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Abstract. Speckle artifact can strongly hamper quantitative analysis of optical coherence tomography (OCT) which 
is necessary to provide assessment of ocular disorders associated with vision loss. Here, we introduce new method 
for speckle reduction, which leverages from low-rank + sparsity decomposition (LRpSD) of logarithm of intensity 
OCT images. In particular, we combine nonconvex regularization-based low-rank approximation of original OCT 
image with sparsity term that incorporates the speckle. State-of-the-art methods for LRpSD require a priori 
knowledge of a rank and approximate it with nuclear norm which is not accurate rank indicator. As opposed to that, 
proposed method provides more accurate approximation of a rank through the use of nonconvex regularization that 
induces sparse approximation of singular values. Furthermore, a rank value is not required to be known a priori. 
This, in turn, yields automatic and computationally more efficient method for speckle reduction which yields OCT 
image with improved contrast-to-noise ratio, contrast and edge fidelity. The source code will be available at 
www.mipav.net/English/research/research.html. 
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1 Introduction 

Optical coherence tomography (OCT) resolves optical reflections from internal structures in 

biological tissues by means of noninvasive low-coherence light.1 Quantification of optical 

properties of the tissue enables discrimination of different tissues or different pathological states 

of tissue.2,3 This, furthermore, enables characterization of pathological states such as cystoid 

macular edema4, central retinal artery occlusion5, atherosclerosis plaques6, etc. However, the 

large contrast and granular appearance of speckle stands for major obstacle in quantitative OCT 

image analysis.7,8,9 Speckle is inherent random signal modulation caused by spatial and temporal 

coherence of the optical waves which at the same time is basis for interferometry, the 

measurement technique on which OCT is based.7,9,10 Thus, speckle has dual role as a source of 
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noise and as a carrier of information about tissue microstructure.9 Hence, complete speckle 

reduction is not desirable. On the other side, with biological specimens, speckle reduce contrast 

and make boundaries between constitutive tissues more difficult to resolve.7,9,11 Speckle 

reduction techniques generally belong to two groups: physical compounding and digital 

filtering.7,12 The former group reduces speckle by incoherently summing different realizations of 

the same OCT image.13,14,15 These strategies achieve OCT image quality improvement 

proportional to the square root of the number of realizations. Digital filtering techniques aim to 

reduce speckle through post-processing of OCT image, while preserving image resolution, 

contrast and edge fidelity (measured by sharpness in this paper).16,17,18 However, as it is 

demonstrated in Sec. 3, state-of-the-art digital filtering methods such as median filtering, can 

even decrease sharpness when reducing speckle (see also Fig. 1g). Here, we propose new low-

rank + sparsity decomposition (LRpSD) method to reduce speckle in optical coherence 

tomography images. It leverages LRpSD of logarithm of intensity OCT images. Since speckle 

can be considered as multiplicative noise on a signal,7 logarithm of the original OCT image X 

yields log(X)=log(L) + log(S), where L and S respectively represent "clean" OCT image and 

speckle. To simplify further exposition, we shall slightly abuse notation through substitutions: 

log(X)X, log(L)L and log(S)S. Hence, it is assumed that original OCT image is 

represented in the logarithmic domain as well as that the result of the image enhancement 

procedure is raised to an exponential. That is, ˆ ˆexp( )L L  and  ˆ ˆexpS S , where the hat 

denotes estimation of the corresponding variable. Hence, we represent the OCT image as X = L 

+ S. Due to the random nature of the scattering, the speckle associated with the matrix S has 

sparse spatial distribution. Since the clean OCT image carries information on tissue 

microstructure, the matrix L has a structure. Thus, L can be considered as a low-rank 
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approximation of X. Low-rank matrix approximation with or without additional sparsity term is 

fundamental problem in many signal processing applications.19 It is a crucial step in many 

machine learning20,21,22,23,24,25 and signal processing26,27,28 applications. Exact decomposition 

X=L+S has been known under the name robust principal component analysis (RPCA)29 or rank-

sparsity decomposition.30 However, as properly noted in the Ref. 22, adding the "noise" term G 

to the RPCA model, that is X=L+S+G, yields model capable for describing empirical data more 

realistically. The "noise" term G can also be interpreted as a modeling error. That is, it partially 

takes into account imperfections of the original RPCA model. The fundamental issue in low-rank 

approximations is that, due to discontinuous and non-convex nature of the rank function, rank 

minimization is non-deterministic polynomial-time (NP) hard problem. Thus, discrete NP-hard 

rank minimization problem is often replaced by convex relaxation29,31,32 known as nuclear- or 

Schatten-1 norm.21,33 However, nuclear norm approximates rank with the sum of singular values, 

and that is known to be inaccurate.34,35,36 In addition to that, since they require a priori 

information on the rank value, low-rank approximation methods proposed in Ref. 20 and 22 

exhibit high computational complexity when the true value of the rank is not known a priori. 

Several recent studies have emphasized the benefit of nonconvex penalty functions compared to 

the nuclear norm for the estimation of the singular values.19,31,34,35,36 In particular, it has been 

presented in the Ref. 19 how nonconvex regularization, that promotes more sparse 

approximation of singular values,37 can be combined into convex optimization problem related to 

the estimation of the low-rank matrices. Herein, we combine nonconvex regularization19 with 

sparsity constraint for LRpSD in the presence of additive white Gaussian noise (AWGN). That 

is, X=L+S+G, where G stands for the AWGN with an unknown variance. In addition to yielding 

more accurate low-rank approximation L of X, which in turn yields OCT image with improved 
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contrast-to-noise-ratio (CNR), signal-to-noise-ratio (SNR), contrast and edge fidelity, the 

proposed method does not assume a priori information on the rank value. These also are the 

main distinctions between proposed LRpSD method and RPCA method in OCT image 

enhancement.38,39 These distinctions contribute to computational efficiency in comparison with 

LRpSD algorithms such as Ref. 20 and 22. The proposed method is illustrated in Fig. 1a to Fig. 

1c. For the sake of visual comparison we present, in respective order, in Fig. 1d to Fig. 1g results 

of OCT image enhancement by algorithms derived in Ref. 20 and 22, as well as by 2D bilateral 

and median filtering (see Sec. 3 for more details).  
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Fig. 1 (a) to (c): flow chart of the "low-rank + sparsity" decomposition approach to speckle 

reduction in optical coherence tomography (OCT) images. Information on image quality metrics 

such as contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) in dB, contrast and sharpness, 

can be found in Sec. 2.3. (a) original OCT image: CNR = 3.61, SNR = 26.23, contrast = 1.14, 

sharpness = 56.90. (b) Enhanced low-rank approximation of OCT image by proposed algorithm: 

CNR = 4.17, SNR = 32.26, contrast = 1.44, sharpness = 61.46. (c) Sparse term containing 
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speckle. (d) OCT image enhanced by the GoDec algorithm (rank=35):22 CNR = 4.59, SNR = 

32.52, contrast = 1.71, sharpness = 49.01. (e) OCT image enhanced by the RNSC algorithm 

(rank=35):20 CNR = 4.31, SNR = 30.61, contrast = 1.43, sharpness = 55.72. (f) OCT image 

enhanced by bilateral filtering: CNR = 4.17, SNR = 35.82, contrast = 1.65, sharpness = 59.79. 

(g) OCT image enhanced by median filtering: CNR = 4.5, SNR = 30.78, contrast = 1.59, 

sharpness = 36.14. For visual comparison OCT images (a) to (g) were mapped to [0 1] interval 

with the MATLAB mat2gray command from the interval corresponding to minimal and 

maximal values of each specific case. The best value for each figure of merit is in bold. 

 

        The rest of this paper is organized as follows. The details of the proposed method for 

LRpSD are presented in Sec. 2. That is followed by an experimental comparative performance 

analysis in Sec. 3 and the discussion in Sec. 4. The conclusions are presented in Sec. 5. 

 

2 Materials and Methods 

2.1 Related Works 

Let 1 2
0
I I
X   be one scan of the OCT image with the size of I1I2 pixels. The speckle, which 

occurs due to the random scattering of the light on tissues, acts effectively as multiplicative 

noise.7 That is,      1 2 1 2 1 2, , ,x i i l i i s i i  , where  1 2,i i  stands for pixel coordinates and  1 2,x i i  

stands for the intensity value at  1 2,i i . By taking the log of  1 2,x i i  we obtain: 

 

                                       1 2 1 2 1 2log , log , log ,x i i l i i s i i                                                 (1) 
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With the slight abuse of notation we rewrite (1) on the matrix level as: 

 

                                     X L S G                                                                                (2) 

  

where, in relation to (1), the AWGN term G with zero mean and unknown variance 2 has been 

added. As discussed previously, G can also be considered as a modeling error that partially takes 

into account imperfections of the model. Due to the random nature of the scattering, the speckle 

associated with the matrix S has sparse spatial distribution. Thus, the matrix L represents "clean" 

OCT image that contains information on tissue microstructure. Hence, it is justified to assume 

that L is low-rank approximation of X.38,39 Thus, reduction of the speckle within the OCT image 

can be seen as decomposition of the empirical data matrix (OCT image) X into low-rank matrix 

L and sparse matrix S. The LRpSD problem (2) can be seen as a composition of two separate 

problems: the low-rank matrix approximation problem X=L+G that appears in many signal 

processing applications,19,36,40,42,43 and sparsity constrained signal reconstruction corrupted with 

the AWGN: X=S+G.41,45,46,47 Thus, estimation of the low-rank matrix L and sparse matrix S is 

expressed as the following optimization problem: 

 

                            
0,

min ( )rank subject to    
L S

L S X L S G                                     (3) 

 

Here, 
0


 
counts the number of nonzero entries of S and >0 is a tuning parameter. Rank 

minimization problem is NP-hard. Minimization of the number of nonzero entries is NP-hard 

problem as well. Thus, optimization problem (3) is often replaced by convex relaxation: 29,31 
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1,

min ( )i
i

subject to     
L S

L S X L S G                                  (4) 

 

The first term is the 1 -norm of the vector   L  of singular values of L, and it is known as the 

nuclear- or Schatten-1 norm of L.21,33 It represents convex relaxation of the rank minimization 

problem.32 The second term is the 1 -norm of the matrix S and it represents convex relaxation of 

the 
0

S
 
minimization problem.47 Optimization problem (4) is converted into the following 

optimization problem: 

 

                               2

1,

1
min , ( )

2 iF
i

          
 


L S

L S X L S L S                         (5) 

 

where  is a regularization constant that determines relative importance of the rank penalty term. 

The solution of the nuclear norm minimization problem, when S is fixed, is obtained directly 

using the singular value decomposition (SVD) of the matrix X-S=UVT. It is given with: 

 

                                         ˆ ( , ) Tsoft L U Σ V                                                              (6)            

 

where  ,soft Σ  is the soft-thresholding function44 applied to the singular values of X-S. The 

solution (6) is known as "singular value thresholding" (SVT) method.48 Solution of the 
1

S
 

minimization problem, when L is fixed, is obtained directly as: 

 

                                         ˆ ( , )soft  S X L                                                                (7) 

 



9 

where  ,soft  X L  is the soft-thresholding function applied entry-wise to the matrix X-L. As 

emphasized in the Ref. 22 and 49, the SVT method tends to underestimate the nonzero singular 

values. Thus, nuclear norm based solutions of the low-rank approximation problem will exhibit 

decreased accuracy in estimation of the "clean" OCT image L. 

 

2.2 Nonconvex Regularization for LRpSD 

Several recent studies have emphasized the benefit of nonconvex penalty functions compared to 

the nuclear norm for the estimation of the singular values.19,31,34,35,36,37 In particular, it has been 

presented in the Ref. 19 how nonconvex regularization, that promotes more sparse 

approximation of singular values,40 can be combined into convex optimization problem related to 

the estimation of the low-rank matrices. The low-rank matrix approximation (LRMA) problem is 

formulated as:19 

 

                                 2

1

1
min ( );

2

k

iF
i

a


        
 


L

L X L L                                   (8) 

 

where  1 2min ,k I I , and  is the sparsity-inducing regularizer, possibly non-convex. To 

estimate nonzero singular values more accurately and induce sparsity more effectively than the 

nuclear norm, nonconvex penalty functions parameterized by the parameter a0 are used.19,50  

Assumption 1 in the Ref. 19 defines conditions that :    has to satisfy. An example of a 

penalty function  satisfying Assumption 1 is the partly quadratic penalty function:19,51,52  
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                                    
2 1
,

2; :
1 1

,
2

a
x x x

ax a

x
a a

    
 


                                                              (9) 

 

 

According to definition 1 in the Ref. 19, see also the Ref. 53, the proximal operator of , 

:   , is defined as: 

 

                                      21
; , : arg min ;

2x
y a y x x a



      
 

                                        (10) 

 

If 0a<1/, then  is continuous nonlinear threshold function with threshold value , i.e., 

 

                                  ; , 0y a y                                                                             (11) 

 

The proximal operator of the partly quadratic penalty (9) is the firm threshold function defined 

as:54 

                                    ; , : min ,max / 1 ,0y a y y a sign y                                 (12) 

 

In case of matrix X, notation  ; , a X  implies that the proximal operator is applied element-

wise to X. In addition to partly quadratic penalty function (9), other functions such as 

logarithmic function50 can be used as nonconvex penalty function in (8). However, the partly 

quadratic function (9) yielded best experimental results presented in Sec. 3. Thus, we shall not 

elaborate further on nonconvex penalty functions. According to theorem 2 in the Ref. 19 the 

LRMA problem (8) has globally optimal solution: 
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                                               ˆ ( ; , ) Ta   L U Σ V                                                      (13) 

 

where the threshold function  is associated with the nonconvex penalty function . We now use 

this result to obtain more accurate solution of the problem (3). In this regard, we substitute 

nuclear norm term in (5) with the nonconvex penalty from (8) and that yields: 

 

                                  
   2

1,
1

1
min , ( );

2

k

iF
i

a


           
 


L S

L S X L S L S    (14) 

 

Optimization problem (14) can be seen as a special case of the more general linearly constrained 

convex program:55 

 

                                  
,

min ( ) ( ) ( ) ( )f g subject to A B     
L S

L S L S L S X G      (15) 

 

where  
1

( ) ( );
k

i
i

f a


   L L  and   1
g  S S . When A(L) and B(S) in (15) are identity 

operators, that is A(L)=L and B(S)=S, the problem (15) can be solved by the alternating direction 

method of multipliers (ADMM). For this purpose the augmented Lagrangian function is 

formulated:56 

 

                   
    2

1
1

, , ( ); ,
2

k

i F
i

L a



           L S Λ L S Λ L S X L S X

    
(16) 
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where  is the matrix of Lagrange multipliers and  is the penalty parameter. The ADMM 

decomposes the minimization of L with respect to (L, S) into two sub-problems that minimize 

with respect to L and S respectively:55 

 

                          

 

 

1 1

2

1
1

1

arg min , ,

arg min ( );
2

t t t

k
t

i t
i F

L

a

 









       



L

L

L L S Λ

Λ
L L S X

                    

 (17) 

 

                         

 1

2

1
1

arg min , ,

arg min
2

t t t

t
t

F

L 






     



S

S

S L S Λ

Λ
S L S X

                                        

(18) 

 

                        1t t t t   Λ Λ L S X
                                                                  

(19) 

 

where in (17) to (19) t stands for an iteration index. The sub-problem (17) is actually the LRMA 

problem (8) that admits optimal closed form solution given by (13):  

 

                                          ˆ ( ; , ) Ta   L U Σ V                                                               (20) 

 

for the SVD of: 

 

                                         1
1

Tt
t


   


Λ

X S U V                                                        (21) 

 

The sub-problem (18) admits the optimal solution in the form of (7): 
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                                           1ˆ ( , )t
t tsoft    


Λ

S X L                                                  (22) 

 

We name the proposed algorithm enhanced low-rank + sparsity decomposition (ELRpSD) 

algorithm. It is summarized in Algorithm 1. 

 

 

Algorithm 1 The ELRpSD algorithm. 

Input: logarithm of acquired OCT image 1 2I IX  with the size of I1I2 pixels, regularization constant  related to 

speckle term S in (14)/(16); regularization constant  related to low-rank approximation term L in (14)/(16).  

Suggested values: =0.1; =5.  

Suggested value for the penalty parameter  in (16): =1. Suggested value for constant a in (9)  to (13): a=0.6/.  

 1. L(0) = X; S(0) = 0; (0) = 0; t=1. 

2. while not converge do 

3. Execute SVD (21). 

4. Update L using (20). 

5. Update S using (22). 

6. Update  using (19). 

7. 1t t   

8. end while 

Output: ( 1) ( 1),t t  L L S S . 

 

2.3 Performance Measure 

To quantify the performance of speckle reduction algorithms, appropriate measures have to be 

defined. In the case of OCT image, the most commonly used figure of merit is CNR.7,9 It 
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corresponds to the inverse of the speckle fluctuation and it is defined as: ( ) / ( )l lCNR   X X  

where ( )l X  and ( )l X  respectively correspond to the mean and standard deviation in some 

selected homogeneous part of the image X. Experimental results reported in Sec. 3 were 

estimated in the region that corresponds with the top most layer in the OCT image of a retina, 

which is indicated in Figure1 by an arrow.5,57 Since the goal of post-processing algorithms is not 

only to reduce speckle but also to preserve image resolution, contrast and edge fidelity7, we also 

estimate contrast, sharpness as well as signal-to-noise-ratio (SNR) measures directly from the 

image. Sharpness is the attribute related to the preservation of fine details (edges) in an image. 

Contrast is defined as the ratio of the maximum and the minimum intensity of the entire image.58 

It reflects the strength of the noise or modeling error term G. Up to some extent it can be 

considered as an image quality measure that coincides with the SNR quality measure. Technical 

details on estimation of sharpness and contrast can be found in the Ref. 58 and 28. We estimated 

sharpness in the entire retinal region from the first (top most) to the tenth (bottom most) layer. 

Contrast was estimated from the whole image. By following the Ref. 18, global SNR value was 

estimated as  2 210 log max lin linSNR    X , where Xlin is the OCT image on a linear intensity 

scale and 2
lin , such that the noise variance was estimated on a region between top of the image 

and the top most layer. 

 

3 Experiments and Results 

3.1 Algorithms for comparison and OCT image acquisition 
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We compare the proposed ELRpSD algorithm with: the "Go Decomposition" (GoDec) 

algorithm22 which solves the optimization problem (4) with the 
1

S  term replaced with 
0

S  and 

 standing for a fraction of the nonzero coefficients of S relative to the overall number of 

coefficients which is I1I2; the semi-soft version of the GoDec algorithm (SSGoDec) which 

solves the problem (4); the rank N soft constraint (RNSC) for RPCA algorithm20 which is using 

partial sum of singular values for more accurate approximation, compared with nuclear norm, of 

a target rank value; the 2D bilateral filtering algorithm and 2D median filtering algorithm. The 

MATLAB code for the GoDec and SSGoDec algorithms has been downloaded from the Ref. 59. 

The MATLAB code for the RNSC algorithm has been downloaded from the Ref. 60. The 

MATLAB code for the 2D bilateral filtering algorithm has been downloaded from the Ref. 61. 

For 2D median filtering the MATLAB function medfilt2 has been used. After computational 

experiments we have selected for the GoDec algorithm the bound on 
0

S  to be 0.1(I1I2). For 

the SSGoDec algorithm the sparsity regularization constant has been selected to be =0.1. For 

the ELRpSD algorithm in (14), respectively (16) to (21), the parameters values were the 

following: =5, =0.1, =1. The speckle reduction algorithms were comparatively tested on 10 

3D macular-centered OCT images of normal eyes acquired with the Topcon 3D OCT-1000 

scanner. Each 3D OCT image was comprised of 64 2D scans with the size of 480512 pixels. 

These images have been used previously for the study for optical intensity analysis in Ref. 57, 

where they were segmented into 10 retina layers. We estimated CNR-, contrast-, SNR- and 

sharpness values from the original image as well as from the images with reduced speckle. The 

images were analyzed with software written in the MATLAB (the MathWorks Inc., Natick, 

MA) script language on PC with Intel i7 CPU with the clock speed of 2.2 GHz and 16GB of 

RAM.  
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3.2 Comparative Results 

Here, we present the results of the comparative performance analysis between the ELRpSD, 

GoDec, SSGoDec, RNSC, 2D bilateral filtering and 2D median filtering algorithms. Parameters 

of bilateral filter have been tuned to yield approximately the same CNR value (the same level of 

speckle reduction) as the proposed ELRpSD algorithm. The median filtering has been used with 

the window of the size 33 pixels and that yields slightly higher CNR value than the one 

achieved by the proposed ELRpSD method. The size of the window can be increased to improve 

the edge fidelity but that would decrease the CNR, contrast and SNR values. The algorithms 

were applied to each 2D OCT scan separately. CNR, SNR, contrast and sharpness were 

estimated from each enhanced 2D scan and the reported values were averaged over 64 scans for 

each 3D OCT image. Afterwards, they were averaged further over 10 3D OCT images. Average 

computation time of the ELRpSD, GoDec, SSGoDec, RNSC, 2D bilateral filtering and 2D 

median filtering algorithms per one 2D OCT scan is respectively given as: 4.51s, 11.56s, 9.63s, 

3.40s, 11.28s and 0.22s. Note, however, that unlike the ELRpSD algorithm, the GoDec, 

SSGoDec and RNSC algorithms required a priori information of a targeted rank value. Since the 

true value of a rank was not known a priori, the GoDec, SSGoDec and RNSC algorithms had to 

be run multiple times for the rank value within selected range. Clearly, huge computational 

complexity makes them not competitive in comparison with the ELRpSD algorithm. We show in 

Figures 2, 3, 4 and 5 in respective order error bars of averaged values of CNR, relative SNR, 

relative contrast and relative sharpness estimated from 10 3D OCT images. Thereby, means and 

standard deviations of relative SNR values were obtained as follows: 
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  mean(SNR_of_enhanced image)-mean(SNR_of_original_image)
Relative_mean_SNR % 100*

mean(SNR_of_original_image)
          

                                                                                                                                     (23) 

 

  std(SNR_of_enhanced image-SNR_of_original_image)
Relative_standard_deviation_SNR % 100*

mean(SNR_of_original_image)
          

                                                                                                                                   (24) 

 

Relative values of contrast and sharpness are defined analogously. It can be seen that values of 

CNR, SNR and contrast decrease when rank is increased. That is because with the increase of 

rank influence of noise, which corresponds to small singular values, is increased as well. 

However, as seen from Figure 5, the sharpness, which measures the edge fidelity, is increased 

with the increase of rank. That is because when low-rank approximation L is based on too few 

singular values details important for the preservation of edges are lost. That is why conflicting 

requirement on having the high CNR, SNR and contrast values on one side and good edge 

fidelity on another side is making difficult to select targeted value of the rank a priori. In this 

regard, bilateral filtering and median filtering suffer from the same problem. As can be seen from 

Figure 2 bilateral filtering achieved the same value of CNR and higher relative SNR value in 

comparison with the proposed ELRpSD method, but it yielded reduced relative sharpness in 

comparison with the relative sharpness achieved by the ELRpSD method. The median filtering 

yielded high values of CNR, relative SNR and contrast but destroyed edge fidelity compared 

with original image. In case of both, bilateral filtering and median filtering reduction of the edge 

fidelity is caused by the blurring effect when the spatial bandwidth of the filter becomes too 

narrow and that is necessary to achieve higher values of CNR, SNR and contrast. Thus, 
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capability of the proposed ELRpSD method to estimate the rank value directly from the image is 

very valuable. As can be seen, it achieves the highest value of relative sharpness (the best edge 

fidelity) compared with other algorithms and, in comparison with the original images, also yields 

increased values of the CNR, relative SNR and relative contrast. The GoDec, SSGoDec and 

RNSC algorithms achieve comparable value of sharpness with the value of rank equal to 35. At 

this value of rank GoDec and SSGoDec have slightly better value of CNR and contrast than 

ELRpSD, while the RNSC is still worse. Thus, presumably the GoDec and SSGoDec could be 

used for the speckle reduction on the existing OCT scanner with a rank set to predefined value of 

35. However, if the OCT images are to be acquired on different scanner the GoDec, SSGoDec 

and RNSC algorithms would have to be "calibrated" again. To validate stability of the proposed 

ELRpSD method we shown in Figure 6 relative values of CNR, SNR, contrast and sharpness 

estimated for each of 10 3D OCT image separately. As can be seen variations of estimated 

values are within few percentages. 
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Fig. 2 Average CNR values (meanstandard deviation) estimated from 10 3D OCT images. The 

ELRpSD, bilateral filtering and median filtering do not require a priori information on targeted 

rank value. Thus, their CNR estimates are shown as straight lines.  
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Fig. 3 Values of SNR in percentage (meanstandard deviation) estimated from enhanced 3D 

OCT images relatively to the SNR of original images. The ELRpSD, bilateral filtering and 

median filtering do not require a priori information on targeted rank value. Thus, their SNR 

estimates are shown as straight lines. 
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Fig. 4 Values of contrast in percentage (meanstandard deviation) estimated from enhanced 3D 

OCT images relatively to the contrast of original images. The ELRpSD, bilateral filtering and 

median filtering do not require a priori information on targeted rank value. Thus, their estimates 

of relative contrast value are shown as straight lines. 
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Fig. 5 Values of sharpness in percentage (meanstandard deviation) estimated from enhanced 

3D OCT images relatively to the sharpness of original images. The ELRpSD, bilateral filtering 

and median filtering do not require a priori information on targeted rank value. Thus, their 

estimates of relative sharpness value are shown as straight lines. 
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Fig. 6 Values of CNR, SNR, contrast and sharpness in percentage (meanstandard deviation) 

estimated from ELRpSD enhanced 3D OCT images relatively to the corresponding values in 

original 3D OCT images.  

  

4 Discussion 

Large contrast and granular appearance of speckle with OCT image of biological specimens 

reduce contrast and make boundaries between constitutive tissues more difficult to resolve. Thus, 

speckle stands for major obstacle in quantitative OCT image analysis. Since speckle has dual 

role as a source of noise and as a carrier of information about tissue microstructure its complete 

reduction is not desirable. Hence, speckle reduction is a peculiar problem. In particular, it is a 

challenge to increase the CNR value, which is used as a figure of merit in speckle reduction, and 

preserve image resolution, contrast and fidelity of edges. In this regard, we have proposed an 
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approach to speckle reduction which is based on decomposition of 2D OCT scans into low-rank 

approximation of the "clean" image and sparse term which takes into account speckle. In 

particular, we proposed method capable to estimate rank on data-driven or automatic way 

directly from the experimental OCT image. Moreover, the method is using class of nonconvex 

regularization which induces sparse approximation of singular values in the related low-rank 

matrix approximation problem. That, in turn, yields more accurate approximation of a rank than 

what is achieved by the more often used approximations based on nuclear norm. As a final result, 

the proposed method yields the low-rank approximation of the original OCT images with 

simultaneously increased values of CNR, SNR, sharpness and contrast. That makes proposed 

method suitable for speckle reduction in OCT images acquired at different scanners. 

 

5 Conclusion 

We have developed a method for the speckle reduction in OCT images and named it the 

ELRpSD algorithm. The method, which is applied on individual 2D OCT scans, was tested on 10 

3D OCT images comprised of 64 scans each. It was able to simultaneously increase, relative to 

the original OCT images, values of CNR, SNR, contrast and sharpness (improved fidelity of 

edges). In particular, the relative improvement, averaged over 10 3D OCT images, of the CNR, 

SNR, contrast and sharpness was in respective order 14.71%, 23.08%, 24.54% and 14.61%. 

Therefore, we conclude that the ELRpSD method can be used as preprocessing method for 

speckle reduction to enable more accurate quantitative analysis of OCT images.  
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Figure Caption List 
 
Fig. 1 (a) to (c): flow chart of the "low-rank + sparsity" decomposition approach to speckle 

reduction in optical coherence tomography (OCT) images. Information on image quality metrics 

such as contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) in dB, contrast and sharpness, 

can be found in Sec. 2.3. (a) original OCT image: CNR = 3.61, SNR = 26.23, contrast = 1.14, 
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sharpness = 56.90. (b) Enhanced low-rank approximation of OCT image by proposed algorithm: 

CNR = 4.17, SNR = 32.26, contrast = 1.44, sharpness = 61.46. (c) Sparse term containing 

speckle. (d) OCT image enhanced by the GoDec algorithm (rank=35):22 CNR = 4.59, SNR = 

32.52, contrast = 1.71, sharpness = 49.01. (e) OCT image enhanced by the RNSC algorithm 

(rank=35):20 CNR = 4.31, SNR = 30.61, contrast = 1.43, sharpness = 55.72. (f) OCT image 

enhanced by bilateral filtering: CNR = 4.17, SNR = 35.82, contrast = 1.65, sharpness = 59.79. 

(g) OCT image enhanced by median filtering: CNR = 4.5, SNR = 30.78, contrast = 1.59, 

sharpness = 36.14. For visual comparison OCT images (a) to (g) were mapped to [0 1] interval 

with the MATLAB mat2gray command from the interval corresponding to minimal and 

maximal values of each specific case. The best value for each figure of merit is in bold. 

 

 

Fig. 2 Average CNR values (meanstandard deviation) estimated from 10 3D OCT images. The 

ELRpSD, bilateral filtering and median filtering do not require a priori information on targeted 

rank value. Thus, their CNR estimates are shown as straight lines. 

 

Fig. 3 Values of SNR in percentage (meanstandard deviation) estimated from enhanced 3D 

OCT images relatively to the SNR of original images. The ELRpSD, bilateral filtering and 

median filtering do not require a priori information on targeted rank value. Thus, their SNR 

estimates are shown as straight lines. 

 

Fig. 4 Values of contrast in percentage (meanstandard deviation) estimated from enhanced 3D 

OCT images relatively to the contrast of original images. The ELRpSD, bilateral filtering and 
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median filtering do not require a priori information on targeted rank value. Thus, their estimates 

of relative contrast value are shown as straight lines. 

 

Fig. 5 Values of sharpness in percentage (meanstandard deviation) estimated from enhanced 

3D OCT images relatively to the sharpness of original images. The ELRpSD, bilateral filtering 

and median filtering do not require a priori information on targeted rank value. Thus, their 

estimates of relative sharpness value are shown as straight lines. 

 

Fig. 6 Values of CNR, SNR, contrast and sharpness in percentage (meanstandard deviation) 

estimated from ELRpSD enhanced 3D OCT images relatively to the corresponding values in 

original 3D OCT images. 

 

 

Algorithm 1 The ELRpSD algorithm. 

 

 

 

 

 


