
Fast Clustering in Linear 1D Subspaces: Segmentation of Microscopic 
Image of Unstained Specimens 

 
Ivica Kopriva1, Maria Brbić1, Dijana Tolić1, Nino Antulov-Fantulin1 and Xinjian Chen2 

1Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, P.O. Box 180, 10002, 
Zagreb, Croatia 

2School of Electronic and Information Engineering, Soochow University, Suzhou 215123, China 
 

e-mail: ikopriva@irb.hr, maria.brbic@irb.hr, Dijana.Tolic@irb.hr, Nino.Antulov.Fantulin@irb.hr, 
xjchen@suda.edu.cn 

 
Abstract 

Algorithms for subspace clustering (SC) are effective in terms of the accuracy but exhibit high 
computational complexity. We propose algorithm for SC of (highly) similar data points drawn from 
union of linear one-dimensional subspaces that are possibly dependent in the input data space. The 
algorithm finds a dictionary that represents data in reproducible kernel Hilbert space (RKHS). 
Afterwards, data are projected into RKHS by using empirical kernel map (EKM). Due to 
dimensionality expansion effect of the EKM one-dimensional subspaces become independent in 
RKHS. Segmentation into subspaces is realized by applying the max operator on projected data 
which yields the computational complexity of the algorithm that is linear in number of data points. 
We prove that for noise free data proposed approach yields exact clustering into subspaces. We also 
prove that EKM-based projection yields less correlated data points. Due to nonlinear projection, the 
proposed method can adopt to linearly nonseparable data points. We demonstrate accuracy and 
computational efficiency of the proposed algorithm on synthetic dataset as well as on segmentation 
of the image of unstained specimen in histopathology.  
 
Keywords: Subspace clustering, 1D subspaces, empirical kernel map, segmentation, unstained 
specimen. 
 
 

1 INTRODUCTION 
 
Low-contrast images, such as color microscopic image of unstained histological specimen, are 
composed of objects with highly correlated spectral profiles. Segmentation of an image of 
unstained specimen is motivated by a practical reasons. It is an important step in design of 
computer aided diagnostic system based on the image of unstained histopathological specimen, 
whereas obtained segments are annotated by pathologist and used to train the classifier. However, 
images of unstained specimen are very hard to segment for many state-of-the-art image 
segmentation algorithms [1]. Color microscopic image of a specimen is composed of 3D pixels 
where each pixel is occupied by one object (tissue) only [1], i.e. the pixels are pure. Segmentation 
of microscopic image of histopathological specimen can be executed through the subspace 
clustering (SC) [2], where each subspace corresponds to a single tissue component. However, 
segmentation of such image is also very challenging for state-of-the-art SC methods due to two 
reasons: (1) algorithms for SC such as sparse SC [3, 2], and low-rank representation (LRR) SC [4, 
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2] are effective in terms of the accuracy but suffer from high computational complexity associated 
with construction of similarity matrix and spectral clustering [5]. For a dataset consisting of N 
points, they have complexities in respective order of O(N2) and O(N3). Thus, cited methods as well 
as SC methods [6, 7, 8, 9] are computationally intractable for segmentation of microscopic images 
of pathological specimens comprised of N>106 pixels; (2) due to very high similarity between the 
pixels in microscopic image of unstained specimen, all data points (pixels) are extremely close to 
the intersection of the subspaces. Thus, presence of the small amount of noise will cause incorrect 
assignment of data points to the subspaces. This sets the motivation to develop fast algorithm for 
SC of highly similar data points belonging to linear one-dimensional subspaces with computational 
complexity of O(N).  
 
 

2 MATERIALS AND METHODS 
 

We follow problem definition given in [1]. Let  1,...,
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    X AZ         (2) 
 
where 0

D L
A   represents basis and 0

L N
Z   is a low-dimensional representation in basis A. Let 

 ,x y denote symmetric positive semi-definite kernel function. According to [11],  ,x y  

induces a mapping : D H   in reproducible kernel Hilbert space such that for , Dx y  , we 

have      ,
Tx y x y   . That is known as kernel trick. The nonlinear mapping  x  is called 

explicit feature map (EFM). The empirical kernel map (EKM)  nx  is obtained by projection of 

EFM  nx  on L-dimensional subspace of H : 
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Thus, EKM projects set of data points X according to: 
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where operator   X  acts on X column-wise in accordance with (3). Since ,L D const N  , 

computational complexity of the EKM projection is O(N). 
 
Remark 1. While in the input space with representation (2) it is necessary for independent one-
dimensional subspaces to have L<D, in representation (4) in EKM-induced space one-dimensional 
subspaces will be independent even if LD. That is because in EKM-induced space the 

independence condition is given with    1
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Lemma 1. When representation (2) is exact, the coefficient matrix Z satisfies: 

1 if

0 otherwise
n i
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S
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
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x
,  i=1,..., L and n=1,..., N, or equivalently  in jnz z i j   , 

, 1,..., 1,...,i j L n N    where  stands for Kronecker's delta. 
 
Proof. When representation (2) is exact the pixels belonging to the same subspace are spatially 
homogenous, i.e. there is no variation between them. Thus, it follows 1,...,

nn i n N  x a , where 

1 ni L   represents index of a subspace to which data point xn belongs.  

 
Lemma 2. Under lemma 1, the EFM projects representation X=AZ in (2) into 
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        X A Z         (5) 

 
whereat EFM is applied on X column-wise. Hence, the EFM-based projection is invariant with 
respect to binary latent variables Z that satisfy (5) [1]. 
 
Proof. The proof is presented in [1, 12]. 
 
Lemma 3. Under lemma 1, the EKM projects representation X=AZ in (2) into 
    
        X A Z         (6) 

 
that is, the EKM-based projection is invariant with respect to binary latent variables Z that satisfy 
(5) [1].  
 
Proof. The proof combines EKM definition in eq.(3) with the lemma 2.  
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Before stating the lemma 4 we introduce the mutual coherence, for example of the basis matrix 

0
D L
A  as (A) [13]: 

 
 

      2 21 ,  
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i j i j
i j L
i j

 
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A a a a a       (7) 

 

Evidently, 0(A)1. (A) measures the maximal similarity between the vectors  0 1

LD
k k 
a  . 

When (A) is very close to 1 many data points will sit close to the intersection of the subspaces. 
That is especially the problem when data are contaminated by noise and it becomes very 
demanding for the SC to deal with such data points. It is of great importance that EKM-based 
nonlinear projection of X can reduce correlation between data points in mapped space. 
 
Lemma 4. When the representation (2) is exact, i.e. X=AZ, the EKM (3)/(4) with properly chosen 

kernel function, such as Gaussian kernel    2 2

2
, exp 2k n n k h   a x x a , projects data X into 

  X such that: 

          A A .       (8) 

 
Proof. When (2) is the exact representation of data, the EKM-based projection of X is according to 
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lemma 3:      X A Z . Based on lemma 1 it follows     1,...,
nn i n N    x a . From that it 

follows    , , 1,...,
nk n k i k L    a x a a . Since every basis vector faithfully represents the group 

of data points belonging to the corresponding subspace, it is possible for Gaussian kernel to select 

the small enough bandwidth h such that  , 0
nk i a a  for nk i , where 1k, ni L. Since for k= ni : 

 , 1
n ni i a a , the column vectors of (A) will be better separated than column vectors of A. 

 

Theorem 1. SC of data points   1

N

n n
x  belonging to linear one-dimensional subspaces is obtained by 

 
    

1,...,

arg max , 1,...,n k n

k L

i n N


   a x      (9) 

 
where 1 ni L   represents index of a subspace to which data point xn belongs and  ,k n kn  a x . 

Since L const N  , computational complexity of subspace assignment method (9) is O(N). 
 
Proof. By taking into account lemma 1, lemma 2, eq. (5), and lemma 3, eq. (6), it follows:  
 

            
n

T

n n n i       x A A z A z a  

 
where 1 ni L   represents index of a subspace to which data point xn belongs. By using the same 

reasoning as in the proof of lemma 4 we conclude that criterion (9) finds subspace index 1 ni L   

to which data point xn belongs.   
 
Overall computational complexity of the algorithm is O(N).  Probability of selecting dictionary 

atom representing object with the size of P pixels from N data points selected uniformly at 

random is approximately  1 1
N

P N  . Thus, for 1 megapixel image and P/N=0.5% selection 

probability is 99.33%. We name the proposed method fast EKM low-rank subspace clustering 
(FELRSC) algorithm. The algorithm is summarized in Algorithm 1. We demonstrate performance 
of proposed method on synthetic dataset as well as on segmentation of microscopic images of 
unstained specimen of human liver with hepatocellular carcinoma and human liver with metastasis 
of colon cancer. Thereby, size of the images was  N1.44106 pixels. The code and data are 
available at [10]. Comparative analysis has been carried out in Matlab on a computer with 64GB 
RAM, i7-3930K CPU with 3.2GHz. 
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Algorithm 1.  The FELRSC algorithm. 
Input: Multichannel image 0

D N
X  . Number of subspaces L. 

Step 1. Find dictionary A in (2). 
Step 2. Execute EKM   0

L N
 X  in (3). 

Step 3. Apply the max operator column wise to   X  such as in (9) to obtain subspace membership index 

set. 
Output:  1,..., 1,...,ni L n N   subspace membership index set. 

 
 

3 RESULTS 
 
We demonstrate the algorithm on synthetic dataset as well as on segmentation of color microscopic 
images of unstained specimens of human liver with hepatocellular carcinoma (HCC) and  
metastasis of colon cancer [1]. Synthetic data were, according to (2), generated from the union of 
L=5 one-dimensional linear subspaces with D=3 and N=10000. The dictionary A has been 
generated such that (A)=0.9995. Thus, data points were highly correlated. That is illustrated in 
Figure 1a, whereas data are organized as RGB image with 100100 pixels. In addition to the 
FELRSC algorithm, we have tested the closed form solution for LRR-SC for data contaminated by 
noise [14], with hand tuned threshold parameter, the nearest subspace neighbor (NSN) greedy 
subspace recovery (GSR) SC algorithm [7] with a MATLAB code downloaded from [15], as well 
as the landmark based SC (LSC) algorithm [16] with a MATLAB code downloaded from [17]. The 
Gaussian kernel-based nonlinear EKM was used for data projection. We present results, in terms of 
accuracy averaged over 10 runs, for various SNRs in Table 1. To make comparison fair, we have 
hand tuned number of neighbors vs. SNR value for NSN-GSR and LSC algorithms. Note, however, 
that it becomes highly demanding to select these values on experimental data. We point out that 
((A))0.9807, which confirms capability of the EKM projection to decrease similarity between 
data points. That explains improved accuracy of the LRR and NSN-GSR algorithms when applied 
on EKM-mapped data and shows that EKM projection can be used to improve other algorithms. 
Computation times in the order corresponding with the table 1 were for SNR=20dB: 3.10.09s, 
1.10.1s, 57.31.35s, 60.31.1s, 9.670.16s, 13.130.22s. The dictionary A was estimated by 
feature vectors selection (FVS) method [18] from all data points. Computation times for other SNR 
values were very close to the presented ones. Thus, in addition to the highest accuracy, the 
proposed algorithm also exhibits competitive computational efficiency. We have applied the 
proposed algorithm and the LSC algorithm to segmentation of microscopic image of unstained 
specimen of human liver with HCC, Fig. 2a. The image is comprised of N=103713881.44106 
pixels. Thus, spectral clustering-based SC algorithms such as [7][8][10][11][14] are 
computationally intractable in this scenario. We have estimated from Fig. 2a that (A)>0.9999 [1]. 
Thus, pixels are highly correlated and that makes them difficult to segment. The main tissues 
presented in the image are HCC, tumor fibrotic capsule and blood vessel [1]. The ground truth 
image related to image of unstained specimen of HCC is obtained by immunohistochemical 
staining for hepatocyte antigen: Hepatocyte Clone OCH1E5 (Hep Par), of the subsequent slide, see 
[1] for in-depth description, and it is shown in Fig. 2b. Therein, HCC (hepatocytes) is colored 
brown, endothelium of blood vessel is colored blue, and tumor fibrotic capsule is colored white. 
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The color coded result obtained in [1] by applying the 0 -norm constrained NMF algorithm on 

EKM projected image, the EKM-NMF_L0 algorithm, is shown in Fig. 2c, whereat HCC tissue is 
colored in blue, blood vessel in red and tumor fibrotic capsule in green. Color coded results 
obtained by the FELRSC algorithm is shown in Fig. 2d and provides better visual correspondence 
with ground truth image in Fig. 2b. We have estimated from Figs. 2c and 2d that ((A))0.9760, 
which again confirms capability of the EKM projection to decrease similarity between data points. 
The FVS method estimated dictionary from 6000 randomly selected pixels. The color coded result 
of LSC algorithm [16] is shown in Fig. 2e. The best result, shown in Fig. 2e, is obtained for hand 
tuning the number of neighbors from 2 to 5. As shown in [1], state-of-the-art image segmentation 
methods such as k-means clustering in the CIE L*a*b* color space [19], is also shown in Fig. 2f. The 
FELRSC algorithm finished much faster than other compared algorithms. The computation time of 
the FELRSC algorithm was 1.63 seconds compared to 250 seconds needed for the EKM-NMF_L0 
and 199 seconds for the LSC algorithm. 
 

 
We have also applied the proposed FELRSC algorithm to segment microscopic image of unstained 
specimen of human liver with metastasis of colon cancer, Fig. 3a. The image is of the same size as 
the one shown in Fig. 2a. Thus, equivalent comments apply to computational intractability of 
spectral clustering-based SC algorithms. We have estimated from Fig. 3a that (A)=0.9998 [1]. The 
main tissues presented in the image are metastasis of colon cancer, hepatocytes and border area 
between the tumor and liver tissue [1]. The ground truth image related to image of unstained 
specimen shown in Fig. 3a is obtained by immunohistochemical staining subsequent sections with 
Hep Par (Figure 3b) and CDX2 (Figure 3c). In Hep Par, the ground truth image hepatocytes are 
colored brown, whereas the metastatic cells of colon cancer and the inflammatory cells are blue. In 
CDX2 the ground truth images metastasis of colon cancer is colored completely or partially brown, 
whereas the hepatocytes and inflammatory cells are colored blue. The color coded result obtained 
proposed FELRSC algorithm is shown in Fig. 3e and by the EKM-NMF_L0 algorithm in Fig. 3f. 
Thereby, metastasis of colon cancer is colored in blue, border area between the tumor and liver 
tissue in red and hepatocytes in green. Color coded results obtained by the FELRSC algorithm 

Table 1.  Clustering accuracy  standard deviation (%) evaluated after 10 runs on synthetic dataset: 
*original data, ** Gaussian kernel based EKM-projected data with variance according to (10). SNR is in 
dB. 

SNR FELRSC LSC LRR* LRR** NSN-
GSR* 

NSN-
GSR** 

70 100 
 

82.3 
0.2 
 

100 
 

100 
 

100 
 

100 
 

40 100 
 

82.3 
0.2 

56.1 
0.5 

100 100 100 

20 100 82.2 
0 

41.3 
0.6 

77 
10.6 

72.1 
13.4 

90 
0.9 

10 95.7 
0.9 

82.3 
0 

37.8 
0.5 

45.5 
4.1 

67.9 
1.6 

88.7 
3.1 
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a Nr

d)

provides more convincing visual correspondence with ground truth image in Fig. 3b and 3c for both 
metastasis of colon cancer and hepatocytes. Computation times of the algorithms are the same as 
for Fig. 2. 
 

 
 

Figure 1.  (a) synthetic image with SNR=20dB in red-green-blue color space. Color coded: (b) ground truth; 
(c) the FELRSC result; d) the NSN-GSR** result.  
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Figure 2. Image of: a) unstained specimen of human liver with hepatocellular carcinoma. Size of the image 
N1.44106 pixels; b) HepPar stained specimen in subsequent slide. Color coded results of: c) the EKM-
NMF_L0 [1]; d) the proposed FELRSC algorithm; e) the LSC [16]; f) k-means in CIE La*b* color space 
[19]. Blue: HCC; green: tumor fibrotic capsule; red: blood vessel.   
 

 

 
 
Figure 3. Image of: a) unstained specimen of human liver with metastasis of colon cancer. Size of the image 
N1.44106 pixels; b) HepPar stained specimen in subsequent slide; c) CDX2 stained specimen in 
subsequent slide; d) Color image of the specimen a) stained by H&E. Color coded results of: e) the proposed 
FELRSC algorithm; f) EKM-NMF_L0 [1]. Blue: metastasis of colon cancer; green: hepatocytes; red: border 
area between tumor and liver tissue.   
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