology, it assumes availability of a multichannel image. 
Because PET is a single-channel image, we first derive 
nonlinear transform that maps a single-channel PET image into 
pseudo multichannel. Afterwards, sparseness constrained 
nonnegative factorization of the pseudo multichannel image is 
performed to separate lung tumor from non-tumor tissues. In 
this regard, the proposed method belongs to class of clustering 
methods, whereat PET image is partitioned into sets of pixels 
(segments) corresponding to distinct objects (organs, tissues, 
etc.) based on their uptake level. Objects with distinct uptakes 
are represented by distinct segments. Lung tumor-related 
segment is identified automatically by means of criterion that 
combines measures of smoothness and entropy. Segmented 
image of the lung tumor is obtained through 
thresholding/binarization of the separated tumor component. 
Since lung tumor is separated from non-tumor tissues, a 
binarization threshold can be set to a low value to remove 
remnant parts of the non-tumor tissues, which are still present 
in separated tumor component. In particular, we demonstrate 
through leave-one-out cross validation on 18 NSCLCs patient 
datasets with manual delineation by two radiologists, that 
optimal values exist for both order of the nonlinear mapping 
transform and binarization threshold. Learned parameters can 
be set to predefined values, which makes the proposed 3D lung 
tumor delineation method automatic.  
 The remainder of the paper is organized as follows. Section 
II presents an overview of BSS approaches to multichannel 
image decomposition as well as overview of single-channel 
BSS algorithms. A novel single-channel BSS algorithm for 
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automatic 3D PET image decomposition is presented in Section 
III. Experimental results, in particular parameterization and 
comparative performance analysis of the proposed algorithm, 
are presented in Section IV. Discussion is presented in Section 
V, while conclusions are given in Section VI. 
 

II. BACKGROUND AND RELATED WORK 

A. BSS Approach to Multichannel Image Decomposition 

 The BSS approach to automatic image decomposition is 
based on multivariate data analysis [38]. We implicitly assume 
a multichannel image: 0

N TR 
X comprised of N vectorized 

intensity images, also known as (a.k.a.) mixtures in the BSS 
vocabulary, and T pixels (voxels), a.k.a. samples in the BSS 
vocabulary. BSS decomposition is based on multiplicative 
linear mixture model (LMM): 
 
   X AS ,                (1) 
 
where 0

N MR 
A  stands for a basis (or mixing) matrix and 

0
M TR 
S  stands for a matrix of encoding coefficients. M rows 

of S matrix, a.k.a. sources in the BSS vocabulary, are 
interpreted as partitions of the image occupied by particular 
tissue/organ. Thereby, presence of source m at pixel t is 

regulated by the encoding coefficients   ,

0 , 1

M T

mt m t
s R  

 . BSS 

decomposition effectively partitions an image into its 
constituent components. The term blind implies that 
decomposition of a multichannel image X into the basis matrix 
A and the source matrix S is based on the multichannel image X 
only. Linear representation (1) is customarily used to model a 
multichannel image in multispectral/hyperspectral imaging 
[39], [40], [41], [42], magnetic resonance imaging [43], and 
multi-phase CT imaging [44], [45]. Given a linear 
representation (1), and depending on constraints imposed on A 
and S, various methods are used to perform BSS-based image 
decomposition. PCA [33] constraints sources to be 
uncorrelated and Gaussian. ICA constraints sources to be 
statistically independent and non-Gaussian (at most one source 
is allowed to be Gaussian) [34], [46], [43], [44], [41]. PCA and 
ICA address over- and determined BSS problems in which 
number of sources cannot exceed number of mixtures available. 
Sparse component analysis (SCA) [47], [42], [48] constraints 
sources to be sparse. Thus, underdetermined BSS problems, 
characterized with more sources than mixtures, can be solved 
by SCA. Nonnegative matrix factorization (NMF) [49], [50] 
constraints sources to be nonnegative. As shown in [51], 
non-negativity is a natural constraint when applying 
factorization techniques to image related problems. NMF can 
also be combined with sparseness constraint [52], [35], [53] 
which enables solution of nonnegative underdetermined BSS 
problems.  
 

B. Single-channel BSS 

 LMM-based representation of a single-channel image on the 
pixel-level becomes: 

 

    
1

1,...,
M

t m mt
m

x a s t T


             (2) 

   
where   1

M

m m
a


 represent the mixing coefficients and   ,

, 1

M T

mt m t
s


 

represent the encoding coefficients. Due to requirements of 
multiple mixtures, BSS methods are not applicable to 
single-channel. Single-channel BSS can be seen as limited 
(degenerative) case of underdetermined BSS where only one 
mixture is available [54]. In this regard, single-channel BSS is a 
highly ill-posed problem and hard constraints have to be 
imposed on source signals to enable their separation from a 
single-channel mixture. A single-channel mixture has to be 
transformed into pseudo multichannel mixture before some 
existing BSS algorithm such as ICA or NMF can be used. 
Several techniques were developed to convert single-channel 
mixture to pseudo multichannel [54]-[64] and, afterwards, to 
use some existing multivariate data analysis algorithms to 
perform BSS. For instance, Davies and James [54] assumed 
that source signals have disjoint spectral support and their 
method partitions single-channel time series to yield pseudo 
multichannel mixture, where an ICA algorithm was then 
applied to extract sources. Mijović et. al. [56] used empirical 
mode decomposition [65] to decompose single-channel mixture 
into intrinsic mode functions (IMFs) that stand for pseudo 
multichannel mixture. In order to be separated by ICA 
algorithms, sources of interest are required to be IMFs. In [57], 
wavelet transform is used to generate pseudo multichannel 
mixture from single-channel one. Thereby, mother wavelets 
have to be non-orthogonal and have to correspond to shapes of 
the sources we are interested in. Thus, this wavelet-ICA method 
is applicable to the separation of the specific source signals 
such as vibration signals [57], [58]. Many of single-channel 
BSS algorithms are derived for separation of acoustic signals 
by factorizing nonnegative spectrogram (magnitude of the short 
time Fourier transform) [59]-[63]. Ma et. al. [64] applied 
singular spectrum analysis (SSA) technique [66] to convert 
single-channel to pseudo multichannel mixture assuming that 
scalar time series is stationary. The BSS algorithm based on 
minimization of mutual information is applied to pseudo 
multi-channel mixture to separate source signals. The critical 
step in the SSA algorithm is determination of the length of the 
window in partitioning of scalar time series. 
 

III. THE THRESHOLDED NONLINEAR NONNEGATIVE MATRIX 

UNDERAPPROXIMATION ALGORITHM 

 In this paper we propose a single-channel BSS algorithm for 
decomposition of vectorized single-channel intensity image 
into its constituent components. The flow chart diagram of 
proposed thresholded nonlinear nonnegative matrix 
underapproximation (TNNMU) algorithm is shown in Figure 2. 
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It is assumed by the TNNMU algorithm that components have 
dominantly disjoint spatial support. Within the context of the 
present paper, we are interested in decomposition of a 3D PET 

image tensor 1 2 3
0
I I IR  
X  comprised of I3 slices of the size 

I1I2 pixels. Thus, a single-channel PET image is obtained by 

unfolding 3D tensor X  into row vector 1 2 31
0

I I IR 
x  comprised 

of T=I1I2I3 pixels. Thereby, xt denotes intensity value of the 
pixel t=1,...,T. Within the context of the present paper we 
assume: 
 
  A1) ( ) , 1,..., 1,...,mt nts s n m m n M t T       

 
A1) implies that each pixel (voxel) is dominantly occupied by 
one organ/tissue as well as that the encoding coefficients have 
binary {0, 1} values. A1) is justified because we are interested 
in solving image segmentation problem. In this case, smt=0 
implies that source m is not present at pixel t while smt=1 
implies that source m is present at pixel t. In case of PET image, 

coefficients   1

M

m m
a

  correspond to uptakes of organs/tissues 

present in the PET image. Thus, it is justified to assume that 

  1

M

m m
a


 are distinct: 

 
 A2) , 1,..., andm na a m n M m n    . 

 

A. Nonlinear mapping to pseudo-multichannel PET image 

We propose a pixel-wise nonlinear mapping of order D:  

    1 1
0

1

T
D

t D t
t

x x R  



  such that: 

 

    T21 ... D
D t t t tx x x x                 (3) 

 
By using (2) and using multinomial theorem, we obtain: 
 

  
 

1 2

1

... 11 2

!
0,...,

! !... !
i

M

dMd
t m mtm

d
k

i it
k k k d i MM

x a s

d
a s d D

k k k



     



 



 

      (4) 

 
Now by using A1), equation (4) is simplified as: 
 

  1
1

0,...,
MdMd d

t m mt m mtm
m

x a s a s d D




            (5) 

 
Thus, using equation (3) and equation (5) we obtain t=1,...,T: 
 

  

1
1 2

22 2 2 2
1 2

1 2

1 1 1 ... 1

...

...
...

. . . ....

...

t
t M

t
D t t M

MtD D DD
Mt

s
x a a a

s
x x a a a

s
a a ax



  
    
    
          
    
    
    

        (6)

                      
or on the matrix level: 
    
   ( )D x VS                 (7) 

 
where V stands for mixing or basis matrix in mapped space and 
S stands for matrix of encoding coefficients in mapped space 
and it is, due to A1), equivalent to the encoding coefficients in 
(2).  As an example, we show in Figure 3 pseudo multi-channel 
image in log10 scale generated by (3) for D=7.  

 

B. Nonnegative matrix underapproximation based 
decomposition of pseudo-multichannel PET image 

 The basis matrix V is a special matrix known as 
Vandermonde matrix [67]. The important property of the 
Vandermonde matrix V is that under assumption A2) and for 
D=M-1 it is nonsingular, while for D>M-1 the matrix V is a full 
column rank [68]. Thus, the LMM (7) is identifiable. Regarding 
the order of the mapping D, it does not have to be very large 
since in case of PET imaging, the number of organs/tissues M 

 
 

Fig. 3. Pseudo multi-channel image generated by (3) for D=7. Intensities are 
shown in log10 scale. Top row: input PET image. Mid row from left to right: 
pseudo-multichannel images x0 to x3. Bottom row from left to right: 
pseudo-multichannel images x4 to x7.  

 
 

Fig. 2. Flow-chart diagram of proposed TNNMU algorithm. 
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that are present in the image is small. Then, sparseness and 
nonnegativity constrained BSS algorithm, such as NMF 
algorithm [51], can be used to separate S from (7) even if the 
LMM is possibly underdetermined.  
  Nonnegativity and sparseness constrained factorization is 
applied to solve BSS problem implied by equation (7). The 
nonnegative matrix underapproximation (NMU) algorithm 
[52], with MATLAB code available at [69], has been used for 
that. The NMU method performs factorization of (7) in a 
recursive manner extracting one component at a time. After 
identifying optimal rank-one solution  1 1,v s , the rank-one 

factorization is performed on the residue matrix 

    1 1D D  x x v s . Herein, v1 denotes column vector and s1 

denotes row vector. To preserve non-negativity of D(x), an 
underapproximation constraint is imposed on V and S: 

 DVS x . This constraint yields localized parts-based 

decomposition, where different basis elements   1

M

m m
v  

describe disjoint parts of the input data D(x). It has been 
proven in theorem 1 in [52] that, due to underapproximation 
constraint, number of non-zero entries of V and S is less than 
number of non-zero entries of D(x). That, as opposed to other 
sparseness constrained NMF algorithms, enables sparseness 
constrained factorization without regularization constant and 
that would require a tuning procedure. When performing 
NMU-based factorization of matrix D(x) in (7), the unknown 
number of sources M needs to be given to the NMU algorithm 
as an input. Our strategy is to set M=D+1. If, possibly, source 
related to lung tumor component is not extracted, M can be 
increased. However, our experiments executed on all clinical 
data show that D=8 and M=D+1 is sufficient. Thus, estimate of 
the sources S is obtained as: 
 

    ˆ , 1DNMU D S x             (8) 

 
where, D+1 denotes number of sources (tissue components) to 
be extracted.  
 

C. Selection of tumor component 

 After M source components are estimated by (8), it is 
necessary to automatically select the lung tumor component. 
For this reason, we formulate criterion that combines measures 
of smoothness and entropy. Smoothness measure reflects the 
fact that pixels belonging to the lung tumor component are 
locally more correlated than it is the case with other 
components. Thus, vectorized lung tumor component will be 
more predictable than vectorized non-tumor components.  For 
the predictability (smoothness) measure we use [70], [71]: 
 

     
 

max

max

2

1
2

1

ˆ( ) ( )
ˆ ( ) log log

ˆ( ) ( )

k

m k m km k
m k k

m m k m kk

s t s tW
F s t

U s t s t





 




 

  (9) 

 

where ˆ ( )m ks t  is the value of separated source component m at 

pixel tk , Wm  reflects the extent to which ˆ ( )m ks t  is predicted by 

a long term moving average ( )m ks t  of values in ˆ ( )m ks t , and 

Um  reflects the extent to which ˆ ( )m ks t  is predicted by a short 

term moving average ( )m ks t of values in ˆ ( )m ks t . The predicted 

values ( )m ks t  and ( )m ks t of ˆ ( )m ks t  are exponentially 

weighted sums of signal values measured up to shift (kmax-1), 
where kmax stands for maximal shift, see also eq. (1.1) and (1.2) 
in [70]. The value of kmax is not critical. That is, the lung tumor 
component is identified for kmax  {1, 2, 3, 4, 5}. In reported 
experimental results we have set kmax=5 pixels. The 

predictability measures   
1

ˆ ( )
M

m k m
F s t


 estimated by (9) are 

scaled to interval [0, 1] through division of estimated values by 
the maximal one. It is expected that the tumor related 
component *ˆ

m
s  has the highest value of predictability. The 

estimated amounts of entropy, ˆ( )mH s , contained in each 

separated component ˆ
ms  are also scaled to interval [0, 1] in a 

way analogous to predictability measure. Entropy is computed 
with the MATLAB command entropy. It is defined as 

    256

21
ˆ ˆ ˆ( ) logm n m n mn

H p p


 s s s , m=1, ..., M. Thereby,  

  256

1
ˆ

n m n
p


s  are probabilities associated with the bins of the 

histogram of ˆ
ms  . Thus, the tumor related component *ˆ

m
s  with 

"almost" constant values is expected to have the lowest value of 
entropy. Thus, we formulate the lung tumor component 
selection criterion as complexity measure: 
 

       *

1
ˆarg min 1 ( ) (1 )

M

m k m mm
m F s t H


    s   (10) 

 
such that  0.4,0.5 . The selection process is illustrated in 

Figure 4, whereat the minimum of criterion (10) corresponds 
with the component 2 that also has the largest value of Dice 
coefficient. As can be seen either predictability or entropy 
alone are not enough to select the tumor component.  

 

 
Fig. 4. The lung tumor component selection process. Component with the
lowest complexity, eq. (10), has largest Dice coefficient. 
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D. Thresholding of the tumor component 

 In order to segment the lung tumor, corresponding source 
component extracted by the NMU algorithm has to be 
binarized. We obtain segmented lung tumor by thresholding 
each entry of *

1
0

ˆ T

m
R 

s  according to: 

 

  
* * *

*

max minˆ ˆ ˆ1 ( )
ˆ 1,...,

0
m t m m

m t

if s s s
s t T

otherwise

    


 
   (11) 

 

where   [0, 1] stands for threshold, *

maxˆ
m

s and *

minˆ
m

s  stand for 

maximal value and minimal value of *ˆ
m

s , respectively. 

Thresholding (11) reflects the fact that the NMU-based 
decomposition (8) does not yield perfect separation of 

components   1
ˆ M

m m
s . Thus, remnant parts of non-tumor tissues 

will, up to some extent, still be present in *ˆ
m

s . However, due to 

NMU-based separation, their contribution is expected to be 
low. Consequently, the threshold value   in (11) ought to be 
low and that should enable delineation of lung tumor in the 
region of low uptake value. Indeed, cross-validation 
experiments executed on clinical data in Section IV yield 
≈0.15 when D=8. The proposed TNNMU algorithm is 
summarized in the Algorithm 1 as below. 

 
Algorithm 1. The TNNMU algorithm based single-channel 
PET image decomposition. 

Inputs: 1 2 3
0
I I IR  
X  3D PET image comprised of I3 slices of 

the size I1I2 pixels (voxels). Order of the mapping in (3): D=8. 
Segmentation threshold in (11):  =0.15. 

Step 1. Unfold 3D PET image 1 2 3
0
I I IR  
X  into vector 

1
0

TR 
x , where T=I1I2I3.  

Step 2. Perform nonlinear mapping of single-channel PET 
image according to (3)/(6). 
Step 3. Perform the NMU decomposition according to (8). 
Step 4. Select the lung tumor related source component  
according to (10). 
Step 5. Segment selected lung tumor component *ˆ

m
s  according 

to (11). 

Step 6. Fold *ˆ
m

s  into 1 2 3
* 0

ˆ I I I

m
R  

S . 

Output: *
ˆ

m
S segmented 3D lung tumor component.  

 

IV. EXPERIMENTAL RESULTS 

A. Data 

For validation we used 18 PET-CT studies from patients with 
NSCLC. Patients were scanned on GE Discovery STE 16 
PET-CT scanner. PET images were reconstructed into 120  
120 matrices with the voxel size of 5.47  5.47  3.27 mm3. We 
evaluated the performance of the TNNMU algorithm in 
comparison with manual delineation by two radiologists, 

having more than ten years of experience, abbreviated as BZ 
and XW. The manual delineations were used as "ground truth" 
(GT) and referred to as GT-1 and GT-2 from now on. The size 
of the tumor varied between 8.05 cm3 (82.28 voxels) to 506.52 
cm3 (5177 voxels) according to GT-1, and between 6.75 cm3 
(68.99 voxels) to 448.11 cm3 (4580 voxels) according to GT-2. 
Figure 5 shows estimated tumor size per patient according to 
two ground truths. Inter-observer variability calculated as a 
relative difference between aggregate volume of 18 NSCLCs 
according to GT-1 and GT-2 is 1.33%. Figure 6a shows result 
of linear regression analysis for tumor size in cm3 estimated by 
GT-1 and GT-2: GT-2=0.9618GT-1+4.624. Pearson 
correlation coefficient between the two estimates is 0.9969. 
Figure 6b shows Bland-Altman plot for GT-1 vs. GT-2, 
whereat difference in tumor size between GT-1 and GT-2 is 
normalized with respect to the average: (GT-1+GT-2)/2.  

 

B. Other Delineation Approaches for Comparisons 

 We compared the TNNMU algorithm with five delineation 
methods which were: 1) a threshold at 40% of maximum SUV, 
2) a threshold at 50% of maximum SUV, 3) AP [16], [17], 4) 
GC [15], and 5) RW [14]. The thresholding methods are 
referred as TH40 and TH50 while the proposed method is 
referred as TNNMU. The maximum SUV was estimated within 
the entire volume. The TH40, TH50, AP and TNNMU 
algorithms were implemented in MATLAB 2011b (The 
MathWorks, Inc., Natick, MA) script language. The MATLAB 
code for AP method is available for free download at [72].  
 

C. Performance Measure 

 We have used Dice similarity coefficient (DSC) to measure 
the degree of overlap between each of the five delineation 
results and ground truths. DSC is calculated as: 
 

    1 2
1 2

1 2

2
DSC ,

V V
V V

V V





            

 
where V1 stands for ground truth volume, and V2 stands for the 
volume obtained from each delineation approach. Thereby, 
DSC(V1,V2)  [0, 1]. A DSC value of 0 indicates no overlap and 
a value of 1 indicates perfect overlap. 

 
Fig. 5. Estimated tumor size in cm3 according to GT-1 and GT-2.  
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D. Parameters of the TNNMU Algorithm 

 The TNNMU algorithm includes two main parameters: order 
of nonlinear mapping D in (3) and threshold  used in (11) to 
segment the lung tumor component separated by the NMU 
algorithm in (8). Thus, we have calculated DSC between 
ground truths and delineation results obtained by the 
TNNMU(D, )  from 18 NSCLCs PET studies, whereas D  
{3, ..., 9} and   {0.1, 0.15, 0.2, 0.25, 0.3}. Thereby, we have 
used leave-one-out cross validation to estimate optimal values 
for D and  , as well as to estimate performance of the TNNMU 
algorithm. That is, one image was left as test image and optimal 
values for D and   were selected based on the rest and applied 
to segmentation of the test image. The values of D and   that 
correspond to the highest value of Dice coefficient are shown in 
Figure 7. The mean value of D is 8.11 for GT-1 and 8.06 for 
GT-2. The mean value of  is 0.144 for GT-1 and 0.147 for 
GT-2. That justifies selection of D=8 and =0.15 as 
approximately optimal. Figure 8 shows segmentation results 
for some characteristic combinations of D and . Visually, it is 
evident that proposed combination D=8 and =0.15 
corresponds best with the GT-1. 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

 
Fig. 6. a) linear regression analysis between GT-1 and GT-2 evaluated
between slices of 3D PET image for different patients. b) Bland-Altman plots
for interobserved and intraobserver assessment of manual segmentation
results. Vertical axis show difference in tumor size estimation normalized with
respect to average value between GT-1 and GT-2. 

 
Fig. 7.  Optimal values of a) mapping order D and b) threshold  obtained by
leave-one-out cross validation  for GT-1 and GT-2. 

 
 

Fig.8. Segmentation results of the TNNMU algorithm parameterized by (D, )
for one slice of PET study.  Shown area between pixels 53:73 and 42:64.  
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E. Results of Comparative Performance Analysis 

 Delineation results obtained by the TNNMU, TH50, GC, 
RW and AP algorithms are quantified in terms of DSC 
calculated for 18 PET image studies  with respect to GT-1 and 
GT-2, and shown respectively in Fig. 9a) and 9b). Thereby, 
results for the TNNMU algorithm were obtained by 
leave-one-out cross validation. Aggregate results for all 18 PET 
image studies in term of mean value of DSC ( standard 
deviation) are shown in Table I. Table II shows p values 
estimated pairwise by repeated measures ANOVA tests on 
DSC obtained by the TNNMU method and TH50, TH40, AP, 
GC and RW methods. We have used anova_rm function 
available at MATLAB File Exchange Central, [78], to run the 
test. The automatic TNNMU method achieves the same 
performance as GC. It is better than the rest of methods, 
although not statistically significantly. However, the TNNMU 
method is fully automatic, while GC and RW are interactive. In 
regard to the AP, that is supposed to be automatic, combination 
of several segmented layers has to be found to achieve best 
result. That requires postprocessing. In case of results presented 
herein, 3 layers had to be combined to achieve reported results. 
Layer selection is analogous to the component selection 
performed by the TNNMU method. However, that is executed 
automatically by using criterion (10). We also want to 
emphasize that RW-GC integrated co-segmentation of PET-CT 
image method in [13] yielded result in term of DSC value equal 
to 0.840.06, but with the help of CT information. Thus, given 
the fact that TNNMU method is fully automatic and is using 
information from the PET image only, result obtained by the 
TNNMU can be considered good. Hence, results presented in 
Tables I and II suggest that the proposed TNNMU algorithm 
can be method of choice for lung tumor delineation from sole 
PET image. We showed in Figure 10 segmentation results for 
one PET study obtained by TH50, GC, RW, AP and TNNMU 
algorithms. Ground truths 1 and 2 as well as input PET images 
are also shown. Obtained mean value of DSC ( one standard 
deviation) for GT-1 for TH50, RW, AP, GC and TNNMU 
methods is given as: 0.710.08, 0.790.11, 0.840.08, 
0.800.12 and 0.900.05. For GT-2, mean DSC values ( one 
standard deviation) are given in the same order as: 0.710.08, 
0.790.09, 0.850.09, 0.800.10, 0.930.08. To validate 
precision (reproducibility) of the TNNMU algorithm, it has 
been applied repeatedly 100 times on the 3D PET images of 18 
patients. The aggregate result, in terms of Dice coefficient, with 
respect to GT-1 for all 18 patients and all 100 segmentations is 
0.780.12 which coincides with the value presented in Table I. 
Furthermore, Figure 11 shows segmentation results for the PET 
study, whereas demarcation lines, corresponding with GC, 
TNNMU and GT-1, are superimposed on input PET images. 
Reported segmentation experiments were executed in 
MATLAB script language running under 64-bit Windows 
operating system on desktop computer with clock speed of 
2.4GHz and 24GB of RAM. It takes 63 s for the TNNMU 
algorithm to segment PET image comprised of 50 slices. Direct 
comparison with GC and RW is not possible due to their 
interactive nature. AP algorithm is very fast and takes 0.68 s to 
segment the same PET image once proper combination of 
segmented layers is found. However, it takes multiple runs to 

find such a combination. This also raises question of 
overfitting. 

 
Fig. 9. Mean value ( one standard deviation) of DSC of delineation results
obtained by the TNNMU (squares), TH50 (stars), AP (circles), GC
(pentagram) and RW (triangle down) algorithms on 3D segmentation of 18
PET studies of patients diagnosed with NSCLC. DSC calculation with respect
to: (a) GT_1, and (b) GT_2. 
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V. DISCUSSION 

The proposed single-channel BSS method for segmentation of 
the lung tumor component from PET image combines 
nonlinear mapping of PET image to pseudo-multichannel 
image with NMU-based factorization of mapped image. 
Underapproximation constraint of the NMU algorithm 
incorporates implicitly sparseness constraints on the encoding 
coefficients matrix S in (7). That is achieved without sparseness 
regularization tradeoff parameter that would required tuning. 

That, in combination with predefined values of mapping order 
and binarization threshold, makes proposed method fully 
automatic. That is a big advantage of the proposed method with 
respect to interactive methods GC and RW as well as with 
respect to the subspace clustering methods such as Ncut [36], 
that is equivalent to orthogonality regularized NMF and 
therefore requires tuning of the regularization constant. 
However, implicit underapproximation based sparseness 
constraint has a disadvantage of not yielding the sparsest 
decomposition possible. Having no direct control over degree 
of sparseness of S can decrease quality of delineation when 
two components have very similar uptake values. That happens 
if the lung tumor is not homogenous but contains also a 
necrotic part. Quality of delineation in such a case may 
deteriorate since uniqueness of the solution of (7) depends on 

the amount of sparseness of  1
0 1

TM
t t


 

s   and mutual 

coherence,   V , of V in (6)/(7) through [73]: 

 

     
 0

1 1
1

2t

 
    

s
V

         (12) 

 
where 

0ts stands for the 0  quasi-norm that counts number of 

non-zero coefficients in ts . Thus, it is beneficial to have more 

direct control over the degree of sparseness of ts . When two 

components have very similar uptake values the corresponding 
basis vectors in the LMM (6) will, due to A2), be highly 
correlated. Thus,   V will be close to 1. Hence, the required 

amount of sparseness imposed on ts  by (12) is 
0

1t s . 

Thanks to A1) that condition is fulfilled. It is envisioned that 
using the NMF algorithm with sparseness constraint based on 
the 1 -,  [74], [75] or the 0 -norm, [76], of S to solve 

factorization problem (7) would provide more accurate 
demarcation of the necrotic part from the rest of the tumor than 
using the NMU algorithm. In particular, for the 0 -norm 

constrained NMF algorithm [76] explicit sparseness constraint 
can be imposed on 

0ts  to be 1. As demonstrated in [77], that 

enabled separation of tissue components present in the image of 
unstained histopathological specimen.   
 

VI. CONCLUSIONS  

In this paper, we have proposed a novel method for 
single-channel nonnegative sparse BSS as well as its 
application to automatic 3D delineation of the lung tumor from 
PET image. Proposed method was compared with thresholds of 
40% and 50% of maximum SUV, AP, GC and RW on 18 
NSCLC datasets with respect to manual delineation performed 
by two clinical experts. Since the proposed method achieved 
performance comparable with interactive methods, considering 
the unique challenges of lung tumor segmentation from PET 
images, our findings support possibility of using our fully 
automated method in routine clinics. The source codes will be 
available at www.mipav.net/English/research/research.html . 
 

TABLE II 
P VALUES ESTIMATED BY REPEATED MEASURES ANOVA TEST BETWEEN THE TNNMU 

AND TH50, TH40, AP, GC AND RW ALGORITHMS OVER 18 PET IMAGE STUDIES AND 

TWO GROUND TRUTHS. MAPPING ORDER D=8. SEGMENTATION THRESHOLD =0.15.  
 

 GT-1 GT-2 
TH50 0.1509 0.1860 
TH40 1.510-6 0 

AP 0.4015 0.3921 
GC 0.6062 0.6685 
RW 0.8529 0.3519 

 
Fig. 10. Comparative results for one PET study. Shown area between pixels
53:73 and 42:64. From left to right: input PET image, segmentation results
obtained by TH50, RW, AP, GC and TNNMU methods, ground truths 1 and 2.
From top to bottom: slices 1 to 7. Mean value of DSC ( one standard
deviation) for GT_1: TH50: 0.710.08, RW: 0.790.11, AP: 0.840.08, GC: 
0.800.12, TNNMU: 0.900.05 and for GT_2: TH50: 0.710.08, RW: 
0.790.09, AP: 0.850.09, GC: 0.800.10, TNNMU: 0.930.08. 

TABLE I 
MEAN VALUES OF DSC ( ONE STANDARD DEVIATION) OBTAINED BY THE TNNMU , 

TH50, TH40, AP, GC AND RW ALGORITHMS OVER 18 PET IMAGE STUDIES AND 

AVERAGED OVER TWO GROUND TRUTHS. MAPPING ORDER D=8. SEGMENTATION 

THRESHOLD =0.15. THE BEST RESULT IS IN BOLD FONT. 

 
 Averaged GT 

TNNMU 0.780.12 
TH50 0.750.13 
TH40 0.600.17 

AP 0.770.13 
GC 0.780.1 
RW 0.770.07 
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