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Abstract 

The nonlinear, nonnegative single-mixture blind source separation (BSS) problem 

consists of decomposing observed nonlinearly mixed multicomponent signal into 

nonnegative dependent component (source) signals. The problem is difficult and is a 

special case of the underdetermined BSS problem. However, it is practically relevant for 



the contemporary metabolic profiling of biological samples when only one sample is 

available for acquiring mass spectra; afterwards, the pure components are extracted. 

Herein, we present a method for the blind separation of nonnegative dependent sources 

from a single, nonlinear mixture. First, an explicit feature map is used to map a single 

mixture into a pseudo multi-mixture. Second, an empirical kernel map is used for 

implicit mapping of a pseudo multi-mixture into a high-dimensional reproducible kernel 

Hilbert space (RKHS). Under sparse probabilistic conditions that were previously 

imposed on sources, the single-mixture nonlinear problem is converted into an 

equivalent linear, multiple-mixture problem that consists of the original sources and 

their higher order monomials. These monomials are suppressed by robust principal 

component analysis, hard-, soft- and trimmed thresholding. Sparseness constrained 

nonnegative matrix factorizations in RKHS yield sets of separated components. 

Afterwards, separated components are annotated with the pure components from the 

library using the maximal correlation criterion. The proposed method is depicted with a 

numerical example that is related to the extraction of 8 dependent components from 1 

nonlinear mixture. The method is further demonstrated on 3 nonlinear chemical 

reactions of peptide synthesis in which 25, 19 and 28 dependent analytes are extracted 

from 1 nonlinear mixture mass spectra. The goal application of the proposed method is, 

in combination with other separation techniques, mass spectrometry-based non-targeted 

metabolic profiling, such as biomarker identification studies.  
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1. INTRODUCTION 

Metabolomics is the measurement and analysis of metabolites, such as amino acids, 

carbohydrates and lipids from biofluids, and cellular extracts [1]. This technique has 

been used to understand the pathology of disease [2] and/or to diagnose disease [3-5]. 

Its unique value in disease diagnosis and drug discovery is based on the fact that 

changes in the metabolome are direct outcomes of the perturbations in cellular activity 

[1]. The two major instrument platforms for measuring the metabolite levels in 

biological samples are nuclear magnetic resonance (NMR) spectroscopy and mass 

spectrometry (MS) [1]. In particular, the non-targeted approach to metabolite profiling1 

involves the use of NMR and/or MS to simultaneously measure as many metabolites as 

possible in a biological specimen. Thereby, candidates for biomarkers are typically 

obtained through matching the acquired spectra with metabolites from the library [1, 6-

8], such as the BioMagResBank metabolomics database [9] or, in the case of mass 

spectrometry, the NIST 14 Mass Spectral Library [10]. Biomarkers have great potential 

to improve medical treatment and reduce the costs of healthcare; however, few 

biomarkers have been validated for routine clinical practice [11]. Numerous pitfalls 

hamper the smooth transfer from biomarker discovery to everyday clinical utility. While 

the ideal biomarker should be reproducible, specific and sensitive, the number of 

samples necessary for biomarker validation remains questionable. The small number of 

analyzed samples is one of the factors contributing to failure in finding highly specific, 

sensitive biomarkers. However, metabolomic experiments are expensive, and because 

                                                            
1  Metabolic profiling aims to identify and quantify small-molecule metabolites (a.k.a. analytes, pure 
components or sources) present in biological samples (typically urine, serum or biological tissue extract). 
Non-targeted approach to metabolic profiling implies that no specific metabolite is targeted, i.e. that all 
metabolites present in a sample are possible targets. 



sampling many subjects is time-consuming, the determination of an optimal sample size 

is of high importance [12]. The quality of annotation, measured by the occurrence of 

false positives and/or false negatives, depends on how well pure components are 

separated from one another. In this respect, the presence of a large number of 

metabolites in the studied samples makes metabolic profiling, which is one of the most 

challenging tasks in chemical biology [13], notoriously difficult. When hundreds of 

metabolites are present in the spectra of biological specimens, the peak overlap is high, 

making them difficult to separate. Progress in mass spectrometry-based technologies 

has uncovered the complexity of biological samples. For example, analysis of the 

human adult urinary metabolome by liquid chromatography-mass spectrometry (LC-

MS) has revealed the presence of 1484 components, while 384 of them were 

characterized by matching their spectra with the references stored in libraries [6]. 

Therefore, separation techniques are crucial for reducing the false alarm rate during the 

annotation process, which increases the accuracy of biomarker identification studies. In 

this respect, blind source separation (BSS) methods that aim to extract the component 

spectra using the recorded mixtures mass spectra alone are of special interest [14-18]. 

While the great majority of BSS methods assume that multi-component mixtures are 

linear combinations of, at most, the same number of components [19-22], recent work 

in [18] has addressed the underdetermined nonlinear nonnegative BSS (uNNBSS) 

problem related to the extraction of a greater number of sparse dependent nonnegative 

components from a smaller number of nonlinear mixture mass spectra. That work has 

been motivated by the aforementioned complexity of biological samples as well as by 

the fact that a nonlinear model offers a more accurate description of the processes and 

interactions occurring in biological systems [23]. The development of BSS methods for 



underdetermined linear [17] and nonlinear [18] problems has been motivated by the 

practical reasons stemming from the fact that the number of biological samples 

available is small compared with the number of components expected to be present in 

them. The number of samples is limited by the availability, laboratory practice— 

particularly when complex protocols are required—and ethical issues [24]. In this 

respect, one can speculate further regarding whether the multiple biological samples that 

are required by multivariate uBSS methods are always available. The present work 

addresses the problem of blind separation of pure components from a single 

multicomponent nonlinear mixture mass spectrum. Thereby, it is assumed that the 

components are nonnegative and, as experimentally validated for the pure component 

mass spectra [18], sparse in support and amplitude.2 Given that linear [17] and nonlinear 

[18] underdetermined BSS problems are difficult, the single-mixture nonlinear BSS 

problem is exceptionally difficult. Even linear BSS from a single mixture is a highly ill-

posed problem, and hard constraints must be imposed on the source signals to enable 

their separation [25-35]. To the best of our knowledge, there is no other method 

proposed for the nonlinear BSS from a single mixture. Under assumed sparse prior 

conditions on the sources, a nonlinear mixture is approximated with a linear one that 

consists of the original sources and their second order monomials. As in [18], the 

influence of higher order monomials, which represent error terms, is reduced by 

preprocessing the mixture spectra using robust principal component analysis (RPCA) 

[36, 37] as well as hard- (HT), soft- (ST) [38] and trimmed thresholding (TT) [39]. 

                                                            
2 Even though nonlinear mixing system in assumption A4 is required to be nonnegative it is not strictly 
required by proposed method. That is, in equivalent linear blind source separation problem (4) and 
explicit feature mapped problem (9)/(10) the mixing coefficients can be even negative. That is because 
empirical kernel map-based mapping in (12)-(15) ensures nonnegativity of the mixtures in mapped space 
and enables application of nonnegativity constrained matrix factorization to separate pure components.  



Algorithms for single-mixture BSS first have to transform the single- to the pseudo 

multi-mixture BSS problem [25-35]. Subsequently, some existing multivariate 

algorithms are used to perform BSS. Herein, we used an explicit feature map (EFM) for 

observation-wise nonlinear mapping of the recorded mixture mass spectra into pseudo 

multiple mixtures spectra3. That procedure was followed by the reduction of EFM-

induced higher order monomials using RPCA, HT, ST and TT. Preprocessed pseudo 

multiple mixture data are mapped observation-wise in high-dimensional RKHS using an 

empirical kernel map (EKM). This step is the same as that used in [18] to address the 

uNNBSS problem. The combination of EFM and EKM based nonlinear mappings with 

sparse prior imposed on source components enables nonlinear BSS from a single 

mixture and represents the original contribution of the paper. Due to RPCA, HT, ST and 

TT methods used to reduce the high order monomial terms, one nonlinear nonnegative 

single-mixture BSS problem is actually converted into four nonnegative pseudo 

multiple mixture linear BSS problems in RKHS. Sparseness constrained NMF is 

performed in RKHS to solve these nonnegative linear BSS problems. Accordingly, the 

components separated by NMF are annotated with the pure components from the library 

using the maximal correlation criterion.  

 The proposed single-mixture nonlinear BSS algorithm differs from the existing 

single-mixture BSS algorithms in the following aspects: (i) algorithms [25-35] address 

the linear BSS problem, while the proposed method addresses the nonlinear BSS 

problem and (ii) the hard constraints imposed on the source signals by single-mixture 

                                                            
3 Within the scope of this paper mixture refers to mass spectrum of a sample. Thus, observation index 
corresponds with the mass-charge ratio (m/z) index of the mass spectra. Sometimes we use terminology 
sample as replacement for mixture. As opposed to that, the BSS community assumes each complete 
measured mixed spectrum as a mixture, observation or channel. Furthermore, the BSS community 
assumes value of one mixed signal or a vector at particular independent variable as a sample.   



BSS algorithms [25-35] do not apply to the pure component mass spectra that are of 

interest in this study. This statement is supported through the following analysis. The 

method [25] assumed that the source signals have disjoint support. The method [25] 

partitions single-channel time series to yield a pseudo multichannel mixture, and an 

independent component analysis (ICA) algorithm was then applied to extract the 

sources. The disjoint support assumption does not hold for the overlapped pure 

component mass spectra. The algorithm [26] used empirical mode decomposition [41] 

to decompose the single-channel mixture into intrinsic mode functions (IMFs) that 

represent the pseudo multichannel mixture. For separation by ICA algorithms, sources 

of interest are required to be IMFs, which does not hold for the pure component mass 

spectra. In [27], the wavelet transform is used to generate a pseudo multichannel 

mixture from a single-channel version. In this way, mother wavelets have to be non-

orthogonal and have to match the shapes to the sources of interest. Thus, this wavelet-

ICA method is applicable to the separation of the specific source signals, such as 

vibration signals [28, 29]. Many of single-channel BSS algorithms are derived to 

separate acoustic signals by factorizing a nonnegative spectrogram (magnitude of the 

short time Fourier transform) [30-35].  

 The remainder of the paper is organized as follows. Section 2 presents the theory 

upon which the proposed single-mixture nonlinear BSS method is built. Section 3 

describes the experiments performed on computational and experimental data. Section 4 

presents and discusses the results of comparative performance analysis between the 

proposed single-mixture nonlinear BSS method and state-of-the-art multiple-mixture 

linear NMF [40] and nonlinear BSS [18] algorithms. Concluding remarks are given in 

Section 5. 



2. THEORY AND ALGORITHM  

The goal application of the proposed single-mixture nonlinear BSS method is the 

extraction of analytes from a single multicomponent nonlinear mixture mass spectrum. 

In this respect, the method is complementary to the methods developed for linear [17] 

and nonlinear [18] underdetermined BSS problems. We justify the application of this 

method to mass spectrometry with the previously discussed reasons. Together with 

NMR spectroscopy, it is a major platform for measuring the metabolite levels in 

biological samples [1, 6]. As in [6, 17, 18], we assume that the library of reference mass 

spectra is available to annotate the components extracted by the proposed method. 

 It has already been discussed in [42, 17, 18] that the performance of many NMF 

algorithms depends on the optimal usage of parameters that are required to be known a 

priori, such as a balance parameter that regulates the influence of the sparseness 

constraint [43], or the number of overlapping components in mixtures [44]. Because 

these parameters are difficult to optimally select in practice, we have selected, as in [17, 

18], the nonnegative matrix underapproximation (NMU) algorithm [40] to solve 

nonnegative BSS problems in RKHS. As such, the NMU algorithm does not require a 

priori information from the user. In summary, we propose the combination of RPCA, 

HT, ST and TT preprocessing transforms; EFM and EKM based nonlinear mappings 

with the NMU algorithm in mapping-induced high-dimensional RKHS, resulting in the 

PTs-EFM-EKM-NMU algorithm. The performance of the PTs-EFM-EKM-NMU is 

compared on one numerical and three experimental problems with the linear 

multivariate NMU algorithm and nonlinear multivariate PTs-EKM-NMU algorithm 

[18]. 



 

2.1 Single-mixture nonlinear blind separation of nonnegative dependent sources 

The single-mixture NNBSS problem with dependent sources is described as: 

        (1) 

where  stands for the nonnegative intensity acquired at some of the T mass-to-

charge (m/z) channels and  is the unknown vector that consists of the 

intensities of M nonnegative sources.  is an unknown multivariate 

mapping. Problem (1) can be applied to the vector-matrix framework: 

          (2) 

such that  and , where  are column vectors of the matrix S and 

 implies that nonlinear mapping is performed column wise, such as in (1). It is 

further assumed that: where stands for the  quasi-norm that counts 

the number of non-zero coefficients of  and . Evidently, it applies: L≤M, 

where L denotes the maximal number of sources that can simultaneously be present at 

any coordinate t. Hence, L is related to a degree of dependence (correlation) between the 

sources. To avoid confusion between the column and row vectors, they will be indexed 

by lowercase letters that correspond to the uppercase letters, which are related to the 

dimensions of the corresponding matrix. For example, st  refers to the column- and sm to 

the row vector of matrix . Evidently, uppercase bold letters denote matrices, 

lowercase bold letters denote vectors and italic lowercase letters denote scalars. The 
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single-mixture NNBSS problem implies that components mass spectra, , 

should be inferred from the mixture data vector x only. Analogously with [17, 18], we 

make the following assumptions for the nonlinear mixture model (1)/(2): 

 A1) 0xt1    t=1,...,T, 

 A2) 0smt1  m=1,...,M and t=1,...,T, 

 A3) Amplitude smt obeys an exponential distribution on the (0, 1] interval and a 

 discrete distribution at zero, see also eq.(3), 

 A4) The vector valued function f(st):   1
0 0: M

tf R R
 s    is differentiable up to 

 an unknown order K, 

 A5) M<<T. 

To be useful, the solution of the single-mixture NNBSS problem is expected to be 

essentially unique; as such, the estimated matrix of pure components (sources)  and 

the true matrix of pure components S should be related through , where P and 

 stand, respectively, for the MM permutation and diagonal matrices. Such a 

requirement was difficult to satisfy even for linear [17] and nonlinear [18] 

underdetermined but multivariate BSS problems. We obtained an estimate that satisfied 

the essential uniqueness condition only approximately as: . As discussed in 

[18], this finding has been ensured by imposing a hard constraint on pure components 

 to comply with the sparse probabilistic model imposed by A3 [45, 46, 18, 17]: 
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  (3) 

 

where (smt) is an indicator function and *(smt)=1-(smt) is its complementary function, 

. Hence, . The nonzero state of smt is 

distributed according to p(smt). Exponential distribution  

was chosen in [18] to model the sparse distribution of the nonzero states; in this case, 

the most probable outcomes are equal to m. It has been verified in [18] that model (3) 

accurately describes the mass spectra of the pure components and it has been estimated, 

using mass spectra of 25 pure components, that  and 

. Constraint A3, i.e., probabilistic model (3) with estimates for m 

and m, implies that each component will be zero at the large part of its support (number 

of m/z channels T) as well as that the non-zero intensity will be distributed according to 

the exponential distribution with a small expected value. These should ensure that, in 

probability, the maximal number of analytes L present at the particular m/z coordinate is 

sufficiently small compared to the number of sources M and number of mixtures N (that 

for single-mixture scenario equals N=1). Obviously, the last requirement, L<N, is 

impossible to satisfy in a single-mixture (univariate) scenario. In case of linear [17] and 

nonlinear [18] underdetermined BSS problems, the number of measurements (samples) 

N was increased by mapping the original problem into RKHS using EKM. However, 

EKM-based mapping is not directly applicable to the single-mixture nonlinear BSS 

problem implied by (1)/(2). For that to be achieved, (1)/(2) has to be approximated by 

an equivalent linear single-mixture BSS problem and, afterwards, mapped to a pseudo 
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multivariate BSS problem. Under the experimentally verified sparse prior A3 nonlinear 

mixture model (2) will after Taylor expansion around reference point S=0 retain second 

order terms only [18]:  

 

                                                        (4) 

 

where  stands for the vector of first order partial derivatives , m=1,...,M and 

 stands for the vectorized tensor of the second order partial derivatives , 

i, j =1,..,M, while HOT stands for the higher-order terms. As analyzed in [18], the 

contribution of third order terms in (4) is on the order of 3.4310-7. To reduce HOT 

entry-wise, thresholding of x can be performed. By neglecting fourth- and higher-order 

terms we have, in [18], empirically arrived at the threshold value of: [10-6, 10-4]. As 

in [16], we apply RPCA, HT, ST and TT on x in (2)/(4) to suppress HOT, where the 

threshold value for HT, ST and TT was set to =10-5, exponent value for TT to =3.5 

and regularization constant for RPCA to =0.05. Thereby, RPCA, HT, ST and TT are 

applied either sequentially or in parallel to x. We refer the interested reader to section 

2.3 in [18], [36-39] as well as in Supporting Information for further details related to the 

suppression of HOT. The suppression of HOT in (2)/(4) yields: 
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       (5) 

where: 

       (6) 

    

and structurally, the same model applies for b, c and d in (5).  

 

2.2 Explicit feature map-based pseudo multivariate BSS problem 

To enable extraction of pure components by the multivariate BSS method, the HOT 

suppressed single-mixture data a, b, c and d in (6) need to be mapped to pseudo 

multivariate data. Unlike the methods in [25-35], we used an explicit feature map of 

some order D. In what follows, we illustrate it for the HOT-suppressed vector a (6), but 

the same methodology applies to vectors b, c and d. Therefore, vector a is mapped 

observation-wise according to:  such that4: 

       (7) 

                                                            
4 In addition to nonlinear mapping (7) other types of nonlinear mappings can be used for EFM as well. 
One way is to construct approximate EFM through factorization of chosen kernel function using 

reproducibility condition, a.k.a. kernel trick,  where stands for inner product 

in induced RKHS. 
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Using (6) and the multinomial theorem, we obtain: 

    (8) 

 

If the sparseness assumption A3, eq (3), is activated, we may approximate (8) by using 

monomials  up to the second order only, i.e., 0km+kn2.5 Therefore, we can 

write (7) on the observation (m/z) index level as: 
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where A is matrix of appropriate dimensions. The model (9) applies analogously to 

,  and . We can also write (9) in matrix version as: 

 
                                                            
5 Sparsity according to A3, eq.(3), is both in term of support and in term of amplitude. Due to first term, 
products of the order higher than 2 will mostly vanish because it is highly probable that at least one 
component will be zero. If that is not the case, then product of 3 or more components with small 
amplitude values will be very small. 
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     (10) 

 

such that . Matrices ,  and  are structurally 

equivalent to  in (10). Due to difference in methods used for suppressing HOT in 

(4)/(5), the corresponding basis matrices will be different for structurally equivalent 

models of , , and . To suppress HOT, we apply RPCA, HT, 

ST and TT methods, respectively, to , , and . To keep the 

notational complexity low, we use the same notation for HOT-suppressed matrices, i.e.: 

 

  (11) 

 

, , and now stand for pseudo multivariate versions of the 

single-mixture nonlinear BSS problem (1)/(2).  

 

2.3 Empirical kernel map based mapping and sparseness constrained NMF 
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We can use now the EKM-based methodology in the same way as described in section 

2.4 in [17]. Nevertheless, to have the present paper self-contained, we shall briefly 

describe the EKM-based mapping step. Let us illustrate the EKM concept on . 

The procedure is the same for , and in (11). We select each 

observation  as a basis vector, i.e., . Therefore, 

. We now assume that EFM, possibly different from 

, is applied to , i.e., . Thereby, symbol  means "by 

definition". We assume that  is associated with its kernel function through the 

reproducibility condition, a.k.a. kernel trick: . Then, the EKM 

with respect to the basis V is defined as6: 

      (12) 

or, on the matrix level: 

 

     (13) 

 

                                                            
6 For formal definition of empirical kernel map we refer to definition 2.2.3 in [17], i.e. to definition 2.15 
in [47]. 
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where . We use the same procedure to obtain ,  

and . Herein, as in [17, 18], we choose 

.7 When assumption A1 holds, we can set 

21. Using the sparseness assumption A3 and eq. (3), we arrive at [18, 17]: 

 

       (14) 

 

where Z is a bias term and does not play a role in the parts based decomposition that 

follows, 01T  is a row vector of zeros and  is a matrix with P2M+ M(M-1)/2 

rows that contain the original source components and their second order monomials.  

                                                            
7  We have selected Gaussian kernel since it is used dominantly in machine learning. On the more 
fundamental (theoretical) level it is expected from the chosen kernel to be capable for approximation of 

the arbitrary target function g* on some compact subset X of the input pattern space . In that case 
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is a matrix of appropriate dimensions. EKM-mapped matrices ,  

and  structurally have the same approximation as (14). To suppress HOT, we 

apply RPCA, HT, ST and TT methods, respectively, to , , 

 and . To keep the notational complexity low, we use the same 

notation for HOT-suppressed matrices, i.e.: 

    (15) 

The sparseness constrained NMF is now applied to (15) to estimate , ,  and , 

respectively, from , ,  and . This step is 

equivalent to the one described in section 2.5 in [18]:  

         (16) 

        (17) 

         (18) 

        (19) 

Hence, we have converted the original single mixture nonlinear BSS problem (1)/(2) 

characterized by a triplet (N=1, M, L) to four linear BSS problems (16) to (19) 

characterized by a triplet (N=T, P, Q), where P stands for the unknown number of 

components present in , ,  and/or . 

Furthermore, Q>L stands for the maximum number of components that is 
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simultaneously present at some observation index t=1,...,T in , , 

 and/or . Under the sparseness assumption A3, eq (3), it is justified 

to expect that compared to approximation (6) of the single-mixture BSS problem (1)/(2) 

the new BSS problems (16) to (19) satisfy: 

 

    .  (20) 

 

Therefore, in the light of the uniqueness conditions [51], the sparseness constrained 

factorization of (16) to (19) should be able to separate components , ,  and . 

However, the quality of separation does not simply depend on the sparseness Q of the 

components in (16) to (19). It also depends on the mutual coherence 0(A)1 of the 

basis matrix A in (10), i.e., 0 1 of  in (14), [52]. The level of , that is 

the maximal normalized correlation between a pair of basis vectors, is important in the 

presence of noise and/or modeling errors. These modeling errors are represented by 

HOT in (14). If  denotes the -norm of HOT at the observation index t, the error in 

the estimation of  by means of basis pursuit denoising algorithm is limited from above 

as [52]: 
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Thereby, the required amount of sparseness Q of  has to satisfy: 

       

Therefore, it is important that the value of  is not too close to 1. In this respect, the 

value of  depends in part on how distinct (different) the coefficients of g1 and  

are in the approximation (6) of the original single-mixture BSS problem (1)/(2). This 

value depends on the properties of nonlinear mapping f in (1)/(2) as well as on the 

similarity of concentrations of pure components  in mixture x. The value of 

 also depends on the EFM mapping (7) and EKM mapping (12), i.e., they are 

expected to yield the basis matrix  in (14) with , which, hopefully, is not too 

close to 1. Due the structural equivalence of the approximation such as (14) for EKM-

mapped matrices ,  and , the conclusions presented in 

the above analysis also apply to problems (17) to (19). 

 The NMU algorithm [40] with a MATLAB code available at [53] was used for 

the sparseness constrained NMF in (16) to (19). A main reason for that is that there are 

no regularization constants in the NMU algorithm that require a tuning procedure. 

When performing NMU-based factorizations in (16) to (19), the unknown number P of 

components present in , ,  and  needs to be 

used in the algorithm as an input. As in [18, 17] we set: P=T. To avoid losing a 

component, we prefer to extract all T rank-one factors.  
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 Four sets of separated components are compared with the pure components 

stored in the library using the normalized correlation coefficient. Each pure component 

from the library  is annotated with the most similar separated component in 

, ,  and . The normalized correlation coefficient is used as 

a similarity measure, yielding four sets of ordered pairs: , , 

 and . Thereby, , , , and , respectively, stand for 

the normalized correlation coefficients between the pure component sm and the 

annotated components , ,  and . The 

final annotation  is obtained such that: 

      (21) 

We summarize the PTs-EFM-EKM-NMU algorithm in Algorithm 1. 

 

3. EXPERIMENTS 

Studies on numerical and experimental data reported below were executed on a personal 

computer running under a Windows 64-bit operating system with 64 GB of RAM using 

an Intel Core i7-3930K processor and operating with a clock speed of 3.2 GHz. The 

MATLAB 2012b environment has been used for programming. 

 

3.1 Numerical study 
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In a numerical study, we simulate a single-mixture NNBSS problem (2) with number of  

mixtures N=1, number of components M=8, number of overlapping components L=3 

and number of realizations T=1000: 

   

Source signals were generated according to a mixed state probabilistic model (3) with 

an exponential prior. Thereby, m=1.510-3 m=1,...,M. We generated a scenario with 

m=0.8 m=1,...,M. The values for m and m are equivalent to those obtained by fitting 

the probabilistic model (3) to an experimental mass spectra of 25 pure components. For 

more details, see section 3.2 and Figure 4 in [18]. As the performance of the PTs-EFM-

EKM-NMU algorithm is compared with the performance of the multivariate NMU [40] 

and PTs-EKM-NMU [18] algorithms, we have, in addition to the single mixture 

required by (2), generated two more nonlinear mixtures as in [18]: 

  

  

Thus, the proposed PTs-EFM-EKM-NMU method was applied on mixture x1, while the 

NMU and PTs-EKM-NMU algorithms were applied on mixtures x1, x2 and x3. The HT, 

ST and TT operators used in steps 1, 3 and 5 in Algorithm 1 were implemented with 

=10-5; =3.5 has been used for the TT operator and =0.05 has been used for the 

RPCA operator. The order of the EFM in (7) has been set to D=8. A Gaussian kernel 

based EKM in (13) has been used with 2=1 and T=1000.  
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3.2 Experimental data  

Three chemical reactions for the formation of peptides were used as a source of 

experimental data. Generally, amino acids react under basic conditions in the presence 

of an activating agent, yielding di-, tri-, and tetrapeptides with different structures. The 

schematic presentation of chemical reactions and formation of new components as the 

reaction proceeds is given in Figure 2. Chemical reactions were analyzed with a HPLC-

MS triple quadrupole instrument with an electrospray ionization (ESI) that was operated 

in a positive ion mode. Mixture mass spectra were acquired from aliquots of the 

reaction mixture that was withdrawn at different time points. The libraries of 

compounds required for the validation of the PTs-EFM-EKM-NMU algorithm were 

built by integrating each peak in the chromatogram, corresponding to the last acquired 

mixture mass spectrum. The first reaction consisted of 9 mixtures with 25 pure 

components. It has been used and described in section 3.2.1 in [18]. Therefore, we refer 

the reader to [18] as well as to the Supporting Information for a more detailed 

description of the chemical reactions. The structures of the possible components present 

in reaction mixture are schematically described in Figure S-1 in the Supporting 

Information as well as in Fig. 2 in [18]. Figure S-2 shows 9 chromatograms that 

correspond to the reaction mixtures recorded at 9 time instants (t0-t8) during the 

reaction. The mass spectra of 9 mixtures (x1 to x9), obtained by full integration of 

chromatograms, and mass spectra of 25 pure components (s1 to s25) arising during the 

reaction are, respectively, shown in Figures S-3 and S-4 in the Supporting Information. 

Mixture x9 was used by the proposed PTs-EFM-EKM-NMU algorithm. The mass 

spectra of pure components 1, 4, 8 and 11 are also shown in Figure 3. Table S-1 in the 

Supporting Information shows normalized correlations between 25 pure components, 



where pairs of components with a correlation above 0.1 are displayed. The second 

reaction consists of 12 mixtures with 19 pure components. The structures of the possible 

components present in the reaction mixture are schematically described in Figure S-7 in 

the Supporting Information. Table S-2 in the Supporting Information shows the 

normalized correlations between 19 pure components, where pairs of components with 

correlations above 0.1 are displayed. Mixture x12 was used by the proposed PTs-EFM-

EKM-NMU algorithm. The third reaction consists of 12 mixtures with 28 pure 

components identified. The structures of the possible components present in the reaction 

mixture are schematically drawn in Figure S-8 in the Supporting Information. Table S-3 

in Supporting Information shows the normalized correlations between 28 pure 

components, where pairs of components with a correlation above 0.1 are displayed. 

Mixture x12 was used by the proposed PTs-EFM-EKM-NMU algorithm. The mass 

spectrometry measurements procedure is described in the Supporting Information as 

well as in section 3.2.2 in [18]. 

 

4. RESULTS AND DISCUSSION 

4.1 Numerical study 

Table 1 and Figure 1 show the results of comparative analysis for the case of m=0.8, 

which was obtained by NMU, PTs-NMU-EFM-EKM and PTs-EKM-NMU algorithms. 

We have used two performance measures, (i) the mean value of the normalized 

correlations between the extracted and correctly annotated pure components from the 

library. (Thereby, the sum of correlation coefficients of correctly annotated components 

was divided by the overall number of components, i.e., M=8, which penalizes incorrect 



annotations) and (ii) the number of incorrect annotations that occur due to the lack of 

purity in the separated components. Despite of being applied on single-mixture alone, 

the proposed PTs-EFM-EKM-NMU method had the smallest number of incorrect 

annotations averaged over 10 runs, which was 0.6, compared to the 0.9 incorrect 

annotations by PTs-EKM-NMU and 3 incorrect annotations by NMU. Such result for 

the NMU algorithm was expected because it assumes a linear mixture model. The PTs-

EFM-EKM-NMU method had a significantly smaller mean value of the normalized 

correlation coefficient, 0.38, which reflects the reliability of annotation, than the 

multivariate PTs-EKM-NMU algorithm [18], 0.58, which was applied on three 

mixtures. Overall, given the degree of difficulty of the problem of blind separation of 8 

overlapping components from a single nonlinear mixture, the PTs-EFM-EKM-NMU 

algorithm yielded a useful result in terms of the small number of incorrect annotations. 

 

4.2 Experimental data 

The correlation structures of the pure components mass spectra for three chemical 

reactions are given, respectively, in Tables S-1, S-2 and S-3 in the Supporting 

Information, where the normalized cross-correlations above 0.1 were displayed. For the 

first reaction, 30 pairs of mass spectra of 25 pure components have a cross-correlation 

above 0.1. Therefore, the mass spectra of pure components significantly overlap, which 

makes it difficult to separate them. Furthermore, pure components 1 and 2, 16 and 17 as 

19 and 21 have normalized correlation coefficients above 0.97 and, consequently, it is 

impossible to differentiate between them. In addition, pure components 5 and 7 have a 

normalized correlation coefficient above 0.78. Therefore, we do not expect from the 



proposed PTs-EFM-EKM-NMU method, PTs-EKM-NMU method [18] or NMU 

method [40] to discriminate between these pure components. However, in spite of using 

one mixture (x9) only, the PTs-EFM-EKM-NMU method was able to correctly annotate 

the remainder of the components as well as PTs-EKM-NMU method could achieve with 

9 mixtures. Nevertheless, the purity of components, measured by the mean normalized 

correlation, which was separated by the PTs-EFM-EKM-NMU, was significantly lower 

than the purity of components separated by the PTs-EKM-NMU method (0.467 vs. 

0.702); see Table 2 for more details. Due to the inadequacy of the assumed linear 

mixture model, the NMU algorithm had 15 incorrect annotations even though it used 9 

mixtures. Figure 3 shows the mass spectra of pure components 1, 4, 8 and 11 as well as 

the estimates obtained by the PTs-EFM-EKM-NMU method. The mass spectra of all 25 

separated components are shown in Figure S-6 in the Supporting Information (Figure S-

5 shows the mass spectra of the components separated by the PTs-EKM-NMU method 

[18]). Regarding the second nonlinear reaction, 42 pairs of mass spectra of 19 pure 

components have a cross-correlation above 0.1, making the mass spectra of pure 

components very difficult to separate. In addition, pure components 1 and 2 as well as 

15 and 18 have a normalized correlation coefficient above 0.8. Therefore, we do not 

expect from the proposed PTs-EFM-EKM-NMU method, PTs-EKM-NMU method [18] 

or NMU method [40] to discriminate these pure components. As seen in Table 2, 

despite using one mixture (x12), the PTs-EFM-EKM-NMU method had only one 

incorrect annotation compared to all correct annotations by the PTs-EKM-NMU 

method, which used 12 mixtures, and 15 incorrect annotations by the NMU method, 

which also used 12 mixtures. Again, the purity of the components separated by PTs-

EFM-EKM-NMU was significantly lower than the purity of the components separated 



by the PTs-EKM-NMU method (0.439 vs. 0.702). Regarding the third nonlinear 

reaction, 31 pairs of mass spectra of 28 pure components have a cross-correlation above 

0.1. Thereby, pure components 2, 3 and 27, 6 and 21, as well as 26 and 28, have 

normalized correlation coefficients above 0.7. Therefore, we do not expect from the 

proposed PTs-EFM-EKM-NMU method, PTs-EKM-NMU method [18] or NMU 

method [40] to discriminate these pure components. As seen in Table 2, despite using 

one mixture (x12) only, the PTs-EFM-EKM-NMU method had two incorrect annotations 

in the remaining components compared to all correct annotations by the PTs-EKM-

NMU method, which used 12 mixtures, and 10 incorrect annotations by the NMU 

method, which also used 12 mixtures. As before, the purity of components separated by 

PTs-EFM-EKM-NMU was significantly lower than the purity of the components 

separated by the PTs-EKM-NMU method (0.368 vs. 0.656).  

 

5. CONCLUSION 

The blind source separation approach to pure component extraction is most often based 

on a linear mixture model in which the number of mixtures spectra is required to be 

greater than the number of pure components, which is not realistic. Herein, we present 

the method for separating pure components from single multicomponent nonlinear 

mixture mass spectra. Although the problem is very difficult from the mathematical 

point of view, it includes a special (degenerative) case of the underdetermined BSS 

problem, it is practically relevant for contemporary metabolic profiling of biological 

samples. In many situations, only one sample is available from which to acquire mass 

spectra; afterwards, the components are extracted. In particular, we have combined 



explicit feature maps-based and implicit kernel-based mappings to formulate a method 

for the blind separation of sources from a single nonlinear mixture. The sources were 

constrained by the sparsity prior on the support and amplitude, which was 

experimentally verified on the mass spectra of pure components because the main aim 

of the proposed method is non-targeted metabolic profiling using mass spectrometry. 

For one numerical and three experimental nonlinear chemical reactions, we 

demonstrated that the proposed method could separate components with a degree of 

purity that was sufficient to yield a small number of incorrect annotations. It is evident 

from the results presented in Table 2 that proposed method is characterized by: (i) high 

computational complexity, and (ii) low separation quality. The first issue can be 

addressed by implementing proposed method in either C language or on graphical 

processing units (GPU). As demonstrated in [53], GPU-based implementation can bring 

100-fold increase of speed of computation. Further decrease in computational 

complexity can be obtained by using subspace dimension in EKM induced RKHS (12) 

and (13) to be significantly less than the number of observations T. Improvement of the 

separation quality can be possibly achieved by executing sparseness constrained NMF  

in more than one RKHS and, afterwards, combining results obtained from multiple 

RKHSs.  
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Figure Captions 

Figure 1 (color online). Numerical study of the EFM-EKM-NMU method. The 

probability of state zero is equal to 0.8. Top row: number of wrong annotations vs. 

Monte Carlo run index. Left: RPCA- (triangles), HT- (squares), ST- (stars), TT- 

(circles) and PTs-EFM-EKM-NMU (diamonds) methods. Right: PTs-EFM-EKM-NMU 

(squares), PPTs-EKM-NMU (stars) and NMU (circles). Bottom row:  normalized 

correlation coefficient vs. Monte Carlo run index between the true and extracted sources 

according to the same legend as for the first row. The NMU and PTs-EKM-NMU 

methods were applied on three mixtures, while the PTs-EFM-EKM-NMU method was 

only applied on one mixture. 



 

Fig. 1, Kopriva, Jerić & Brkljačić 

 

 

Figure 2. Schematic presentation of the chemical reactions and formation of new 

components as the reaction proceeds. 

 

Fig. 2, Kopriva, Jerić & Brkljačić 



Figure 3. Two top rows: mass spectra of the pure components s1, s4, s8 and s11. Two 

bottom rows: mass spectra of the pure components s1, s4, s8 and s11 estimated by the 

PTs-EFM-EKM-NMU algorithm. Information on the value of the highest normalized 

correlation coefficient and associated error reduction method (RPCA, HT, ST and TT) 

is also displayed. 
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Table Captions 

 Algorithm 1. The PTs-EFM-EKM-NMU algorithm. 

Required: 

. If A1) is not satisfied, perform scaling . 

1. Perform HOT suppression (5):  on x in 

(2)/(4).  For RPCA, set .  For HT, ST and TT, set 10-5.  

2. Perform EFM mapping (7) , , , and 

 with D8. 

3. Perform HOT suppression (11):  

 with  and  set as in step 1. 

4. Perform EKM mappings , , 

 and  according to (13). Use a 

Gaussian kernel with 2=1. 
5. Perform HOT suppression (15): 

 , 

 and  with  and  
set as in step 1. 

6. Perform sparseness constrained factorization, preferably with the NMU 

algorithm, of matrices , ,  and 

 to obtain the separated components , ,  and . 

7. Annotate, using the pure components from the library , those 

separated components , ,  and  with the highest normalized 

correlation coefficient: , ,  and 

. 

8. Obtain a final annotation  according to (21): 

. 
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Table 1. Comparative performance analysis of the NMU, PTs-EKM-NMU, and PTs-

EFM-EKM-NMU algorithms. The probability of the zero state was m=0.8. The two 

metrics used in the comparative performance analysis were the "mean" value of the 

correlation coefficient calculated for the correctly annotated components, but averaged 

over all components, and the number of pure components that were incorrectly assigned 

(annotated) due to poor separation. Two metrics were calculated with respect to the 

predefined labeling of the pure components stored in the library. Incorrect assignment 

implies that, based on the maximal correlation criterion, two or more pure components 

are assigned to the same separated component. The mean values and variance are 

reported and estimated over 10 Monte Carlo runs. The NMU and EKM-NMU 

algorithms were applied on three mixtures, while the EFM-EKM-NMU algorithm was 

only applied on one mixture. The best result in each metric is given in bold. 

 NMU [40] 

mixtures 
x1, x2, x3 

PTs-EKM-NMU 
[18] 

mixtures x1, x2, x3 

PTs-EFM-EKM-NMU 

mixture x1 

mean 
correlation 

0.410.01 0.580.05 0.380.04 

number of 
incorrect 

annotations 

3.00.0 0.90.74 0.60.52 

 

 

 



Table 2. Comparative performance analysis of the NMU, PTs-EKM-NMU and PTs-

EFM-EKM-NMU (D=8) algorithms for 3 nonlinear reactions. The two metrics used in 

comparative performance analysis were the mean value of the correlation coefficient 

over all associated components and the numbers of the pure components that were 

incorrectly assigned (due to poor separation). The best result in each metric is given in 

bold. The first metric was only calculated for correctly assigned components.  

 

 

 

 

 

 

 

 

 

 

 

 



 NMU 
[40] 

PTs-EKM-NMU 
[18] 

 

PTs-EFM-EKM-
NMU 

 

First nonlinear reaction: 9 mixtures and 25 pure components. 
PTs-EFM-EKM-NMU was applied to mixture x9. NMU and 
PTs-EKM-NMU were applied to mixtures x1 to x9. 

mean 
correlation 

0.342 0.702 0.467 

incorrect 
annotations 

15 0 0 

CPU time 1.3 s 478 h 445 h 

Second nonlinear reaction: 12 mixtures and 19 pure 
components. PTs-EFM-EKM-NMU was applied to mixture x12. 
NMU and PTs-EKM-NMU were applied to mixtures x1 to x12. 

mean 
correlation 

0.460 0.702 0.439 

incorrect 
annotations 

15 0 1 

CPU time 1.3 s 478 h 478 h 

Third nonlinear reaction: 12 mixtures and 28 pure components. 
PTs-EFM-EKM-NMU was applied to mixture x12. NMU and 
PTs-EKM-NMU were applied to mixtures x1 to x12. 

mean 
correlation 

0.614 0.656 0.368 

incorrect 
annotations 

10 0 2 

CPU time 1.3 s 472.4 h 478 h 
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Summary abstract. A method is proposed for the nonlinear, blind separation of 

nonnegative sparse dependent sources from a single mixture. This method combines 

explicit feature maps-based and implicit kernel-based mappings to convert a single-

mixture nonlinear blind source separation problem into an approximately linear pseudo 

multiple-mixture problem in mapping induced reproducible kernel Hilbert space 

(RKHS). Therein, the sparseness constrained nonnegative matrix factorization is used to 

separate the sources. The goal application of the proposed method is mass spectrometry-

based non-targeted metabolic profiling. 


