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ABSTRACT

Several approaches have been proposed in the literature of
sparse signal reconstruction to enable robust reconstruction
in the presence of impulsive noise. This paper builds upon
[1]. The work in [1] presented a method that can provably re-
cover a sparse vector from a small number of measurements,
under the assumption that the noise is sparse (or has a sparse
representation in an orthonormal basis), and that the measure-
ment matrix satisfies the restricted isometry property. The
method is based on finding a sparse solution of an augmented
linear system. It was shown in [1] that the augmented ma-
trix satisfies the restricted isometry property with high prob-
ability when the measurement matrix is Gaussian. Although
it was stated in [1] that similar results can be proved for all
sub-Gaussian distributions, here we precisely derive the cor-
responding result for the symmetric Bernoulli distribution,
based on the work in [2]. As another contribution, we com-
plete the theorem on uniqueness of the sparse solution from
[3] for the more general case. Also, we present a compari-
son of several sparse recovery algorithms in the presence of
impulsive noise.

Index Terms— Sparse signal reconstruction, impulsive
noise, sparse noise

1. INTRODUCTION

This paper discusses sparse recovery in the presence of impul-
sive noise, i.e. noise that has large or even infinite variance.
The only assumption on the noise is that it issparseor has a
sparse representation in orthonormal matrix. More precisely,
we consider the general model

y = Ax+Ωe = [A Ω]u (1)

whereA ism×n measurement matrix, wheren > m, vector
x ∈ Rn is sparse,Ω isn× l matrix with orthonormal columns
(therefore,l ≤ n), ande ∈ Rl is also a sparse vector. Here,

we have denotedu =
[

xT eT
]T

. This problem setting was
already considered in [1] (see also references therein). The

This work was supported through grant098-0982903-2558 funded by
the Ministry of Science, Education and Sports, Republic of Croatia..

term Ωe represents possibly large errors that affect “clean”
measurementsAx. Possible causes of such noise can be data
corruption when sending it over a network, malfunctioning
sensors or similar [1]. In information theory, similar problem
setting is known as error correction [4]. However, in the con-
text of error correction, the number of measurements (“code-
word length”) islarger than the dimension of the signal being
transmitted, and the signal is not necessarily sparse.

The problem of recovering sparse vectorx from measure-
mentsy 1 can be stated as

min
x∈Rn

{‖x‖0 + λ‖e‖0}, (2)

where‖x‖0 denotes theℓ0 quasi-norm (not really a norm)
of vectorx, defined as the number of its non-zero elements.
Problem 2 is hard because‖·‖0 is a discrete, nonconvex func-
tion. Therefore, usually a convex relaxation of 2 is consid-
ered:

min
x

{‖x‖1 + λ‖e‖1}, (3)

where‖ · ‖1 denotes theℓ1 norm of a vector. The above prob-
lem 3 has been considered in several papers (we review them
in Subsection 1.1). By denotingu = [x λe]

T , it can be written
differently, as

min
u∈Rn+m

‖u‖1 subject to

[

A
1

λ
Ω

]

u = y (4)

([1] and references therein). This is a convex optimization
problem known as basis pursuit, commonly solved in com-
pressed sensing. Practically more relevant formulation, which
allows some error or noise, is

min
u∈Rn+m

‖u‖1 subject to

∥

∥

∥

∥

[

A
1

λ
Ω

]

u− y

∥

∥

∥

∥

2

≤ ǫ (5)

whereǫ denotes an estimation of the noise level (this formu-
lation is referred to as basis pursuit denoising). A slight dif-
ference of 5 compared to the approach in [1] is that we con-
sider the trade-off parameterλ which can generally be differ-
ent from1. The problem 2 cannot be written in this way since
‖·‖0 is not homogeneous (except in the caseλ = 1); however,
we can replace theℓ0 function by its continuous approxima-
tion. Often used approximations areℓp pseudo-norms,‖ · ‖p,



for 0 < p ≤ 1, defined as‖x‖pp =
∑n

i=1 |x|
p, for x ∈ Rn.

Therefore, a modified problem can be considered

min
u∈Rn+m

‖u‖pp subject to
[

A λ− 1
pΩ

]

u = y. (6)

Here,p-th power ofℓp norm is used to enable extraction of
λ. Many algorithms exist in the literature on sparse recovery
for solving the above problem 6 (for example, see [5] and
references therein).

Before precisely stating the contributions of this work, in
the following subsection we review the literature on robust
sparse recovery.

1.1. Previous work

Several papers have considered sparse recovery in the pres-
ence of impulsive, i.e.sparsenoise ([1, 3, 6, 7] is a partial
list). In [7], model 3 was assumed, with application in image
restoration. Since 3 can be written as a linear program, an
efficient interior point algorithm was proposed. Namely, pre-
conditioned conjugate gradient method with special type of
preconditioners was used for solving a linear system in every
iteration of the interior point method. The authors demon-
strated good performance of the method in image restoration
problems. We compare the method proposed here with the
method based on the model 3 in the Experiments section. The
approach from [7] was extended in [3] to sparse signal recov-
ery problems. They also considered theℓ1+TV model (here,
TV refers tototal variation, see paper for details), wherein
‖x‖1 in 3 is replaced with total variation ofx, TV(x), for
applications in image restoration. The authors in [3] also de-
rived sufficient conditions for uniqueness of the problem 2 in
terms of the number of outliers and sparsity of the solution
vector.

In [6], robustsamplingandreconstructionof signals for
compressed sensing was considered. Namely, the authors
proposed to use robust estimators of correlation (for linear
sampling of a signal) and error (for signal recovery in the
presence of outliers). They used theLorentzian normas
the robust metric to measure the error. Lorentzian norm is
a robust estimator of location in the presence of Cauchy-
distributed noise (see [6] for details). Therefore, they pro-
posed the following problem formulation to recover a sparse
signal in the presence of impulsive noise:

min
x

‖x‖1 subject to ‖y −Ax‖LL2, γ ≤ ǫ (7)

where‖ · ‖LL2, γ denotes the Lorentzian norm with parameter
γ. They proved that, if the measurement matrixA satisfies the
restricted isometry property (RIP) (see Section 2) with certain
constant, and if the Lorentzian norm parameterγ is chosen
appropriately, the sparse solution vector can be accurately re-
constructed by solving 7. However, the constraint in 7 isnon-
convex. Therefore, since their method relies on the solution
of a nonconvex problem, accurate reconstruction is generally

not guaranteed. Also, the method has several parameters, and
the authors in [6] gave only general recommendations on how
to set them, using probabilistic analysis. The authors demon-
strated that this approach performs well in some experiments.

In this paper we build upon the paper [1]. There,ℓ1 + ℓ1
minimization was considered (problem 5 withλ = 1). They
showed that, if the elements ofA are drawn as independent
and identically distributed (i.i.d.) samples from Gaussian dis-
tribution, the matrix[A Ω] satisfies the RIP with high prob-
ability. They also mentioned that any sub-Gaussian distribu-
tion could also be used, with similar bound on probability that
the RIP is satisfied. Therefore, any sparse recovery algorithm
that has provable performance guarantees under the RIP as-
sumption can be used to recoveru (therefore, bothx ande).
They concentrated onℓ1 minimization, and called their al-
gorithm justice pursuit. They also considered the noisy set-
ting, wherein, apart from sparse noise (or noise with sparse
representation inΩ), the measurements are also degraded by
bounded (for example, Gaussian) noise. But they argued that
some other reconstruction algorithm could also be used.

1.2. Contributions of this work

Our first contribution, related to the paper [1], is that we give
precise constants related to probability that RIP is satisfied,
for symmetric Bernoulli distribution. Related to the unique-
ness of the sparse solution of 1, we complete the theorem from
[3]. There, uniqueness conditions were stated only forλ ≥ 1
andΩ = I (here,I denotes then× n identity matrix). Also,
we compare the robust method from [6],ℓ1+ℓ1 minimization
approach (that includes the approach from [1]) and the OMP
algorithm applied to the problem 2 withλ = 1 on several ex-
periments. We use OMP because of its simplicity, and since
it was analyzed using the RIP [8]. To the best of the author’s
knowledge, these methods haven’t been compared previously.

1.3. Organization of the paper

In Section 2 we discuss conditions for provable recovery of
the solution of the problem 2 withλ = 1. In Subsection 2.1
we show that, if the elements ofA are generated from sym-
metric Bernoulli distribution, the matrix[A Ω] satisfies the
restricted isometry property with high probability. In Subsec-
tion 2.2 we complete the theorem on the uniqueness of the
solution of the problem 2 from [3]. The results of numerical
experiments are presented in Section 3.

2. MAIN

We consider the problem formulation 2 withλ = 1. It can be
written differently as

min
u

‖u‖0 subject to [A Ω]u = y, (8)



whereu = [x e]
T as before, since‖u‖0 = ‖x‖0 + ‖e‖0.

Corresponding formulation that allows some noise is

min
u

‖u‖0 subject to ‖[A Ω]u− y‖2 ≤ ǫ. (9)

Correspondingℓp norm minimization problem 6 can handle
the caseλ 6= 1; however, it is unclear how it affects the per-
formance of the algorithm. Any greedy algorithm for sparse
recovery can be used to solve 8 or 9. Sufficient conditions
for greedy algorithms to provably recoveru are usually stated
in terms of the restricted isometry property (RIP) of the mea-
surement matrix [9, 8, 10]. MatrixA ∈ Rn×N is said to
satisfy the (symmetric) restricted isometry property of order
k with constantδk if

(1− δk) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk) ‖x‖22

for all x ∈ RN such that‖x‖0 ≤ k. It was shown in [1]
(based on [11]), Lemma1 and Theorem1, that the matrix
[A Ω], with Ω orthonormal, satisfies the restricted isometry
property if the elements ofA are generated as i.i.d. samples
from normal distribution. There, it was stated that similarre-
sults can be shown for the more general class of sub-Gaussian
matrices. In the following subsection, we derive precise con-
stants for the case when the elements ofA are generated i.i.d.
from symmetric Bernoulli distribution. In Subsection 2.2 we
discuss the uniqueness of the solution of 2.

2.1. RIP of union of Bernoulli and orthonormal matrix

Using analogous reasoning as the one presented in [2], we
show that the matrix[A Ω], whereA has elements generated
as i.i.d. samples from symmetric Bernoulli distribution, also
satisfies the RIP with high probability. More precisely, two
types of distributions are considered:

aij =
1√
n

{

+1 , with probability 1
2

−1 , with probability 1
2

(10)

and

aij =

√

3

n
×







+1 , with probability 1
6

0 , with probability 2
3

−1 , with probability 1
6

(11)

Here, the1/
√
n normalization factor is included to ensure that

E

(

‖[A Ω]u‖2
)

= ‖u‖2. These two distributions were con-

sidered in [2]. We are interested in the bound of the form

P

(∣

∣

∣
‖[A Ω]u‖22 − ‖u‖22

∣

∣

∣
≥ ǫ‖u‖22

)

≤ ce−nc0(ǫ) (12)

whereǫ ∈ (0, 1) andc0(ǫ) depends onǫ only. Note that the
term‖[A Ω]u‖22 can be expanded as

‖[A Ω]u‖22 = ‖Ax‖22 + ‖e‖22 + 2eTΩTAx (13)

sinceΩ is orthonormal. The term2eTΩTAx can be written
as the sum of scaled symmetric Bernoulli variables. Namely,
if we denotez = 2Ωe, we have

2eTΩTAx =
∑

i, j

(xizj) aij . (14)

We want to show a bound of the form

P
(∣

∣2eTΩTAx
∣

∣ ≥ ǫ‖x‖2‖e‖2
)

≤ e−nc̃(ǫ). (15)

For “normal” A (i.e., the elements ofA i.i.d. from normal
distribution), it was shown in [2] that

P
(∣

∣2eTΩTAx
∣

∣ ≥ ǫ‖x‖2‖e‖2
)

≤ e−nǫ2/8. (16)

On the other hand, it was shown in [2] that for both symmetric
Bernoulli and GaussianA we have

P

(
∣

∣

∣
‖Ax‖22 − ‖x‖22

∣

∣

∣
≥ ǫ‖x‖22

)

≤ 2e−n(ǫ2/2−ǫ3/3). (17)

In [1], different bound on the above probability was stated
(for Gaussian case), namely2e−nǫ2/8. It is valid for ǫ ≤ 3/4
since thenǫ2/4 − ǫ3/6 ≥ ǫ2/8. Bound 17 was derived both
in [2] and [12] (for Gaussian case).

Using the ideas from [2], we can use the bound 16 for
normalA to derive the bound for the symmetric Bernoulli
case. Let use denotec = ‖x‖2‖e‖2. From Markov inequality,
we have

P
(

zTAx ≥ cǫ
)

≤ E

(

ehz
TAx

)

e−hcǫ (18)

for all h > 0. Let us denote byT a random matrix with i.i.d
elements fromN (0, 1/n). We have thatE

(

exp
(

hzTTx
))

is finite for smallh (sincezTTx is normally distributed, with
expectation0 and variance‖x‖22‖y‖22/n). Therefore, we have

E
(

exp
(

hzTTx
))

=
∏

i, j

E (exp (hzixjtij))

=
∏

i, j

∑

l≥0

(hzixj)
l

l!
E (tij)

≥
∏

i, j

∑

l≥0

(hzixj)
l

l!
E (aij) (19)

= E
(

exp
(

hzTAx
))

(20)

where 19 follows since all moments of symmetric Bernoulli
variable are dominated by the moments of Gaussian variable
with mean zero and the same variance [2] (this is valid for
both distributions 10 and 11). In the above calculations, the
expectation and sum can be swaped because of the monotone
convergence theorem [2]. We have thatE

(

exp
(

hyTTx
))

=

eh
2v/2, wherev = ‖x‖22‖y‖22/n. Therefore, we have

P
(

yTAx ≥ cǫ
)

≤ eh
2v/2−hcǫ. (21)



By optimizing this bound overh, we get

P
(

yTAx ≥ cǫ
)

≤ e−nǫ2/8. (22)

Similarly, we have

P
(

yTAx ≤ −cǫ
)

≤ e−nǫ2/8. (23)

This follows because of the symmetry of the distribution of
aij .

Going back to 12, we have that, with probability greater
than1− 4e−nǫ2/8 (for ǫ ≤ 3/4)

‖[A Ω]u‖22 = ‖Ax‖22 + ‖e‖22 + 2eTΩTAx (24)

≤ (1 + ǫ)‖x‖22 + ǫ‖x‖2‖e‖2 + ‖e‖22(25)

≤ (1 + 2ǫ)‖u‖22 (26)

and
‖[A Ω]u‖22 ≥ (1− 2ǫ)‖u‖22. (27)

The above inequalities are analogous to those in [1]. It should
be noted that the above inequalities are valid with even higher
probability than stated here, by combining bounds for both
inequalities in 12. Of course, as noted in [1], similar bounds
are valid for all sub-gaussian distributions, i.e. those that are
dominated by the centered Gaussian distribution ([13], Chap-
ter5).

Based on the above concentration inequalities, it follows
that the matrix[A Ω], where the elements ofA are generated
as i.i.d. elements from symmetric Bernoulli distribution with
variance1/n, satisfies the RIP with high probability (Theo-
rem1 from [1], which follows from Theorem5.2 in [11]).

2.2. Uniqueness of the sparse solution

Sufficient conditions for uniqueness of the solution of the
problem 2 were derived in [3], under the assumptionλ ≥ 1.
However, analogous reasoning can be used to derive sufficient
conditions for uniqueness forλ < 1 too. Also, analogous re-
sult can be proved for more general setting 1 withΩ with
orthonormal columns. Here we state the Proposition2.2 from
[3] with these extensions.

Proposition 1 LetA ∈ Cn×N , wheren ≤ N , be such that it
has only full-rank submatrices. Letx0 ∈ CN with ‖x0‖0 =
m ande0 ∈ C

n with ‖e0‖0 = K be given. Letb = Ax0 +
Ωe0. Then, forλ ≥ 1 (0 < λ < 1), if n ≥ 2K + (λ + 1)m
(n ≥ 2m +

(

1 + 1
λ

)

K), problem 2 has the unique solution
x̂ = x0.

Proof. The proposition was proved forλ ≥ 1 andΩ = I
(here,I denotesn× n identity matrix) in [3]. Here we prove
the other part (0 < λ < 1) in the more general setting (we
do not supposeΩ = I) analogously. The proof of the case
λ ≥ 1 and for general orthonormalΩ is analogous. Note that
the problem 2 is equivalent to

min
x

{ 1
λ
‖ΩT (y −Ax)‖0 + ‖x‖0} (28)

i.e. x0 is the solution of 2 if and only if it is the solution of 28.
Let x̂ 6= x0 be another solution of 28, and̂e = ΩT (y − Ax̂).
We have‖x̂‖0 + 1

λ‖ê‖0 ≤ m+ 1
λK. Let us denote byS the

support (set of indexes of non-zero elements) ofx̂ − x0, and
by T the support of̂e − e0. If we denote‖ê‖0 = s, we have
|S| ≤ 2m+ 1

λK− 1
λs and|T | ≤ s+K. FromA (x̂− x0) =

Ω (e0 − ê) we have that
(

ΩTA
)

TC ,Ω
(x̂− x0)S = 0. Matrix

(

ΩTA
)

TC , S
is of full rank by assumption, since it can be

written as
(

ΩTA
)

TC , S
= (ΩTC )

T
AS (29)

andΩTC is of full rank (since it has orthonormal columns).
The condition

∣

∣TC
∣

∣ ≥ |S|, which would yieldx̂ = x0, is
equivalent ton ≥ 2m+ (1 + 1

λ)K + (1− 1
λ )s. Sinceλ < 1,

the proposition is proved. 2

The assumption used in the proposition, that every sub-
matrix ofA is of full rank, is satisfied with high probability
for random matrices. In the caseλ = 1, the statement of the
proposition reduces to the usual requirement for the number
of measurements, namely that it is at least two times larger
than theℓ0 quasi-norm of the solution.

3. EXPERIMENTS

We have compared the proposed method with the methods
from [6] and [3] on some synthetic experiments. We have
used problem settings from that papers. All reported numeri-
cal experiments were done in MATLAB R2011b on a3 GHz
Quad-Core Windows7 PC with12GB memory. Code for re-
producing the results is available on author’s webpage1. We
have implemented the method from [6] using the fmincon
function in MATLAB. The absolute value in the definition of
the Lorentzian norm in 7 was approximated as|x| ≈

√
x2 + ǫ

to make it differentiable. In all experiments,ǫ was set to
0.001.

3.1. First experiment

In the first experiment, the problem setting was the follow-
ing (it is taken from [6]. The size of matrixA was set to
128 × 1024. Elements ofA were generated i.i.d. from stan-
dard normal distribution. Columns ofA were normalized to
unit norms. Elements of the solution vector were generated
randomly from−1, 1. Afterwards,S was normalized so that
its average power is0.78 (as in [6]). Sparsity of the solution
vector was varied in the range from8 (as fixed in [6]) to20.

OMP algorithm was used for sparse recovery (problem 8).
Stopping criterion was set to maximal number of non-zero el-
ements of the solution, and it was set to2(k + nimp), where
k denotes the sparsity (ℓ0 norm) of the solution vector, and
nimp denotes the number of impulses. In this experiment, the
number of impulses was13. The amplitude of all impulses
was50, as in [6]. Parameters of the proposed method were as

1MATLAB code

http://www.lair.irb.hr/ikopriva/ index.php?option=com_content&view=article&id=62&Itemid=68


follows. γ was set to0.1, ǫ in 7 was set to2‖e‖LL2, γ , wheree
is the true noise vector. Debiasing was used after reconstruc-
tion, as proposed in [6]. For solving theℓ1 + ℓ1 problem 3,
we have used the cvx package.λ was set to1. Experiment
was repeated10 times. Figure 1 shows the results. OMP al-
gorithm clearly performs better than both robust method [6]
andℓ1 + ℓ1 approach.
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Fig. 1: Frequency of exact reconstruction (over10 runs) when
10 impulses of amplitude50were added to the measurements,
for several values of the sparsity of the solution

3.2. Experiment2

In the second experiment,A was generated as in the first.
Sparsity of the solution vector was fixed to8. This time,p-
contaminated noise was added. Namely, the number of im-
pulses was⌊pm+ 0.5⌋ (here,⌊·⌋ denotes the floor function),
where contamination factorp was varied in the range from
0.001 to 0.5. Gaussian noise with standard deviation0.1 was
added to the measurements too. This setting was also adopted
from [6]. The experiment was repeated100 times, every time
randomly generating the system. Method [6] wasn’t used in
the simulations because of the slow implementation; how-
ever, all paramaters of the problem are the same as in [6],
and the results reported here should be compared with Figure
15(a) from that paper. Results of our experiments are shown
in Figure 2. It can be seen that both the proposed and the
ℓ1 + ℓ1 approach perform well in this experiment, better than
the method from [6]. ℓ1 + ℓ1 approach is sensitive to the
choice of the parameterλ, and possibly even better average
reconstruction SNR could be obtained with some other choice
of λ.

3.3. Experiment3

In this experiment, problem setting was as in the previous, but
the noise was generated from impulsive alpha-stable distribu-
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Fig. 2: Average reconstruction signal-to-noise ratio (SNR)
(over100 runs) as a function of the contamination factor (see
text for details). These graphs should be compared with the
Figure15(a) in [6].

tion. The parameterα of the distribution was varied in the
range from0.2 (very impulsive) to2 (Gaussian). In this case,
stopping criterion for OMP algorithm was the norm of the
residual. It was set to

√
mmadx/10, wheremadx denotes

the median absolute deviation of vectorx (it is a robust esti-
mator of scale/standard deviation ofx). This choice doesn’t
use prior information about noise, and therefore obtained re-
sults can be considered realistic. Forℓ1 + ℓ1 approach,λ was
again set to1. Again, the method from [6] wasn’t used in our
simulations because the implementation is slow. The experi-
ment was repeated100 times. Results are shown in Figure 3,
and should be compared with Figure15(b) in [6]. It can be
seen that, in this case, the method [6] performs better, but it
is tailored for this problem setting. Namely, in this case the
noise vector is not sparse, it can only be viewed as approx-
imately sparse. This is the reason for better performance of
robust method that uses the Lorentzian norm. However, even
here, OMP gave comparable results.

3.4. Experiment4

In this experiment, we have used the setting from the first
experiment 3.1, but the elements of the solution vector were
generated from standard normal distribution. Parameters of
all the methods were the same as in the first experiment. Re-
sults are shown in Figure 4. Robust method from [6] couldn’t
recover the true solution in any of the cases.

3.5. Experiment5

In the next experiment, we have compared the proposed
method with theℓ1 + ℓ1 aproach from [3]. The problem
setting was as in [3]. Namely, the size of the measurement
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Fig. 3: Average reconstruction signal-to-noise ratio (SNR)
(over100 runs) as a function of the tail parameter of the noise
(see text for details). These graphs should be compared with
the Figure15(b) in [6].
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Fig. 4: Frequency of exact reconstruction (over10 runs) when
10 impulses of amplitude50were added to the measurements,
for several values of the sparsity of the solution. Nonzero
elements of the true solution were generated from standard
normal distribution.

matrix A was40 × 64. A was generated by taking a sub-
set of rows of two-dimensional discrete cosine transform
(DCT) matrix with randomly generated indexes. Indexes
of nonzero elements of the solution vector were generated
randomly. Nonzero values of the solution were generated
uniformly from [−1, −0.1] ∪ [0.1, 1]. Nonzero values of the
noise vector were taken from the set{minAx, maxAx}.
To create phase transition plots for both methods, sparsities
of the solution vector and the noise vector were varied in

the range from0 to 20. For every fixed pair of sparsity of
the solution and noise,100 runs were performed, every time
randomly generating indexes of rows of DCT matrix, indexes
of nonzero elements of the solution and of the noise vector,
and the values of nonzero elements of the solution and noise.
Recovery was considered successful if the relative error ofthe
reconstruction was below10−4. For both methods, fraction
of successful recoveries in100 runs was calculated. Results
are shown in Figures 5a and Figure 5b. It can be seen that the
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Fig. 5: (a) Phase transition plot for the OMP algorithm.
Measurement matrix was generated by randomly selecting40
rows of the2-D DCT matrix. See text for details. (b) Phase
transition plot for theℓ1 + ℓ1 approach. Problem setting was
the same as in (a).

ℓ1 + ℓ1 approach performed little better than the OMP, but
this example can be considered unrealistic since the number
of measurements is relatively large with respect to the dimen-
sion of the solution vector. We included this experiment since
this setting was used in [3].

3.6. Experiment6

The problem setting in this experiment was similar to that in
the previous 3.5, except that the measurement matrix was gen-
erated by randomly selecting16 rows of64 × 64 2-D DCT
matrix, and the non-zero elements of the solution vector were
generated from standard normal distribution. The results are
shown in Figures 6a and 6b. This time, OMP performed bet-
ter thanℓ1 + ℓ1 approach. This is expected since it is known
that OMP performs better when the non-zero elements of the
solution have some decay. On the other hand,ℓ1 minimization
is insensitive to the distribution of non-zero elements [14].

4. CONCLUSIONS

We have discussed sparse recovery in the presence of impul-
sive (sparse) noise. It can be argued that the results presented
in Subsections 2.1 and 2.2 follow straightforwardly from pa-
pers [1, 3]. Still, they are relevant for the problem of sparse
recovery with impulsive noise. However, the main focus in
this paper has been on numerical experiments that show gen-
erally better performance of the proposed method compared
to robust sparse recovery method from [6]. The method from
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Fig. 6: (a) Phase transition plot for the OMP algorithm.
Measurement matrix was generated by randomly selecting16
rows of the2-D DCT matrix. See text for details. (b) Phase
transition plot for theℓ1 + ℓ1 approach. Problem setting was
the same as in (a).

[1], which is based on convex relaxation of 8 by replacingℓ0
quasi-norm withℓ1 norm, has also been used in comparative
performance analysis, showing results similar to OMP, as ex-
pected. We have used the OMP algorithm, however any other
method for solving the sparse recovery problem 8 can be used
(as already suggested in [1]).
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