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Abstract The problem of tensor completion arises often in signal processing and
machine learning. It consists of recovering a tensor from a subset of its entries.
The usual structural assumption on a tensor that makes the problem well posed
is that the tensor has low rank in every mode. Several tensor completion methods
based on minimization of nuclear norm, which is the closest convex approximation
of rank, have been proposed recently, with applications mostly in image inpaint-
ing problems. It is often stated in these papers that methods based on Tucker
factorization perform poorly when the true ranks are unknown. In this paper,
we propose a simple algorithm for Tucker factorization of a tensor with missing
data and its application to low-n-rank tensor completion. The algorithm is similar
to previously proposed method for PARAFAC decomposition with missing data.
We demonstrate in several numerical experiments that the proposed algorithm
performs well even when the ranks are significantly overestimated. Approximate
reconstruction can be obtained when the ranks are underestimated. The algorithm
outperforms nuclear norm minimization methods when the fraction of known ele-
ments of a tensor is low.
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1 Introduction

Low-rank matrix completion problem was studied extensively in recent years
(Recht et al 2010; Candes and Recht 2009). It arises naturally in many practi-
cal problems when one would like to recover a matrix from a subset of its entries.
On the other hand, in many applications one is dealing with multi-way data,
which are naturally represented by tensors. Tensors are multi-dimensional arrays,
i.e. higher-order generalizations of matrices. Multi-way data analysis was origi-
nally developed in the fields of psychometrics and chemometrics, but nowadays
it also has applications in signal processing, machine learning and data analysis.
Here, we are interested in the problem of recovering a partially observed tensor, or
tensor completion problem. Examples of applications where the problem arises in-
clude image occlusion/inpainting problems, social network data analysis, network
traffic data analysis, bibliometric data analysis, spectroscopy, multidimensional
NMR (Nuclear Magnetic Resonance) data analysis, EEG (electroencephalogram)
data analysis and many others. For a more detailed description of applications,
interested reader is referred to (Acar et al 2011) and references therein.

In the matrix case, it is often realistic to assume that the matrix that we want
to reconstruct from a subset of its entries has a low rank. This assumption en-
ables matrix completion from only a small number of its entries. However, the
rank function is discrete and nonconvex, which makes its optimization hard in
practice. Therefore, nuclear norm has been used in many papers as its approxi-
mation. Nuclear norm is defined as the sum of singular values of a matrix, and
it is the tightest convex lower bound of the rank of a matrix on the set of ma-
trices {Y : ‖Y‖2 ≤ 1} (here, ‖ · ‖2 denotes usual matrix 2-norm). When the rank
is replaced by nuclear norm, the resulting problem of nuclear norm minimization

is convex, and, as shown in (Candes and Recht 2009), if the matrix rank is low
enough, the solution of the original (rank minimization) problem can be found
by minimizing the nuclear norm. In several recent papers on tensor completion,
the definition of nuclear norm was extended to tensors. There, it was stated that
methods based on Tucker factorization perform poorly when the true ranks of
the tensor are unknown. In this paper, we propose a method for Tucker factor-
ization with missing data, with application in tensor completion. We demonstrate
in several numerical experiments that the method performs well even when the
true ranks are significantly overestimated. Namely, it can estimate the exact ranks
from the data. Also, it outperforms nuclear norm minimization methods when the
fraction of known elements of a tensor is low.

The rest of the paper is organized as follows. In Subsection 1.1, we review
basics of tensor notation and terminology. Problem setting and previous work are
described in Subsection 1.3. We describe our approach in Section 2. In Subsections
2.1 and 2.2, details related to optimization method and implementation of the
algorithm are described. Several numerical experiments are presented in Section
3. The emphasis is on synthetic experiments, which are used to demonstrate the
efficiency of the proposed method on exactly low-rank problems. However, we also
perform some experiments on realistic data. Conclusions are presented in Section
4.
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1.1 Tensor notation and terminology

We denote scalars by regular lowercase or uppercase, vectors by bold lowercase,
matrices by bold uppercase, and tensors by bold Euler script letters. For more de-
tails on tensor notation and terminology, the reader is also referred to
(Kolda and Bader 2009).

The order of a tensor is the number of its dimensions (also called ways or
modes). We denote the vector space of tensors of order N and size I1 × · · · × IN
by R

I1×···×IN . Elements of tensor X of order N are denoted by xi1...iN .
A fiber of a tensor is defined as a vector obtained by fixing all indices but

one. Fibers are generalizations of matrix columns and rows. Mode-n fibers are
obtained by fixing all indices but n-th. Mode-n matricization (unfolding) of tensor
X, denoted as X(n), is obtained by arranging all mode-n fibers as columns of a
matrix. Precise order in which fibers are stacked as columns is not important as
long as it is consistent. Folding is the inverse operation of matricization/unfolding.

Mode-n product of tensor X and matrix A is denoted by X×n A. It is defined
as

Y = X×n A ⇐⇒ Y(n) = AX(n).

Mode-n product is commutative (when applied in distinct modes), i.e.

(X×n A)×m B = (X×m B)×n A

for m 6= n. Repeated mode-n product can be expressed as

(X×n A)×n B = X×n (BA) .

There are several definitions of tensor rank. In this paper, we are interested in
n-rank. For N -way tensor X, n-rank is defined as the rank of X(n). If we denote
rn = rankX(n), for n = 1, . . . , N , we say that X is a rank-(r1, . . . , rN ) tensor. In
the experimental section (Section 3) in this paper we denote an estimation of the
n-rank of given tensor X by r̂n.

For completeness, we also state the usual definition of the rank of a tensor.
We say that an N -way tensor X ∈ R

I1×···×IN is rank-1 if it can be written as the
outer product of N vectors, i.e.

X = a(1) ◦ · · · ◦ a(N)
, (1)

where ◦ denotes the vector outer product. Elementwise, (1) is written as xi1...iN =

a
(1)
i1

· · · a
(N)
iN

, for all 1 ≤ in ≤ IN . Tensor rank of X is defined as minimal number
of rank-1 tensors that generate X in the sum. As opposed to n-rank of a tensor,
tensor rank is hard to compute (H̊astad 1990).

The Hadamard product of tensors is the componentwise product, i.e. forN -way
tensors X,Y, it is defined as (X ∗ Y)i1...ıN = xi1...iN yi1...iN .

The Frobenius norm of tensor X of size I1 × · · · × IN is denoted by ‖X‖F and
defined as

‖X‖F =

(

I1
∑

i1=1

· · ·

IN
∑

iN=1

x
2
i1...iN

)

1

2

. (2)
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1.2 Tensor factorizations/decompositions

Two of the most often used tensor factorizations/decompositions are PARAFAC
(parallel factors) decomposition and Tucker factorization. PARAFAC decomposi-
tion is also called canonical decomposition (CANDECOMP) or
CANDECOMP/PARAFAC (CP) decomposition. For a given tensorX ∈ R

I1×···×IN ,
it is defined as a decomposition of X as a linear combination of minimal number
of rank-1 tensors

X =

R
∑

r=1

λra
(1)
r ◦ · · · ◦ a(N)

r . (3)

For more details regarding the PARAFAC decomposition, the reader is referred to
(Kolda and Bader 2009), since here we are interested in Tucker factorization.

Tucker factorization (also calledN -mode PCA or higher-order SVD) of a tensor
X can be written as

X = G×1 A1 ×2 · · · ×N AN , (4)

where G ∈ R
J1×···×JN is the core tensor with Ji ≤ Ii, for i = 1, . . . , N , and Ai,

i = 1, . . . , N are, usually orthogonal, factor matrices. Factor matrices Ai are of
size Ii × ri, for i = 1, . . . , N , if X is rank-(r1, . . . , rN ). A tensor that has low rank
in every mode can be represented with its Tucker factorization with small core
tensor (whose dimensions correspond to ranks in corresponding modes). Mode-n
matricization X(n) of X in (4) can be written as

X(n) = A(n)G(n)

(

A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
, (5)

where G(n) denotes mode-n matricization of G, ⊗ denotes Kronecker product of

matrices, and MT denotes the transpose of matrix M. If the factor matrices A(i)

are constrained to be orthogonal, then they can be interpreted as the principal
components in corresponding modes, while the elements of the core tensor G show
the level of interaction between different modes. In general, Tucker factorization is
not unique. However, in practical applications some constraints are often imposed
on the core and the factors to obtain a meaningful factorization, for example
orthogonality, non-negativity or sparsity. For more details, the reader is referred
to (Tucker 1966; Kolda and Bader 2009; De Lathauwer et al 2000).

1.3 Problem definition and previous work

Let us denote by T ∈ R
I1×···×IN a tensor that is low-rank in every mode (low-

n-rank tensor), and by TΩ the projection of T onto indexes of observed entries.
Here, Ω is a subset of {1, . . . , I1} × {1, . . . , I2} × · · · × {1, . . . , IN}, consisting of
positions of observed tensor entries. The problem of low-n-rank tensor completion
was formulated in (Gandy et al 2011) as

min
X∈R

I1×···×IN

N
∑

n=1

rank
(

X(n)

)

subject to XΩ = TΩ . (6)

Some other function of n-ranks of a tensor can also be considered here, for exam-
ple any linear combination of n-ranks. Nuclear norm minimization approaches to
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tensor completion, described in the following, are based on this type of problem
formulation. Namely, the idea is to replace rank

(

X(n)

)

with nuclear norm of X(n).

The first paper that proposed an extension of low-rank matrix completion
concept to tensors seems to be (Liu et al 2009). There, the authors introduced
an extension of nuclear norm to tensors. They focused on n-rank, and defined
the nuclear norm of tensor X as the average of nuclear norms of its unfoldings.
In subsequent paper (Liu et al 2013), they defined the nuclear norm of a tensor
more generally, as a convex combination of nuclear norms of its unfoldings. Similar
approaches were used in (Gandy et al 2011) and (Tomioka et al. (2011)1).

In (Liu et al 2013), three algorithms were proposed. Simple low rank tensor
completion (SiLRTC) is a block coordinate descent method that is guaranteed
to find the optimal solution since the objective is convex. To improve its conver-
gence speed, the authors in (Liu et al 2013) proposed another algorithm: fast low
rank tensor completion (FaLRTC). FaLRTC uses a smoothing scheme to convert
the original nonsmooth problem into a smooth one. Then, acceleration scheme is
used to improve the convergence speed of the algorithm. Finally, the authors also
proposed the highly accurate low rank tensor completion (HaLRTC), which ap-
plies the alternating direction method of multipliers (ADMM) algorithm to the low
rank tensor completion problems. It was shown to be slower than FaLRTC, but can

achieve higher accuracy. In (Gandy et al 2011) and (Tomioka et al. (2011)1), sim-
ilar algorithms were derived. We have compared these methods with the method
proposed here in Section 3.

The problem with the approaches that use nuclear norm is their computational
complexity, since in every iteration the singular value decomposition (SVD) needs
to be computed. This makes these methods slow for large problems. Therefore, it
would be useful if SVD computation could be avoided. There are algorithms in
the literature that employ Tucker factorization of a tensor with missing elements.
Therefore, one approach to tensor completion could be to use one of these algo-
rithms, and an approximation of the complete tensor can be obtained from its
Tucker factorization. Of course, notice that the ranks ri are assumed known in
the model (4). This is not a realistic assumption in practice. The approach based
on Tucker factorization has been used for comparison in papers (Liu et al 2013;

Gandy et al 2011) and (Tomioka et al. (2011)1). As shown there, it is very sensi-
tive to the rank estimation. Namely, in (Gandy et al 2011) it was demonstrated
that tensor completion using the Tucker factorization fails (or doesn’t reach the
desired error tolerance) if mode-ranks are not set to their true values.

Tensor decompositions with missing data have been considered in papers
(Andersson and Bro 1998; Tomasi and Bro 2005; Acar et al 2011). They consid-
ered only the PARAFAC decomposition. The objective function used in
(Tomasi and Bro 2005; Acar et al 2011) was of the form (for 3-way tensors)

fW (A,B,C) =

I
∑

i=1

J
∑

j=1

K
∑

k=1

{

wijk

(

xijk −

R
∑

r=1

airbjrckr

)}2

, (7)

1 R. Tomioka, K. Hayashi and H. Kashima: Estimation of low-rank tensors via convex
optimization. Technical report, http://arxiv.org/abs/1010.0789.

http://arxiv.org/abs/1010.0789
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where W is a tensor of the same size as X defined as

wijk =







1 , if xijk is known

0 , if xijk is missing
(8)

This approach differs from the one taken in (Andersson and Bro 1998). Namely,
the approach in (Andersson and Bro 1998) is to impute the tensor (for example,
with the mean of known values) and then apply some standard decomposition
technique, wherein known elements are set to their true value after every iteration.
On the other hand, the approaches in (Tomasi and Bro 2005; Acar et al 2011) are
based on cost function (7) and therefore ignore missig elements and fit the model
only to known elements.

The approach taken in this paper is similar to the above mentioned papers
(Tomasi and Bro 2005; Acar et al 2011), but here we consider the Tucker model

(4), which naturally models a low-n-rank tensor. Here we note that the tensor
rank was supposed known in (Acar et al 2011). This is often not a realistic as-
sumption. Therefore, in this paper we allow that the n-ranks of a tensor can be
over- or underestimated. This approach to the tensor completion problem differs
from the problem formulation (6) because it requires some approximations of n-
ranks of a tensor. However, as demonstrated in numerical experiments in Section
3, the proposed algorithm can estimate the exact n-ranks of a tensor as long as
initial approximations of n-ranks are over-estimations of exact ranks. Of course,
the resulting problem is non-convex and there are no theoretical guarantees that
the globally optimal solution will be found.

2 Proposed approach

We assume that the tensor X of size I1 × I2 × · · · × IN is low-rank in every
mode. The ranks are assumed unknown. However, we suppose that we have some
estimations of true ranks. Let us denote by W a tensor of the same size as X,
which indicates positions of missing elements. If we denote by Ω the set of indexes
of known elements, as in (6), W can be defined as

wi1i2...iN =







1 , if xi1i2...iN ∈ Ω

0 , if xi1i2...iN ∈ ΩC
(9)

where ΩC denotes the complement of Ω. Let us assume that the true ranks of
modes of X are ri, i = 1, . . . , N . Therefore, X can be factorized as

X = G×1 A1 ×2 A2 ×3 · · · ×N AN , (10)

where G is r1×r2×· · ·×rN core tensor, and Ai, i = 1, . . . , N , are factor matrices.
However, since the true tensor is not known, we would like to recover it by finding
its factorization (10), but only using the observed elements XΩ . Our objective
function fW = fW (G,A1, . . . ,AN ) is defined as

fW (G,A1, . . . ,AN ) = ‖W ∗ (X− G×1 A1 ×2 A2 ×3 · · · ×N AN )‖2F . (11)
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Therefore, as in the papers (Tomasi and Bro 2005; Acar et al 2011), we fit the
model only to known elements. We estimate the parameters G,A1, . . . ,AN of the
model by unconstrained minimization of fW. It is possible to include some con-
straints into the model, for example orthogonality of the factors or non-negativity,
depending on the application.

2.1 Optimization method

The usual method for minimizing fW in (11) is block optimization, wherein fW
is optimized with respect to one set of the parameters (core or one of the factor
matrices), while the others are held fixed. Any first-order optimization method can
be used for minimizing fW in (11) with respect to one of the parameters. There-
fore, gradient descent with monotone line search could be used, but it has slow
convergence for large problems. For this reason, we have used nonlinear conjugate
gradient method, as in (Acar et al 2011), from the Poblano toolbox (Dunlavy et al
2010) for MATLAB.

Gradients of the objective (11) can be computed as follows. Gradient with
respect to the n-th factor matrix, An, is computed as

∇An
fW = 2

{

[W ∗ (G×1 A1 ×2 · · · ×N AN −X)](n) ·

[(G×1 A1 ×2 · · · ×n−1 An−1 ×n+1 An+1 ×n+2 · · ·

×NAN )(n)

]T
}

(12)

Gradient with respect to the core tensor is

∇GfW = 2 {W ∗ (G×1 A1 ×2 · · · ×N AN −X)} ×1

AT
1 ×2 · · · ×N AT

N (13)

It should be noted that our approach differs from the approaches in (Tomasi and Bro
2005; Acar et al 2011), where all the parameters were stacked into one long vec-
tor, and gradient was computed with respect to this long vector of parameters.
However, in our simulations better results were obtained when optimizing fW with
respect to each of the parameters separately.

The objective function fW in (11) is non-convex, and therefore generally only
a local minimum can be found. Still, numerical experiments in Section 3 suggest
that the proposed algorithm can find a global minimum of the tensor completion
problem even when the true n-ranks are significantly overestimated. It should also
be noted that the non-uniqueness of the Tucker factorization is not important since
we are only interested in recovering the original tensor, and not its factorization.

2.2 Implementation details

The initial approximation of X, X̂, is usually set as follows: known elements are
set to their values, and values of unknown elements are set either randomly or as
the mean of the values of known elements. The core and the factors are initialized
by HOSVD algorithm (De Lathauwer et al 2000; Kolda and Bader 2009), applied
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to the initial approximation X̂. The n-mode ranks, for n = 1, . . . , N , are supposed
to be overestimated. More details about the initialization procedure and rank
estimates in each experiment are given in Section 3. The experiments show that
an accurate reconstruction of tensor X can be obtained when the true ranks are
overestimated (for example, r̂i = ri + 10). Also, approximate reconstruction can
be obtained when the ranks are underestimated.

3 Experimental results

Several experiments were performed on synthetic and realistic data to demonstrate
the efficiency of the proposed method. All reported experiments were done in
MATLAB R2011b on a 3 GHz Quad-Core Windows 7 PC with 12GB memory.
Code for reproducing the results is available on first author’s webpage2.

Since here we concentrate mostly on synthetic experiments, where data are
generated randomly, a natural question is how confident the reported results are
since we used at most 100 repetitions (i.e. different random realizations) for given
problem setting. We would like to emphasize that the numbers of repetitions that
we have used already illustrate the performance of algorithms. Namely, in all
experiments, for fixed problem setup, both the proposed algorithm and the algo-
rithms we compared with, either found the true solution with high accuracy for all
random realizations, or didn’t find the true solution for all random realizations.
Therefore, reported results do not depend on random realizations, at least with
high probability.

3.1 Experimental setup 1

In the first experiment, we use the setup from (Liu et al 2013). Namely, tensor
size was set to 50 × 50 × 50, i.e. Ii = 50, for i = 1, 2, 3. The ranks r1, r2 and
r3 of its modes were varied in the range [5, 10, 15, 20, 25]. In every experiment,
all the modes were of the same rank. The elements of the core tensor were gen-
erated as independent and identically distributed (i.i.d.) numbers from uniform
distribution in [0, 1]. The elements of the factor matrices were generated from
uniform distribution in [−0.5, 0.5]. Resulting low-n-rank X tensor was normalized
such that ‖X‖F = NX, where NX is the number of elements in X. The fraction ρ

of known elements was set to 0.2, 0.3 and 0.5. For fixed setup of the parameters,
the experiments were repeated 100 times.

The parameters of the proposed algorithm were set as follows. Ranks were set
to ri + 10, i = 1, 2, 3. Maximal number of iterations was set to 100. The elements
of the initial approximation X̂ were generated i.i.d. from standard normal dis-
tribution, wherein known elements were set to their true values. Initial core and
factors were set by the HOSVD algorithm (applied to X̂). Then, fW (equation (11))
was minimized with respect to each of the parameters separately, while keeping
other parameters fixed. Nonlinear conjugate gradient method, implemented in the
Poblano toolbox (Dunlavy et al 2010), was used for optimization because of its
speed. More precisely, Polak-Ribiere update was used, while maximal number of

2 MATLAB code

http://www.lair.irb.hr/ikopriva/ index.php?option=com_content&view=article&id=62&Itemid=68


Low-n-rank tensor completion 9

iterations was set to 100. Other parameters had default values. The parameters
of the SiLRTC method from (Liu et al 2013) were set as follows. αi were set to
1, for i = 1, 2, 3. γi were set to 100, since it was shown in (Liu et al 2013) to
yield optimal (or near-optimal) results for this problem setting. Maximal number
of iterations was set to 5000, although the algorithm stabilized (reached the sta-
tionary point) even in much less iterations in all experiments. Therefore, it should
be noted that reported times for SiLRTC algorithm in Table 1 below could have
been lower, but higher number of iterations was chosen to ensure that the algo-
rithm reaches the stationary point. Also, faster version(s) of the SiLRTC algorithm
(HALRTC and FaLRTC) was proposed in (Liu et al 2013), but we have chosen
to compare with SiLRTC because of its simplicity, since it yields similar results.
Namely, for described problem setting, it was shown in (Liu et al 2013) that SiL-
RTC yields similar results as HALRTC and FaLRTC algorithms (see Figures 2
and 3 in (Liu et al 2013)). The emphasis in the results reported here is on the
performance of algorithms, not their speed.

The ADMM method from (Tomioka et al. (2011)1) was also included in the
comparative performance analysis. The parameters were as follows: λ was set to 0
(exact low-n-rank tensor), η was set to (stdXΩ) (as suggested in (Tomioka et al.

(2011)1)), error tolerance was 0.001, and maximal number of iterations was 2000.
The results are shown in Table 1. Values in the table are mean values of relative

error and time. Relative error was calculated as
∥

∥

∥
X̂−X

∥

∥

∥

ΩC , F

‖X‖ΩC , F

(14)

where X̂ denotes the output of the algorithm and ‖ · ‖ΩC , F denotes the error

calculated only on the set ΩC . This was referred to as generalization error in

(Tomioka et al. (2011)1). It should be noted that the results in Table 1 differ from
the results reported in (Liu et al 2013) since we couldn’t reproduce them. Also, in
(Liu et al 2013) they considered only ρ = 0.3 and ρ = 0.5. It can be seen that in
our simulations the proposed method outperformed the nuclear norm minimization

methods from (Liu et al 2013) and (Tomioka et al. (2011)1), especially for ρ = 0.2.
It found the true solution in all simulations when rank was ≤ 15. The relative
error for SiLRTC was above 1e−3 in all simulations. In any case, this experiment
shows that the proposed method can yield accurate solutions when the fraction
of known entries, as well as the underlying tensor n-ranks are low. It also shows
that the proposed method is not too sensitive to rank estimations. This was stated
as the main flaw of Tucker factorization-based method for tensor completion in

(Gandy et al 2011) and (Tomioka et al. (2011)1).

3.2 Experimental setup 2

In the second experiment, setup from (Tomioka et al. (2011)1) was used. Namely,
tensor size was 50 × 50 × 20. The elements of the core tensor were generated
i.i.d. from standard normal distribution. The elements of factor matrices were
also generated i.i.d. from standard normal distribution, but every factor matrix
was orthogonalized (through QR factorization). Multilinear rank of the tensor was
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Table 1 Tensor completion results for the experiment setup from (Liu et al 2013). Values in
the table are mean values of relative error and time (in seconds) over 100 random realizations.
ρ is the fraction of known elements in a tensor.

Rank 5 10 15 20 25

Method ρ rel. err time rel. err time rel. err time rel. err time rel. err time

proposed 0.2 8.8e−5 107 1.5e−4 114 1e−3 119 1.5 78 1.21 41

SiLRTC 0.2 0.011 12 0.31 33 0.45 25 0.49 27 0.51 29

ADMM 0.2 2.4e−8 38 0.31 100 0.45 75 0.49 77 0.51 81

proposed 0.3 4e−5 100 4.44e−5 106 3.89e−4 113 0.07 121 2.03 93

SiLRTC 0.3 7e−3 7 0.013 13 0.29 24 0.39 24 0.44 20

ADMM 0.3 1.9e−8 23 2.5e−8 39 0.29 71 0.39 64 0.44 58

proposed 0.5 3.6e−5 74 4.86e−5 67 7.47e−5 65 1.58e−3 99 0.043 121

SiLRTC 0.5 4.08e−3 4 6.85e−3 5 0.01 7 0.112 21 0.255 15

ADMM 0.5 1.5e−8 12 1.9e−8 15 2.5e−8 21 0.11 58 0.255 41

set to (7, 8, 9) in all simulations. For this value of multilinear rank, the method

proposed in (Tomioka et al. (2011)1) generally requires at least 35 percent known
tensor entries to be able to reconstruct it (see Figure 5.3 in that paper). Here we
demonstrate that the method proposed here can reconstruct the underlying tensor
for even lower fraction of known elements. MATLAB code for reproducing the

results from (Tomioka et al. (2011)1) was taken from3 and used in this experiment.

The parameters of the method proposed here were as follows. Rank estimations
r̂i were set to 2ri, where ri denote the true ranks (7, 8 and 9). X̂ was initialized by
randn command in MATLAB, wherein known elements are set to their true values.
Maximal number of iterations was set to 400. Nonlinear conjugate gradient method
implemented in the Poblano toolbox was used, as in the previous experiment.
However, here we have also used a gradient descent with backtracking line search,
initialized with the output of the nonlinear conjugate gradient method, since we
found that it can increase the accuracy of the solution. We have included only

the ‘constraint’ approach from (Tomioka et al. (2011)1) in the comparison for
simplicity, but it can be seen from Figure 5.1 in that paper that it outperformed
other approaches proposed there on this problem setting.

Obtained results are shown in Figure 1. It can be seen that the proposed
method can reconstruct the underlying low-n-rank tensor even for small num-
ber of observed entries (for 20 percent or more), smaller than the nuclear norm
minimization approach, despite the fact that the ranks were significantly overes-
timated. This is a clear advantage of the proposed method compared to Tucker

factorization-based method used for comparison in (Tomioka et al. (2011)1).

It should be said that the proposed method does not perform well in another

synthetic experiment from (Tomioka et al. (2011)1). Namely, they considered rank-
(50, 50, 5) tensor with dimensions 50×50×20. This tensor is low-rank only in mode
3. Therefore, this problem can be treated as a matrix completion problem after

3 http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares/Tensor

http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares/Tensor
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Fig. 1 Comparison of the generalization error vs. fraction of known elements with the method

from (Tomioka et al. (2011)1). The graph shows mean values and standard deviations of the
generalization error over 50 realizations of the low-n-rank tensor and indices of the observed
tensor elements.

matricization in mode 3. The proposed method could not compete with matrix
completion approach in this experiment, especially if the true ranks were unknown.

3.3 Experimental setup 3

We also compare the proposed method with another nuclear norm minimization
method from (Gandy et al 2011). We use their problem setup, which is as fol-
lows. The elements of the core tensor were generated i.i.d. from standard normal
distribution. In (Gandy et al 2011) it wasn’t specified how the elements of factor
matrices were generated. We generated them from standard normal distribution.
In the first setting, the size of the tensor was 20× 20× 20× 20× 20, all n-mode
ranks were set to 2, and the fraction of known entries of the tensor was 0.2. It
was demonstrated in (Gandy et al 2011) that a Tucker factorization with missing
data implemented in the N -way toolbox (Andersson and Bro 2000) for MATLAB
outperforms their method when exact ranks are given to the Tucker factorization
algorithm. However, already if the ranks are overestimated as r̂i = ri + 1, the
algorithm fails to recover the underlying tensor. Here we demonstrate that the
method proposed here is not too sensitive with respect to rank estimates. For the
proposed method, the unknown elements in the initial approximation were set
randomly, from standard normal distribution. In all experiments except the last
one, rank estimates r̂ in the proposed algorithm were set to r + 10 (ranks along
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Table 2 Tensor completion results for the experiment setup from (Gandy et al 2011). Values
in the table are mean values of relative error and time (in seconds) over 20 random realizations.
ρ is the fraction of known elements in a tensor. ADM-TR (E) refers to alternating direction
method with exact update proposd in (Gandy et al 2011). N-way IM refers to the algorithm for
Tucker factorization with missing data and incorrect model information used in (Gandy et al
2011)

X ∈ R
20×20×20×20×20 , ρ = 0.2, r = 2 X ∈ R

20×20×20×20×20 , ρ = 0.3, r = 2

Algorithm rel. err. time Algorithm rel. err. time

ADM-TR (E) 1.89e−7 4033 ADM-TR (E) 7.8e−8 2587

N-way-IM 0.022 1482 N-way-IM 0.017 552

proposed 1.55e−4 912 proposed 1.2e−4 694

X ∈ R
50×50×50×50 , ρ = 0.4, r = 4 X ∈ R

20×30×40 , ρ = 0.6, r = 2

Algorithm rel. err. time Algorithm rel. err. time

ADM-TR (E) 3.8e−8 3983 ADM-TR (E) 2.0e−9 16

N-way-IM 0.0085 251 N-way-IM 0.12 21

proposed 5.4e−5 573 proposed, r̂ = 12 0.0039 9

proposed, r̂ = 7 5.48e−4 8

every mode are equal in a single experiment, so we denote them by r). In the last
experiment, we also include a result using r̂ = r+5, since the result obtained with
r̂ = r + 10 was slightly less accurate, as can be seen in Table 2. We compare our
results, which are obtained as means over 20 random realizations of the tensor,
with those in (Gandy et al 2011) in Table 2. We have also tested our method on
other problem settings from (Gandy et al 2011). All the results are shown in Table
2. Note that the algorithm for Tucker factorization with missing data from N -way
toolbox (Andersson and Bro 2000) performed (much) worse than the proposed
method, although the ranks were only slightly overestimated: r̂i = ri + 1. On the
other hand, the proposed method yielded accurate results for r̂i = ri + 10.

3.4 Experimental setup 4

To illustrate good performance of the proposed method, we also show some image
inpainting examples. The first example is shown in Figure 2. The image of a castle,
taken from the Berkeley segmentation dataset (Martin et al 2001), was artificially
made low rank. This was done because natural images are generally not low-
rank, and therefore direct rank minimization methods can not be expected to
work very well in this case. When the image was not made low-rank, nuclear
norm minimization method from (Liu et al 2013) performed much better than
the method proposed here. However, in that case there are methods that are
specialized for inpainting problems and therefore performmuch better than nuclear
norm minimization (for example, (Mairal et al 2008)). The ranks of the image
along spatial modes were set to 40, while the parameters of the proposed methods
were as follows. Rank estimates in modes 1 and 2 were set to 50. Missing pixels
were initialized as the mean of observed pixels. Maximal number of iterations was
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Table 3 Comparison of reconstruction quality depending on rank estimates for the image
from Figure 2. Values in the table are peak signal-to-noise ratios (PSNR-s) in decibels (dB).

Rank

30 35 50 60

28.29 31.98 49.2 25.4

set to 200. For this number of iterations, the algorithm took about 22 minutes

(the algorithms from (Tomioka et al. (2011)1) took about 42 minutes for 5000
iterations).

Of course, the reconstruction quality depends on rank estimates. In Table 3 we
show the results obtained with different rank estimates. It can be seen that good
quality of reconstruction (better than using the nuclear norm minimization) can
be obtained when the true ranks are over- or even underestimated.

3.5 Experimental setup 5

We also compare the proposed method with the nuclear normminimizationmethod

from (Tomioka et al. (2011)1) on a semi-realistic amino acid fluorescence dataset
(Bro 1997). This data set consists of five simple laboratory made samples mea-
sured by fluorescence, with each sample containing different amounts of three
amino acids. The dimensions of the original data tensor are 5 × 201 × 61. Since
each individual amino acid gives a rank-one contribution to the data, the tensor
is approximately rank-(3, 3, 3). Rank estimates in the proposed method were set

to (6, 6, 6). Only the ‘constraint’ approach from (Tomioka et al. (2011)1) was in-
cluded in the comparison, as a representative of methods considered in (Tomioka

et al. (2011)1). There, it was shown that nuclear norm minimization outperformed
Tucker factorization-based approach (both with correct and incorrect rank infor-
mation). However, Figure 3 shows that the method proposed here performed a
little better than the nuclear norm minimization method from (Tomioka et al.

(2011)1).

4 Conclusions

We have proposed a Tucker factorization-based approach to low-n-rank tensor
completion using similar approach as in (Acar et al 2011), where it was used for
PARAFAC decomposition with missing data. The idea is to fit the Tucker model
to observed tensor elements only. It was demonstrated that the proposed method
can recover the underlying low-n-rank tensor even when the true tensor ranks are

unknown. This is the essence of the proposed approach. An important assumption
was that the true ranks can be overestimated. However, approximate reconstruc-
tion can be obtained when the ranks are underestimated. This is in contrast to
Tucker-factorization algorithm with missing data from (Andersson and Bro 2000)
that was used in comparative performance analysis in several recent papers on
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(a) (b)

(c) (d)

Fig. 2 Inpainting experiments on an artificially low-rank color image. (a) Original image that
was artificially made low-rank. Image size is 481×321×3. Ranks along modes 1 and 2 were set
to 40. (b) Image with 80 percent pixels removed. (c) Reconstruction using the method from

(Tomioka et al. (2011)1). PSNR value is 28.85 dB. (d) Reconstruction using the proposed
method. Rank estimates were set to 50. PSNR value is 49.2 dB
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Fig. 3 Generalization performance of the proposed method and the ADMM method for nu-

clear norm minimization from (Tomioka et al. (2011)1)

low-n-rank tensor completion. There, it was shown that the sensitivity to rank es-
timates is the main flaw of Tucker factorization-basedmethod (Andersson and Bro
2000). As another contribution, we show that the proposed method performs bet-
ter than nuclear norm minimization methods when the fraction of known tensor
elements is low.

Of course, there are no theoretical guarantees for the proposed method (since
it is based on non-convex optimization), which is its main flaw. Here, we have con-
centrated on numerical demonstrations only. Still, we believe that the results are
interesting since they show potential advantages of non-convex methods compared
to methods based on convex relaxation(s) of the rank function.

Since the proposed approach is based on unconstrained optimization, possible
extensions include introducing some constraints on the factors in the model, for
example orthogonality or non-negativity.
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Andersson CA, Bro R (1998) Improving the speed of multi-way algo-
rithms:: Part i. tucker3. Chemometrics and Intelligent Laboratory Sys-
tems 42(1-2):93 – 103, DOI 10.1016/S0169-7439(98)00010-0, URL
http://www.sciencedirect.com/science/article/pii/S0169743998000100

Andersson CA, Bro R (2000) The n-way toolbox for matlab. Chemometrics and In-
telligent Laboratory Systems 52(1):1 – 4, DOI 10.1016/S0169-7439(00)00071-X, URL
http://www.sciencedirect.com/science/article/pii/S016974390000071X

Bro R (1997) Parafac. tutorial and applications. Chemometrics and Intelligent
Laboratory Systems 38(2):149 – 171, DOI 10.1016/S0169-7439(97)00032-4, URL
http://www.sciencedirect.com/science/article/pii/S0169743997000324

Candes EJ, Recht B (2009) Exact matrix completion via convex optimization. Founda-
tions of Computational Mathematics 9:717–772, DOI 10.1007/s10208-009-9045-5, URL
http://dx.doi.org/10.1007/s10208-009-9045-5

De Lathauwer L, De Moor B, Vandewalle J (2000) A multilin-
ear singular value decomposition. SIAM Journal on Matrix Analy-
sis and Applications 21(4):1253–1278, DOI 10.1137/S0895479896305696,
URL http://epubs.siam.org/doi/abs/10.1137/S0895479896305696,
http://epubs.siam.org/doi/pdf/10.1137/S0895479896305696

Dunlavy DM, Kolda TG, Acar E (2010) Poblano v1.0: A matlab toolbox for gradient-based
optimization. Tech. Rep. SAND2010-1422, Sandia National Laboratories, Albuquerque,
NM and Livermore, CA

Gandy S, Recht B, Yamada I (2011) Tensor completion and low-n-rank
tensor recovery via convex optimization. Inverse Problems 27, URL
http://dx.doi.org/10.1088/0266-5611/27/2/025010

H̊astad J (1990) Tensor rank is np-complete. Journal of Algo-
rithms 11(4):644 – 654, DOI 10.1016/0196-6774(90)90014-6, URL
http://www.sciencedirect.com/science/article/pii/0196677490900146

Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Review
51(3):455 – 500, URL http://dx.doi.org/10.1137/07070111X

Liu J, Musialski P, Wonka P, Ye J (2009) Tensor completion for estimat-
ing missing values in visual data. In: Proc. 2009 IEEE ICCV, URL
http://dx.doi.org/10.1109/ICCV.2009.5459463

Liu J, Musialski P, Wonka P, Ye J (2013) Tensor completion for estimating miss-
ing values in visual data. IEEE Trans Pattern Anal Mach Int 35(1):208-220, URL
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2012.39

Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE
Trans Image Process 17(1):53–69, DOI 10.1109/TIP.2007.911828

Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural im-
ages and its application to evaluating segmentation algorithms and measuring ecological
statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol 2, pp 416–423

Recht B, Fazel M, Parrilo P (2010) Guaranteed minimum-rank solutions of lin-
ear matrix equations via nuclear norm minimization. SIAM Review 52(3):471–
501, DOI 10.1137/070697835, URL http://epubs.siam.org/doi/abs/10.1137/070697835,
http://epubs.siam.org/doi/pdf/10.1137/070697835

Tomasi G, Bro R (2005) Parafac and missing values. Chemometrics and Intelli-
gent Laboratory Systems 75(2):163 – 180, DOI 10.1016/j.chemolab.2004.07.003, URL
http://www.sciencedirect.com/science/article/pii/S0169743904001741

Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika
31:279–311, DOI 10.1007/BF02289464, URL http://dx.doi.org/10.1007/BF02289464

http://www.sciencedirect.com/science/article/pii/S0169743998000100
http://www.sciencedirect.com/science/article/pii/S016974390000071X
http://www.sciencedirect.com/science/article/pii/S0169743997000324
http://dx.doi.org/10.1007/s10208-009-9045-5
http://epubs.siam.org/doi/abs/10.1137/S0895479896305696
http://epubs.siam.org/doi/pdf/10.1137/S0895479896305696
http://dx.doi.org/10.1088/0266-5611/27/2/025010
http://www.sciencedirect.com/science/article/pii/0196677490900146
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1109/ICCV.2009.5459463
http://doi.ieeecomputersociety.org/10.1109/TPAMI.201 2.39
http://epubs.siam.org/doi/abs/10.1137/070697835
http://epubs.siam.org/doi/pdf/10.1137/070697835
http://www.sciencedirect.com/science/article/pii/S0169743904001741
http://dx.doi.org/10.1007/BF02289464

	Introduction
	Proposed approach
	Experimental results
	Conclusions

