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ABSTRACT 

Image inpainting consists in recovering missing parts of an 

image. Since a color image is a  D array, tensor 

completion methods are applicable to this problem. Tensor 

completion approach based on trace norm minimization 

can be useful when the fraction of missing pixels is not 

large, with the advantage that the training set is not 

required. Here, we demonstrate that the dictionary for 

sparse representation of multichannel image patches can be 

learned from a single (clean) image, yielding results 

comparable to those as obtained by a dictionary learned on 

a training set of images. We show that the learned 

dictionary-based approach performs considerably better 

than tensor completion both on color images of natural 

scenes and multi-phase computed tomography images.  

Index Terms – dictionary learning, independent 

component analysis, color image, computed tomography 

image, inpainting, tensor completion. 

 

1. INTRODUCTION 

Image inpainting problem consists in recovering missing 

parts of an image, wherein the locations of missing pixels 

are known or selected by the user. A related problem is 

removal of salt-and-pepper noise. Salt-and-pepper noise 

occurs when some image pixels are saturated, meaning that 

they have minimal or maximal value in the range of pixel 

values, wherein the locations of noise-corrupted pixels are 

unknown. For images of natural scenes, salt-and-pepper 

noise removal problem can be reduced to the inpainting 

problem by declaring all saturated pixels as missing [1]. 

This approach works well even if some pixels are 

mistakenly declared as missing. In [1], the dictionary for 

sparse representation of image patches learned by 

independent component analysis (ICA) was used for image 

inpainting and salt-and-pepper noise removal. Good results 

were demonstrated even for     of missing or corrupted 

pixels. This approach was extended for color images in [2]. 

There, the tensor completion approach to color image 

inpainting based on minimization of trace (nuclear) norm 

was also discussed. Trace norm of a matrix, defined as the 

sum of its singular values, is convex function and an often 

used approximation of matrix rank. Low-rank assumption 

is often used to regularize the ill-posed tensor completion 

problem. Low-rank tensor completion based on trace norm 

minimization was used for color image inpainting in [3]. 

However, it was argued in [2] that the low-rank assumption 

is data-dependent and often fails for color images. 

Therefore, tensor completion approach doesn't perform 

well for color image inpainting when the fraction of 

missing pixels is large. When the fraction of corrupted or 

missing pixels is not large, tensor completion approach can 

give visually pleasing results, despite the low-rank 

assumption not being satisfied. Since the tensor completion 

approach doesn't require a training set of images, it could 

be considered as an advantage compared to learned 

dictionary-based approach, which generally needs training 

set of images to learn the dictionary on. In this paper, 

which extends our previous papers [1, 2], we demonstrate 

that the dictionary can be learned on a single image only. 

At the same time, significantly better results are obtained 

than with the tensor completion approach. This could be 

important in applications where possibly not many images 

are available for dictionary learning.  

In above cited papers, only images of natural scenes were 

considered. Although obtained results are interesting, it 

could be argued that they are of small practical relevance. 

Perhaps more practically important applications are in the 

area of medical imaging. Therefore, in this paper we also 

use three-phase computed tomography (CT) images for the 

demonstration of inpainting algorithms.  

In the following section we briefly describe tensor 

completion and learned dictionary approaches to color and 

three-phase CT image inpainting. The experimental results 

are presented in Section 3. Conclusions are drawn in 

Section 4. 
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2. APPROACHES TO COLOR AND THREE-PHASE 

CT IMAGE INPAINTING 

In this paper we consider only images with   channels: 

RGB color images and three-phase CT images. However, 

the same approach, as described in the sequel, could be 

used for images with more channels.  

RGB color image is a  -D tensor. Therefore, color image 

inpainting is a special instance of tensor completion 

problem. In [3], tensor completion algorithms based on 

minimization of trace norm were used for inpainting of 

some color and magnetic resonance (MR) images. Therein, 

low-rank assumption (expressed through the use of the 

trace norm) was used as a regularization for the ill-posed 

tensor completion problem. However, since RGB color and 

MR images are not low-rank, significantly better results 

can be obtained with the learned dictionary approach, 

described in the following.  

We denote an RGB color or three-phase CT image as 

          , where    and    denote the number of rows 

and columns, respectively. It has been demonstrated in 

many papers ([4, 5, 6, 7, 1], to cite only several) that by 

learning a dictionary for (approximately) sparse 

representation of image patches, excellent results can be 

obtained in problems of image inpainting, denoising or 

reconstruction from small number of measurements. Image 

patch is a small image block,     
√  √   , where 

√  √  is the spatial size of the patch, and   denotes the 

patch index. To learn the dictionary for sparse 

representation of image patches, a collection of randomly 

selected and vectorized patches from image(s) in the 

training set is stored columnwise in matrix       , 

where      and   denotes the number of selected 

patches. The dictionary           , is learned such 

that every vectorized patch     
  can be represented as 

      , where ‖  ‖   . Here, ‖  ‖  stands for the 

number of nonzero elements of vector   . Therefore,   is 

learned through the factorization     , where sparsity is 

imposed on the columns of  . That is known as sparse 

coding. In our previous papers [1, 2] we have used ICA-

based probabilistic approach for this purpose. Sparsity of 

matrix   was imposed implicitly through the choice of 

parameter(s) in ICA algorithm, see [1, 2]. In this way, good 

results were obtained in image inpainting and removal of 

salt-and-pepper noise experiments.  

It was argued in [2] that, if the training set is rich enough, 

the learned dictionary atoms represent the diversity of 

colors in natural images. However, here we show that 

comparable results can be obtained by learning the 

dictionary from a single image. This eliminates the need for 

many training images. Of course, the choice of an image 

used for dictionary learning is important. In the 

experiments presented in the following section we have 

used several images to learn different dictionaries and 

compared the results of inpainting experiments.  

Once the dictionary is learned, the inpainting is performed 

by processing every image patch, as described in [2]. 

Namely, for every image patch, the following problem is 

solved:  

(1)   ̂         {‖ ‖   ‖       ‖ 
 
  } 

where     
         , denotes the projection onto 

indexes of    observed (available) pixels in current patch, 

  is the patch index,     
   denotes the vector of 

observed pixels, and     is the allowed error of the 

representation (it is set heuristically). Reconstructed patch 

 ̂  is obtained (in vectorized form) as  ̂    ̂ . After 

processing all patches, overlapping regions are averaged.  

Here we note that the usual procedure for grayscale images 

before dictionary learning and inpainting (denoising) is to 

preprocess all patches to make them zero-mean. In other 

words, before processing every patch, mean value  (  ) 

of the available pixels (i.e., mean of vector    above) is 

subtracted from   . Then, the modified problem is solved: 

 ̃         {‖ ‖   ‖     (    (  ))‖
 

 

  }. 

The reconstructed patch is then obtained as  ̂    ̃  

 (  ). This leads to good results for grayscale images, 

and when the spatial distribution of missing pixels is 

uniform. However, for color images, this approach leads to 

color artifacts. Therefore, mean should not be subtracted 

when processing color image patches. This applies to both 

inpainting and dictionary learning. Namely, dictionary is 

learned on original color patches, without making them 

zero-mean. Preprocessing of patches suggested in [2] to 

avoid color artifacts is then not necessary.  

 

3. EXPERIMENTAL RESULTS 

In this section we present the experiments performed on 

natural images and three-phase CT images.  

3.1. Natural images. Figure 1 shows several images used 

for dictionary learning. The images were downloaded from 

[8].  

 

Figure 1. Training images. Four dictionaries were learned, 

from the above images. 



For every image,       patches of size       were 

extracted. Flat patches (i.e., those with small variance) 

were discarded. Vectorized patches were stacked as 

columns of matrix    (here,   denotes the image index).  

The complete (   ) dictionary is learned from every 

image using the FastICA algorithm [9] with gauss 

nonlinearity, which yields similar results as when using 

tanh nonlinearity (used in [2]), while making FastICA 

algorithm faster.  

Two examples of learned dictionaries are shown in Figure 

2. 

 

Figure 2. Tensorized columns (atoms) of size       of 

learned dictionaries. The upper part corresponds to the 

image in top left of Figure 1, while the lower part 

corresponds to the image in top right of Figure 1. 

Robust SL0 algorithm [10] was used for solving the sub-

problems (1). Parameter   was set to  . Other values were 

also tried, without improving the quality of the results. 

We have compared the learned dictionary-based approach 

with tensor completion. Tensor completion method 

described in [3] was used (the implementation is available 

at
1
). Default values of the parameters were used. Namely, 

the weights of the trace norm terms were [         ]. 
The number of iterations was set to     , which was 

enough for the algorithm to reach the stationary point. 

Other values were also tested, yielding similar results. 

Figure 3 shows the images used for comparing the 

methods. Tables 1 and 2 show the results, comparing the 

ICA-learned dictionary-based method and tensor 

completion method. Values in the table are peak signal-to-

noise ratios (PSNR-s) in decibels (dB). The experiments 

were repeated for several random masks (i.e. distributions 

of missing pixels), without significant change in the 

comparative performance of methods. Namely, variations 

in PSNR for different random masks were less than     dB 

in all simulations.  
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Figure 3. Images used for the comparison of methods. 

Table 1. Results on test images from Figure 3, with     

missing pixels. For learned dictionary approach,   results 

are presented for each image, since   dictionaries were 

learned. Values in the table are peak signal-to-noise ratios 

(PSNR-s) in decibels (dB). 

Method \ Image Fig.3(a) Fig.3 (b) Fig.3 (c) 

ICA-learned dictionary                   

ICA-learned dictionary                 

ICA-learned dictionary                     

ICA-learned dictionary                    

Tensor completion                  

 

Table 2. Results on test images from Figure 3, with     

missing pixels. Values in the table are PSNR-s in dB. 

Method \ Image Fig.3 (a) Fig.3 (b) Fig.3 (c) 

ICA-learned dictionary                    

ICA-learned dictionary                    

ICA-learned dictionary                    

ICA-learned dictionary                   

Tensor completion                   

 

It is obvious that the learned dictionary-based approach 

performs significantly (up to    dB) better than the tensor 

completion approach. This is true both in terms of PSNR 

and visually, as shown in Figures 4 and 5. 

In [2], the result of       dB (mean over   random masks) 

was achieved on the castle image (Figure 3 (a)) with     

missing pixels. It can be seen from Table 2 that, when the 

dictionary is learned on a single image, the best result was 

http://peterwonka.net/Publications/LRTC_Package_Ji.zip


      dB, which is even better than the result reported in 

[2], while the average over   different dictionaries is       

dB. Therefore, it can be seen from this example that 

comparable results in image inpainting can be achieved 

when the dictionary is learned on a single image only 

(relative to the case when the dictionary is learned on a 

training set of images). 

 

Figure 4. Comparison of the inpainting results using the 

learned dictionary and tensor completion approach. (a) 

Image with     missing pixels. (b) Image reconstructed 

using the ICA-learned dictionary. (c) Image reconstructed 

using the tensor completion approach.  

 

Figure 5. Comparison of the inpainting results using the 

learned dictionary and tensor completion approach. (a) 

Image with     missing pixels. (b) Image reconstructed 

using the ICA-learned dictionary. (c) Image reconstructed 

using the tensor completion approach. 

3.2. Three-phase CT images. Proposed method was also 

tested on experimental three-phase CT images of an 

abdomen.  

For CT images, the dictionary was learned on a single 

phase of one slice only. It is shown in Figure 6. Therefore, 

grayscale patches were used for dictionary learning in this 

case (as in [1]), and every phase-image was inpainted 

separately in the inpainting phase. Patch size was set to 

      pixels. The learned dictionary is shown in Figure 

7.  

 

Figure 6. Phase-image on which the dictionary was 

learned. It was chosen from a different slice than the one 

used in inpainting experiments, shown in Figure 8. 

 

Figure 7. Matricized dictionary atoms of size      . 

 

Figure 8. From left to right: portal-venous 1, arterial and 

portal-venous 2 phase  CT images used for the inpainting 

experiments. 

Three-phase CT image used for the inpainting experiments 

is shown in Figure 8. Obtained results were as follows. For 

    missing pixels, ICA-learned dictionary-based 

approach achieved root mean squared error (RMSE) of 

    , while tensor completion approach achieved RMSE of 

     . For     missing pixels, learned dictionary-based 

approach achieved RMSE of      , while tensor 

completion approach achieved     . Reconstructed images 

are shown in Figure 9. Experiments were repeated for 

several random masks, but the results did not vary 

significantly. It is clear that the learned dictionary-based 

approach greatly outperformed the tensor completion 

approach. The main reason for this is that the low-rank 

assumption is not satisfied. 



 

Figure 9. Results of inpainting of  -phase CT image. 

Columns correspond to phases of a CT image. Top row: 

images with     missing pixels. Middle row: inpainting 

results using the tensor completion approach. Third row: 

inpainting results using the ICA-learned dictionary.  

4. CONCLUSION 

In this paper we have extended our previous results [1, 2]. 

Namely, we have shown that, by learning the dictionary on 

a single image only, comparable results in inpainting can 

be achieved relative to the case when the dictionary is 

learned on a training set of images. Detailed comparison of 

the learned dictionary approach and the tensor completion 

approach based on minimization of trace norm was 

presented, both on color (RGB) images of natural scenes 

and three-phase CT images. The approach to inpainting 

based on ICA-learned dictionary greatly outperformed the 

tensor completion approach in all experiments. We 

conjecture that similar results could also be obtained for 

other types of imaging modalities, like multispectral 

magnetic resonance imaging (MRI) or functional MRI.  
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