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ABSTRACT term Qe represents possibly large errors that affect “clean”

Several approaches have been proposed in the literature @Pasur.ementﬂx. Posgble_ causes of such noise can l?e (_jata
corruption when sending it over a network, malfunctioning

sparse signal reconstruction to enable robust reconitruct A . . o
gensors or similat [1]. In information theory, similar ptein

in the presence of impulsive noise. This paper builds uponi~ >~~~ . .
[1]. The work in [1] presented a method that can provably reSetting is known as error correctian [4]. However, in the-con

cover a sparse vector from a small number of measurement§X of error correction, the number of measurements (*code

under the assumption that the noise is sparse (or has a spa\%%rd length”) islarger than the dimension of the signal being

representation in an orthonormal basis), and that the measu transmitted, and the signal is not necessarily sparse.
ment matrix satisfies the restricted isometry property. The | N Problem of recovering sparse vectdrom measure-
method is based on finding a sparse solution of an augmentg&entsy can be stated as

linear system. It was shown iql[1] that the augmented ma- min {||z[|o + Allelo}, @)
trix satisfies the restricted isometry property with higblpr TER™

ability when the measurement matrix is Gaussian. Althougk}vhereHxHO denotes the/, quasi-norm (not really a norm)
it was stated inl[1] that similar results can be proved for allo¢ yector s, defined as the number of its non-zero elements.
sub-Gaussian distributions, here we precisely derive dite ¢ Probleni2 is hard becauge|, is a discrete, nonconvex func-

responding result for the symmetric Bernoulli distributio tion. Therefore, usually a convex relaxation[of 2 is consid-
based on the work in_[2]. As another contribution, we COM-greg:

plete the theorem on uniqueness of the sparse solution from min{||z[|; + Ale]l1}, 3)
[3] for the more general case. Also, we present a compari- z

son of several sparse recovery algorithms in the presence where|| - ||; denotes thé; norm of a vector. The above prob-
impulsive noise. lem[3 has been considered in several papers (we review them
in Subsection 1]11). By denoting= [z )\e]T, it can be written

Index Terms— Sparse signal reconstruction, impulsive "
differently, as

noise, sparse noise

. . 1
1. INTRODUCTION Jin llulh - subject to [A XQ}“_@/ “)

This paper discusses sparse recovery in the presence diimp([1] and references therein). This is a convex optimization
sive noise, i.e. noise that has large or even infinite vaganc Problem known as basis pursuit, commonly solved in com-
The only assumption on the noise is that isfrseor has a pressed sensing. Practically more relevant formulatidichv
sparse representation in orthonormal matrix. More prégise allows some error or noise, is

we consider the general model
<e (9

. 1
min |lul|s subjectto H {A XQ] u—1y
2

y=Ar+ Qe =[AQu (1) u€Rmm

wheree denotes an estimation of the noise level (this formu-
o . L lation is referred to as basis pursuit denoising). A slight d
x € R™ is sparses? |Sn><lmal1t_r|anh orthonormalcolumns ¢ of b compared to the approactin [1] is that we con-
(therefore/ < n), ande € R is also a sparse vector. Here, sider the trade-off parametamwhich can generally be differ-

— [T .77 i i . R ;
we have denoted = [27 ¢”]". This problem setting was ent from1. The problerfi cannot be written in this way since
already considered in[1] (see also references thereing Th,. | is not homogeneous (exceptin the case 1); however,

This work was supported through graigis-0982903-2558 funded by ~ W€ €an replace thé, funf:tion_ by its continuous approxima-
the Ministry of Science, Education and Sports, Republic .. tion. Often used approximations atgpseudo-normg| - ||,

whereA is m x n measurement matrixvheren > m, vector




for0 < p < 1, defined aglz|b = >, |2|", forz € R".  notguaranteed. Also, the method has several parametelrs, an
Therefore, a modified problem can be considered the authors in[6] gave only general recommendations on how
) to set them, using probabilistic analysis. The authors demo
min lull; subjectto [A /\’EQ} u=y. (6) strated that this approach performs well in some experisaent
e In this paper we build upon the papef [1]. Thefed+ ¢4
Here, p-th power of¢,, norm is used to enable extraction of minimization was considered (probléd 5 with= 1). They
A. Many algorithms exist in the literature on sparse recoverghowed that, if the elements df are drawn as independent
for solving the above problefd 6 (for example, seke [5] andand identically distributed (i.i.d.) samples from Gaussiés-
references therein). tribution, the matrix|A Q] satisfies the RIP with high prob-
Before precisely stating the contributions of this work, inability. They also mentioned that any sub-Gaussian distrib
the following subsection we review the literature on robustion could also be used, with similar bound on probabiliggtth

sparse recovery. the RIP is satisfied. Therefore, any sparse recovery altgorit
that has provable performance guarantees under the RIP as-
1.1. Previous work sumption can be used to recove(therefore, bothx ande).

) ) They concentrated ofy, minimization, and called their al-
Several papers have considered sparse recovery in the pregsithm justice pursuit They also considered the noisy set-
ence of impulsive, i.esparsenoise ([1.3[6L.] is a partial ing \wherein, apart from sparse noise (or noise with sparse
list). In [7], model3 was assumed, with application in imageepresentation if2), the measurements are also degraded by

restoration. SincBl3 can be written as a linear program, ago nded (for example, Gaussian) noise. But they argued that
efficient interior point algorithm was proposed. Namelgpr  some other reconstruction algorithm could also be used.
conditioned conjugate gradient method with special type of

preconditioners was used for solving a linear system inyever

iteration of the interior point method. The authors demon-1.2. Contributions of this work

strated good performance of the method in image restoratio ' _ . .
problems. We compare the method proposed here with th ur f'rSt contribution, related to the Paper [1], is th_atwmgl_
method based on the mod¢l 3 in the Experiments section. T\Ijjéec'se con§tants relat.ed_ to. prqbab|llty that RIP is saﬂsﬂ
approach fromi[7] was extended [l [3] to sparse signal reco 'or symmetric Bernoulhldlstnbunon. Related to the unégu
ery problems. They also considered ther TV model (here, ness of the sparse squtlorEd)f_ 1 we complete the theorem from
TV refers tototal variation see paper for details), wherein [3Ja;hfr§’ lrj]mqule gess fontiltlons V\_/gre ?ttatedto_nlv\gr 1

||, in @ is replaced with total variation of, TV (z), for ~ and2=1( e;e, beno es he(lj? n 1gen |Zma_1 rix). Also,
applications in image restoration. The authors in [3] alse d we compare t ero ust method from [6]+ £, minimization
rived sufficient conditions for uniqueness of the problém 2 i approach (that includes the approach froin [1]) and the OMP

terms of the number of outliers and sparsity of the squtiori"‘lgc.’rlthm applied to the problef 2 W|t!§1: 1 on _sc_—zveral ex-
vector. periments. We use OMP because of its simplicity, and since

In [6], robustsamplingandreconstructionof signals for it was analyzed using the RIP[8]. To the best of the aut_hor’s
compressed sensing was considered. Namely, the auth&]gowledge,these methods haven’t been compared previously

proposed to use robust estimators of correlation (for linea
sampling of a signal) and error (for signal recovery in the1 3. Organization of the paper
presence of outliers). They used therentzian normas
the robust metric to measure the error. Lorentzian norm i§1 Sectior 2 we discuss conditions for provable recovery of
a robust estimator of location in the presence of Cauchythe solution of the problef 2 with = 1. In Subsectiof 2]1
distributed noise (se¢l[6] for details). Therefore, theg-pr we show that, if the elements of are generated from sym-
posed the following problem formulation to recover a sparsénetric Bernoulli distribution, the matrixA Q] satisfies the
signal in the presence of impulsive noise: restricted isometry property with high probability. In Selo-

_ tion[2.2 we complete the theorem on the uniqueness of the

min [|z[|;  subjectto |y — Az[rr,.» <€  (7)  solution of the problerfi2 fromi [3]. The results of numerical

experiments are presented in Secfibn 3.
where|| - || .1.,, ~ denotes the Lorentzian norm with parameter

~. They proved that, if the measurement mattisatisfies the

restricted isometry property (RIP) (see Seclibn 2) withaiar 2. MAIN

constant, and if the Lorentzian norm parametas chosen

appropriately, the sparse solution vector can be accyratel We consider the problem formulatibh 2 with= 1. It can be
constructed by solvinig 7. However, the constraififinias-  written differently as

convex Therefore, since their method relies on the solution

of a nonconvex problem, accurate reconstruction is gelgeral min [|ullo  subjectto [AQJu =y, (8)



whereu = [z ¢]” as before, sincéullo = ||lz]lo + [leo.  sinceQ is orthonormal. The terrae” Q7 Az can be written
Corresponding formulation that allows some noise is as the sum of scaled symmetric Bernoulli variables. Namely,
if we denotez = 2Qe, we have
n%in |lullo subjectto |

[AQu -y, <e 9) o

2¢" Q' Az = Z (xizj) aij. (14)
Corresponding,, norm minimization problerh]é can handle i
the case\ # 1; howev_er, it is unclear how it a_ffects the per- \we want to show a bound of the form
formance of the algorithm. Any greedy algorithm for sparse
recovery can be used to solvk 8[dr 9. Sufficient conditions P (‘QQTQTAI| > €H$||2||€H2) < o), (15)
for greedy algorithms to provably recoveare usually stated
in terms of the restricted isometry property (RIP) of the meaFor “normal” A (i.e., the elements ofl i.i.d. from normal
surement matrix [9,18, 10]. Matrit € R™*¥ is said to distribution), it was shown in [2] that

satisfy the (symmetric) restricted isometry property afer - 2 /g
k with constanty, if P (|2¢"Q7 Az| > €||z||2]lel]2) < e /5. (16)

(1 =6 2] < | Az))2 < (1 + &) |22 Onthe o_therhand, |t_vvas shown in [2] that for both symmetric
Bernoulli and GaussiaA we have

for all z € R such that|z|o < k. It was shown in[[1]
(based on[[11]), Lemma& and Theorem, that the matrix
[A Q], with © orthonormal, satisfies the restricted isometry
property if the elements ofl are generated as i.i.d. samples i Tnss .
from normal distribution. There, it was stated that simiar  (fOF Gaussg;\n casg), nam;ﬂy - Itis valid fore < 3/4
sults can be shown for the more general class of sub-Gaussidfice then/4 — ¢*/6 > ¢*/8. Bound 1T was derived both
matrices. In the following subsection, we derive precise-co N [2] and [12] (for Gaussian case).

stants for the case when the elementsiafre generated i.i.d. Using the ideas fronmi[2], we can use the bolndl 16 for

from symmetric Bernoulli distribution. In Subsection]2.2 w normal A to derive the bound for the symmetric Bernpulh
discuss the uniqueness of the solutioflof 2. case. Let use denote= ||z|2| e||2. From Markov inequality,
we have

—n 62 763
P ([140l} — o3| = ellolf) < 207222/ ap)

In [1], different bound on the above probability was stated

2.1. RIP of union of Bernoulli and orthonormal matrix P (2" Az > ce) <E (ehzTAI) e e (18)

Using analogous reasoning as the one presented in [2], W8y 5|1 , > 0. Let us denote b{’ a random matrix with i.i.d
show that the matrixA 2], whereA has elements generated gements from\’ (0, 1/n). We have thak (exp (h="Tx))
as i.i.d. samples from symmetric Bernoulli distributiofs® i finite for smallh (sincez7 Tz is normally distributed, with

satisfies the RIP with high probability. More precisely, two expectatiord and variancéz||2||y||2/n). Therefore, we have
types of distributions are considered:

1 41, with probability% 10 (exp (hzTTx)) 11 (exp (hzixjti;))
5 = 5\ —1,with probability 1 S
_ ZiTj N
and - H Z T E (tw)
1 i,5 1>0

3 +1, with probabilityg ( )z
i =4 — 0 ith probability £ 11 hzx;
@ij =[5 O withprobabiltyg — (11) > I 5 E ) (19)
1, with probability & i o !
Here, thel //n normalization factor is included to ensure that = E (exp (hz" Az)) (20)

2\ 2 . . . )
E (H[A 2 ul ) = |[ull”. These two distributions were con where[19 follows since all moments of symmetric Bernoulli

sidered in[[2]. We are interested in the bound of the form  \4iaple are dominated by the moments of Gaussian variable
with mean zero and the same variance [2] (this is valid for
P (‘H[A O ull; - ||U||§’ > €||U||§) <ce ™ (12)  poth distribution§T0 anid11). In the above calculations, th
expectation and sum can be swaped because of the monotone
wheree € (0, 1) andcy(e) depends om only. Note that the convergence theorerl[2]. We have tliafexp (hy” Tz)) =

term||[A Q] u||; can be expanded as e"*v/2 wherev = ||z|2||y||2/n. Therefore, we have

IA Q) ul} = [Aal3 + )3 + 2707 Az (13) P (4T Az > ce) < eh*v/2—hee, (21)



By optimizing this bound ovek, we get

P (yTAx > ce) < e e /8, (22)
Similarly, we have
P (yTAx < —ce) < e~ /8, (23)

This follows because of the symmetry of the distribution on

Q.

i.e. g is the solution of R if and only if it is the solution bf P8.
Let 2 # xo be another solution 6f28, arid= Q7 (y — A%).
We havel|#]jo + 1]|é]lo < m + 3 K. Letus denote by the
support (set of indexes of non-zero elements} of x4, and
by T the support o — ¢. If we denotél|é||o = s, we have
|S| < 2m+ K — $sand|T| < s+ K. FromA (& — zg) =
(eo — &) we have tha{Q" A) ;.. (, (& — o) g = 0. Matrix

(QTA),.c ¢ is of full rank by assumption, since it can be

" Going back td_IR, we have that, with probability greaterWritten as

thanl — 4e="<"/8 (for e < 3/4)

IAQul; = [|Az]3+|le]3 +2¢"Q" Az (24)
< (L4 )|zll3 + ellzll2llell2 + [lel5(25)
< (1+26)]ull3 (26)
and
I[A Q] ull; > (1 — 2€)]ull3. (27)

The above inequalities are analogous to thosein [1]. Itkshou
be noted that the above inequalities are valid with evendrigh
probability than stated here, by combining bounds for bot
inequalities il _IR. Of course, as noted|in [1], similar bosind
are valid for all sub-gaussian distributions, i.e. thoss tire
dominated by the centered Gaussian distribution ([13]pcha
ter5).

Based on the above concentration inequalities, it follow
that the matri{ A 1], where the elements of are generated
as i.i.d. elements from symmetric Bernoulli distributioittw
variancel /n, satisfies the RIP with high probability (Theo-
rem1 from [1], which follows from Theorens.2 in [11]).

2.2. Uniqueness of the sparse solution

(QT A) (Qrc)" As (29)

TC, 8
and Q¢ is of full rank (since it has orthonormal columns).
The condition|7¢| > |S|, which would yieldé = o, is
equivalenttor > 2m + (1 + +)K + (1 — §)s. Sinced < 1,
the proposition is proved. O

The assumption used in the proposition, that every sub-
matrix of A is of full rank, is satisfied with high probability
for random matrices. In the cage= 1, the statement of the
proposition reduces to the usual requirement for the number
of measurements, namely that it is at least two times larger
Rhan thely quasi-norm of the solution.

3. EXPERIMENTS

We have compared the proposed method with the methods
Yrom [6] and [3] on some synthetic experiments. We have
used problem settings from that papers. All reported numeri
cal experiments were done in MATLABZR11b on a3 GHz
Quad-Core Windows PC with12GB memory. Code for re-
producing the results is available on author’s webEatWe
have implemented the method from [6] using the fmincon
function in MATLAB. The absolute value in the definition of

Sufficient conditions for uniqueness of the solution of thethe Lorentzian norminl7 was approximatedais~ vz? + ¢

problem2 were derived in[3], under the assumptior 1.

to make it differentiable. In all experiments,was set to

However, analogous reasoning can be used to derive sufficief 001

conditions for uniqueness for < 1 too. Also, analogous re-
sult can be proved for more general settidg 1 withwith
orthonormal columns. Here we state the Proposti@rfrom
[3] with these extensions.

Proposition 1 Let A € C**¥ wheren < N, be such that it
has only full-rank submatrices. Let € CV with ||zo||, =
m andeg € C" with |leg]|, = K be given. Leb = Azq +
Qep. Then, forA > 1 (0 < A < 1),ifn > 2K+ (A + 1)m
(n > 2m + (1 + %) K), problem2 has the unique solution
Tr = Xo-.

Proof. The proposition was proved for > 1 and2 = I
(here,I denotes x n identity matrix) in [3]. Here we prove
the other part@ < A < 1) in the more general setting (we
do not suppos& = I) analogously. The proof of the case
A > 1 and for general orthonorm8! is analogous. Note that
the probleni R is equivalent to

min{ 07 (y — An)lo + 7o} (29)

3.1. First experiment

In the first experiment, the problem setting was the follow-
ing (it is taken from|[[6]. The size of matrid was set to
128 x 1024. Elements ofA were generated i.i.d. from stan-
dard normal distribution. Columns of were normalized to
unit norms. Elements of the solution vector were generated
randomly from—1, 1. Afterwards,S was normalized so that
its average power i8.78 (as in [6]). Sparsity of the solution
vector was varied in the range fra#r(as fixed in[[6]) to20.

OMP algorithm was used for sparse recovery (prolilem 8).
Stopping criterion was set to maximal number of non-zero el-
ements of the solution, and it was set{@& + nimp), where
k denotes the sparsity( norm) of the solution vector, and
nimp denotes the number of impulses. In this experiment, the
number of impulses was3. The amplitude of all impulses
wash0, as in [6]. Parameters of the proposed method were as

IMATLAB code


http://www.lair.irb.hr/ikopriva/ index.php?option=com_content&view=article&id=62&Itemid=68

follows. v was set td).1, e in[Alwas set t@||e|| .1, o, Wheree 6or

: . ) —e—omp
is the true noise vector. Debiasing was used after recarist ~ ——1111
. . _ m
tion, as proposed in[6]. For solving tlfg + ¢; problem3, T 4 —-
we have used the cvx packagk.was set tol. Experiment DZf
was repeated( times. Figurél shows the results. OMP a (g 20k
gorithm clearly performs better than both robust method | S
and/¢; + ¢, approach. 3 ol
17
108 g
—e—omp
of ——1111 © -20r
——robust 87
@
o -40F
&
60 ‘ ‘ ‘
107 107 10" 10°

contamination factor

Fig. 2. Average reconstruction signal-to-noise ratio (SNR)
(over100 runs) as a function of the contamination factor (see
text for details). These graphs should be compared with the
Figurel5(a) in [6].

frequency of exact reconstruction

8 10 12 14 16 18 20 _ o o
sparsity tion. The parameter of the distribution was varied in the

range from0.2 (very impulsive) to2 (Gaussian). In this case,
Fig. 1: Frequency of exact reconstruction (ovéruns) when  stopping criterion for OMP algorithm was the norm of the
10 impulses of amplitud&0 were added to the measurements,residual. It was set t¢/m mad /10, wheremad x denotes
for several values of the sparsity of the solution the median absolute deviation of vecto(it is a robust esti-
mator of scale/standard deviation:gf This choice doesn’t
use prior information about noise, and therefore obtaieed r
3.2. Experiment2 sults can be considered realistic. For- ¢, approach) was
again set td. Again, the method from [6] wasn't used in our
In the second experiment} was generated as in the first. gimylations because the implementation is slow. The experi
Sparsity of the solution vector was fixed&o This time,p-  ment was repeatet)0 times. Results are shown in Figlide 3,
contaminated noise was added. Namely, the number of imynd should be compared with Figur&(b) in [6]. It can be
pulses wagpm + 0.5] (here,|-| denotes the floor function), seen that, in this case, the methbd [6] performs better,tbut i
where contamination factgr was varied in the range from s tajlored for this problem setting. Namely, in this case th
0.001 to 0.5. Gaussian noise with standard deviatibhwas pgise vector is not sparse, it can only be viewed as approx-
added to the measurements too. This setting was also adopigghtely sparse. This is the reason for better performance of

from [6]. The experiment was repeate@ times, every time  yobust method that uses the Lorentzian norm. However, even
randomly generating the system. Methbd [6] wasn’t used ithere, OMP gave comparable results.

the simulations because of the slow implementation; how-

ever, all paramaters of the problem are the same as in_ [6&_4_ Experiment4
and the results reported here should be compared with Figure
15(a) from that paper. Results of our experiments are showm this experiment, we have used the setting from the first
in Figure[2. It can be seen that both the proposed and thexperiment3]1, but the elements of the solution vector were
{1 + ¢1 approach perform well in this experiment, better thangenerated from standard normal distribution. Parameters o
the method from([6]. ¢, + ¢, approach is sensitive to the all the methods were the same as in the first experiment. Re-
choice of the parameteY, and possibly even better averagesults are shown in Figufé 4. Robust method frbin [6] couldn’t

reconstruction SNR could be obtained with some other choiceecover the true solution in any of the cases.

of \.

3.5. Experiment5

33. E i t .
Xperiment3 In the next experiment, we have compared the proposed

In this experiment, problem setting was as in the previouts, b method with the/; + ¢; aproach from[[B]. The problem
the noise was generated from impulsive alpha-stable blistri setting was as in_[3]. Namely, the size of the measurement



—o—omp the range fronD to 20. For every fixed pair of sparsity of

| ——I111 the solution and noisd,00 runs were performed, every time
randomly generating indexes of rows of DCT matrix, indexes
of nonzero elements of the solution and of the noise vector,
and the values of nonzero elements of the solution and noise.
Recovery was considered successful if the relative errthreof
reconstruction was below0~*. For both methods, fraction

of successful recoveries ir)0 runs was calculated. Results
are shown in Figurds ba and Figlré 5b. It can be seen that the

25r

201

15r

101

average reconstruction SNR (dB)
o

0.5 . 1 1.5 2
tail parameter (a)

(=]

o

Fig. 3: Average reconstruction signal-to-noise ratio (SNR)

10 15 10 15
number of impulses number of impulses

(over100 runs) as a function of the tail parameter of the noise (@) (b)
(see text for details). These graphs should be compared with
the Figurel5(b) in [6]. Fig. 5. (a) Phase transition plot for the OMP algorithm.

Measurement matrix was generated by randomly seledting

rows of the2-D DCT matrix. See text for details. (b) Phase
—e—omp transition plot for the/; + ¢, approach. Problem setting was
the same as in (a).

o
©

o
©

{1 + ¢, approach performed little better than the OMP, but
this example can be considered unrealistic since the number
of measurements is relatively large with respect to the dime
sion of the solution vector. We included this experimentsin
this setting was used in|[3].

o
3

o
o

I
»

o
w

3.6. Experiment6

o
[N)

The problem setting in this experiment was similar to that in

the previouE 315, except that the measurement matrix was gen
+ + * erated by randomly selecting rows of64 x 64 2-D DCT

12 14 16 18 20 . .

sparsity matrix, and the non-zero elements of the solution vectoewer

generated from standard normal distribution. The resuéis a

Fig. 4: Frequency of exact reconstruction (o¥éruns) when  shown in Figureg 6a aidb. This time, OMP performed bet-

10 impulses of amplitudg0 were added to the measurements,ter than/; + ¢, approach. This is expected since it is known

for several values of the sparsity of the solution. Nonzerghat OMP performs better when the non-zero elements of the

elements of the true solution were generated from standablution have some decay. On the other hdndjinimization

normal distribution. is insensitive to the distribution of non-zero elemehtq.[14

frequency of exact reconstruction
o
[4))

o
=

Q
'
2

[e0)
=
o

4. CONCLUSIONS
matrix A was40 x 64. A was generated by taking a sub-

set of rows of two-dimensional discrete cosine transformiMe have discussed sparse recovery in the presence of impul-
(DCT) matrix with randomly generated indexes. Indexessive (sparse) noise. It can be argued that the results gegksen
of nonzero elements of the solution vector were generateih Subsections 211 amd 2.2 follow straightforwardly from pa
randomly. Nonzero values of the solution were generategers [1)3]. Still, they are relevant for the problem of spars
uniformly from[—1, —0.1] U [0.1, 1]. Nonzero values of the recovery with impulsive noise. However, the main focus in
noise vector were taken from the sphin Az, max Axz}.  this paper has been on numerical experiments that show gen-
To create phase transition plots for both methods, spassiti erally better performance of the proposed method compared
of the solution vector and the noise vector were varied irto robust sparse recovery method fram [6]. The method from



sparsity

Fig.
Measurement matrix was generated by randomly seletting

2
I
g
g
&

8 9

4 5 6
number of impulses

@) (b)

6. (a) Phase transition plot for the OMP algorithm.

rows of the2-D DCT matrix. See text for details. (b) Phase
transition plot for the/; + ¢, approach. Problem setting was
the same as in (a).

(10]

[1], which is based on convex relaxation[¢f 8 by repladipg
quasi-norm with¢; norm, has also been used in comparative
performance analysis, showing results similar to OMP, as ex

pected. We have used the OMP algorithm, however any other
method for solving the sparse recovery problém 8 can be usedl]

(as already suggested i [1]).
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