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 Instantaneous blind source separation (BSS):–

problem definition and overview of main methods

 underdetermined BSS (uBSS) and sparse 

component analysis (SCA):

 asymptotic results from compressed sensing theory 

 SCA by data clustering and Lp-norm minimization

 SCA by sparseness constrained non-negative matrix factorization 

(NMF)

 Applications in hyper-, multispectral and magnetic 

resonance image decomposition.

Talk outline
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Blind Source Separation – linear static problem

Recovery of signals from their multichannel linear superposition using minimum of 

a priori information i.e. multichannel measurements only.

Problem:

X=AS X∈RNxT, A∈RNxM, S∈RMxT N - number of sensors/mixtures;

M - unknown number of sources

T - number of samples/observations

Goal: find S, A and number of sources M based on X only.

A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.

A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.

P. Comon, C. Jutten, editors, “Handbook of Blind Source Separation,” Elsevier, 2010.



2014 Summer School on Image Processing (SSIP 2014), 
Faculty of Electrical Engineering and Computing,University of Zagreb, Zagreb, Croatia  – July 9-18, 2014.

“Sparse component analysis for unsupervised multichannel image decomposition”

Blind Source Separation – linear static problem

X=AS and X=ATT-1S are equivalent for any square invertible matrix T. There

are infinitely many pairs (AT, T-1S) satisfying linear mixture model X=AS.

Independent component analysis (ICA) solves BSS problem provided that:

source signals S are statistically independent and non-Gaussian; mixing matrix A is 

full column rank i.e. M≤N.

Dependent component analysis (DCA) improves accuracy of ICA when

sources are not statistically independent. Linear high-pass filtering type of 

preprocessing transform is applied row-wise to X: L(X)=AL(S). ICA is applied to L(X) 

to estimate A and L(S). S is estimated from S≈A-1X.

Matlab implementation of  many ICA algorithms can be found in the ICALAB: 

http://www.bsp.brain.riken.go.jp/ICALAB/

Solutions unique up to permutation and scaling indeterminacies, T=PΛ, are 

meaningful. For such solutions constraints must be imposed on A and/or S.
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Blind Source Separation – linear static problem

Sparse component analysis (SCA) solves BSS problem imposing sparseness

constraints on source signals S. M can be less than, equal to or greater than N. 

Thus, SCA can be used to solve underdetermined BSS problems where number of 

source signals is greater than number of mixtures.

Nonnegative matrix factorization (NMF) solves BSS problem imposing

nonnegativity, sparseness, smoothness or constraints on source signals. NMF 

algorithms that enforce sparse decomposition of X can be seen as SCA algorithms.

Matlab implementation of  many NMF algorithms can be found in the NMFLAB: 

http://www.bsp.brain.riken.jp/ICALAB/nmflab.html

A.  Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations-Applications to 

Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley, 2009.
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Underdetermined BSS

• SCA-based solution of the uBSS problem is obtained in two stages: 

1) estimate basis or mixing matrix A using data clustering.

2) estimating sources, with estimated A, one at a time st, t=1,…,T or 

simultaneously solving underdetermined linear systems of        

equations xt =Ast. Provided that st is sparse enough, solution is 

obtained  at the minimum of Lp-norm, , 0≤ p ≤1. 

Here:                             .

• NMF-based solution yields A and S simulatneously through sparseness and

nonnegativity constrained factorization of X.

t p
s

1

1

p
M

p

t mtp
m

ss



2014 Summer School on Image Processing (SSIP 2014), 
Faculty of Electrical Engineering and Computing,University of Zagreb, Zagreb, Croatia  – July 9-18, 2014.

“Sparse component analysis for unsupervised multichannel image decomposition”

When uBSS problems can(not) be solved?

Let us focus on underdetermined linear system:

x=As, x RN , s RM , M>N

Let s be K-sparse i.e. K= s 0 . 

Provided that A is random, with entries from Gaussian or Bernoulli 

distributions, compressed sensing theory has established necessary 

and sufficient condition on N, M and K to obtain, with probability one, 

unique solution at the minimum of L1-norm of s, ref. [a]:

N Klog(M/K) 

a) Candès E, Tao T. Near optimal signal recovery from random projections: universal encoding strategy?. IEEE 

Trans. Information Theory 2006; 52: 5406-5425.
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When uBSS problems can(not) be solved?

When Lp-norm of s is minimized, the condition on number of measurements N 

is:

where C1(p) and C2(p) are norm-dependent constants, ref [a]: 

a) Chartran R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems 

2008; 24: 035020 (14 pages).

Hence,                        . Thus, for p=0 number of measurements N does not

depend on M!!!! That explains good results of L0-norm constrained algorithms

when compared against L1-norm constrained algorithms when K is increasing, 

ref [b, c]:

N C1(p)K + pC2(p)Klog(M/K),

1
0

lim (0)
p

N C K

b) Pehaz R, Pernkopf, F. Sparse nonnegative matrix factorization with -constraints. Neurocomputing. 2012; 

80: 38-46.

c) Mohimani H, Babie-Zadeh B, Jutten C. A Fast Approach for Overcomplete Sparse Decomposition Based on

Smoothed Norm. IEEE Trans. Sig. Proc. 2009; 57(1): 289-301.

0

0
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•Signal s is K-sparse if it has K non-zero components, i.e. K= s 0.

•If uBSS problem is not sparse in original domain it ought to be transformed in domain 

where enough level of sparseness can be achieved: T(x)=AT(s). 

•Time-frequency and time-scale (wavelet) bases are employed for this purpose quite

often.

•In addition to sparseness requirement on s certain degree of incoherence of the mixing 

matrix A is required as well. Mutual coherence is defined as the largest absolute and 

normalized inner product between different columns in A, what reads as 

uBSS – Lp norm minimization: 0< p 1

1 ,  and 
max

T

i j

i j M i j
i j

a a
A

a a
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The mutual coherence provides a worst case measure of similarity between the

basis vectors. It indicates how much two closely related vectors may confuse

any pursuit algorithm (solver of the underdetermined linear system of

equations). The worst-case perfect recovery condition for s relates sparseness

requirement on s and coherence of A, ref. [a,b]:

In: I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from limited data using FOCUSS, a re-

weighted minimum norm algorithm,” IEEE Trans. Signal Process., vol.45, no.3, pp. 600–616, Mar. 1997.

another uniqueness theorem has been stated. If A has unique representation

property, that is if all N N sub-matrices are full rank, the unique solution of

x=As exists if: .

0

1 1
1

2
s

A

uBSS – Lp norm minimization: 0< p 1

0
2Ns

a) R. Gribonval and M. Nielsen, "Sparse representations in unions of bases," IEEE Transactions on Information 

Theory 49, 3320-3325 (2003).

b) J. A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on Information 

Theory 50, 2231-2242 (2004).
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uBSS – Lp norm minimization: 0< p 1

Solving underdetermined system of linear equations x=As amounts to solving:

2

0 2( )

ˆˆ( ) arg min ( ) s.t. ( ) ( ) 1,...,
t

t t t t t T
s

s s As x

or for problems with noise or approximation error:

2

02( )

1 ˆˆ( ) argmin ( ) ( ) ( ) 1,...,
2t

t t t t t T
s

s As x s

0
( )

ˆˆ( ) arg min ( ) s.t. ( ) ( ) 1,...,
t

t t t t t T
s

s s As x

Direct minimization of L0–norm of s is combinatorial problem that is NP-hard. 

For larger dimension M it becomes computationally infeasible. 
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Replacement of L0-norm by L1-norm is done quite often. That is known as 

convex relaxation of the minimum L0-norm problem. It leads to linear program:

ˆ

1
( )

ˆˆ( ) arg min s.t. ( ) ( ) 1,..., s.t.  ( ) 0
M

mm
t

t s t t t t t
s

s As x s

uBSS – L1 norm minimization

L1-regularized least square problem ref.[a,b]:

and L2-regularized linear problem [b,c]:

2

12( )

1 ˆˆ( ) arg min ( ) ( ) ( ) 1,...,
2t

t t t t t T
s

s As x s

2

1 2( )

ˆˆ( ) arg min ( ) s.t. ( ) ( ) 1,...,
t

t t t t t T
s

s s As x

a) S..J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale -Regularized Least Squares,” 

IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007), http://www.stanford.edu/~boyd/l1_ls/. 

b) E. van den Berg, M.P. Friedlander, “Probing the Pareto Frontier for Basis Pursuit Solutions,” SIAM J. Sci. Comput. 31, 890-912 

(2008).

c) M.A.T. Figuiredo, R.D. Nowak, S.J. Wright, "Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing 

and Other Inverse Problems," IEEE Journal on Selected Topics in Signal Processing 1, 586-597 (2007).
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Iterative soft/hard thresholding

2

12( )

1 ˆˆ( ) arg min ( ) ( ) ( ) 1,...,
2t

t t t t t T
s

s As x s

L1-regularized least square problem:

can be reformulated within analytic soft thresholding representation theory [a,

b]:

a) D. L. Donoho, Denoising by soft-thresholding, IEEE Trans. Information Theory, 41 (1995), 613-627.

b) I. Daubechies, M. Defrise,  D.M. Christine, An iterative thresholding algorithm for linear inverse problems with a 

sparsity constraint, Comm. Pure and Appl. Math., LVII (2004) 1413-1457.

( ) ( ) ( )

( ) ( ) ( )

( 1)

( ( )) ( ) ( )

( ( )) ( ( ( )) ) / 2, ( ( )) / 2
( )

0,

k k T k

k k k

m m mk

m

B t t t

B t sign B t B t
s t

otherwise

s s A x As

s s s

where =σ2 provided that error term (noise) has normal distribution.

Otherwise some kind of cross-validation (trial and error) needs to be applied.
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Iterative soft/hard thresholding

L0-regularized least square problem:

2

02( )

1 ˆˆ( ) argmin ( ) ( ) ( ) 1,...,
2t

t t t t t T
s

s As x s

can be reformulated within analytic hard thresholding representation theory

[a]:

( ) ( ) ( )

( 1)
( ) ( ( )) / 2, ( ) / 2

( )
0,

k k k

m m mk

m

s t sign s t s t
s t

otherwise

a) R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse

Problems, 24 (2008) 1-14.

where =σ2 provided that error term (noise) has normal distribution.

Otherwise some kind of cross-validation (trial and error) needs to be applied.
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Fast Iterative Shrinkage Thresholding (Fast_IST) algorithm:

Beck, M. Teboulle, "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems," SIAM J.

Image. Sci., Vol. 2, No. 1, pp. 183-202, 2009.

MATLAB code is freely available for download at:

http://ie.technion.ac.il/Home/Users/becka.html

This algorithm uses L1–based regularization of least square approximation

problem.

2

1

1ˆ ˆmin
2 F

SS AS X S

The method can be easily implemented in batch mode to solve all the T 

equations simultaneously. The method also shrinks to zero small nonzero

elements of S that are influenced by noise. Regularization parameter has to 

be determined through cross-validation or experience.

Iterative soft/hard thresholding
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•Assuming unit L2-norm of am we can parameterize column vectors in 3D 

space by means of azimuth and elevation angles  

T[cos( )sin( ) sin( )sin( ) cos( )]m m m m m ma

•Due to nonnegativity constraints both angles are confined in [0, /2]. Now 

estimation of A and M is obtained by means of data clustering algorithm: 

•We remove all data points close to the origin for which applies:                    

where represents some predefined threshold.
2 1

( )
T

t
tx

•Normalize to unit L2-norm remaining data points x(t), i.e.,                                  
2 1

T

t
t t tx x x

Estimation of mixing matrix: clustering
F. M. Naini, G. H. Mohimani, M. Babaie-Zadeh, C. Jutten, "Estimating the mixing matrix in sparse component

analysis (SCA) based on partial k-dimensional subspace clustering," Neurocomputing, vol. 71, pp. 2330-2343, 

2008. 
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• Calculate function f(a): 

2

2
1

( ),
exp

2

T

t

d t
f

x a
a

where                               and             denotes inner product. Parameter is 

called dispersion. If set to sufficiently small value, in our experiments this turned 

out to be 0.05, the value of the function f(a) will approximately equal the 

number of data points close to a. Thus by varying mixing angles 0 , /2 we 

effectively cluster data. 

2
( ), 1 ( )d t tx a x a ( )tx a

• Number of peaks of the function f(a) corresponds with the estimated number 

of materials M. Locations of the peaks correspond with the estimates of the 

mixing angles                 , i.e., mixing vectors                    .
ˆ

1

ˆˆ ,
M

m m
m

ˆ

1

ˆˆ ˆ ,
M

m m m
m

a

Estimation of mixing matrix: clustering



2014 Summer School on Image Processing (SSIP 2014), 
Faculty of Electrical Engineering and Computing,University of Zagreb, Zagreb, Croatia  – July 9-18, 2014.

“Sparse component analysis for unsupervised multichannel image decomposition”

Estimation of the mixing matrix: clustering 

• hierarchical clustering by MATLAB function clusterdata. It is assumed 

that number of clusters (sources) is given (known). The method is deterministic 

and memory demanding.

•k-means clustering by MATLAB  function kmeans. It is assumed that a number 

of clusters M (corresponds with number of sources) is given. k-means 

clustering is a first order method and it is sensitive on initial choice of cluster 

centers (centroids).
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Mixing matrix estimation
N. Gillis and S.A. Vavasis, "Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix

Factorization”, 2012. http://arxiv.org/abs/1208.1237 

MATLAB Code: https://sites.google.com/site/nicolasgillis/code.

This method estimates the mixing matrix by generalizing some hyperspectral

unmixing algorithms based on pure pixels (single source points) assumption. 

The algorithm is recursive and fast (Fast_SepNMF), i.e. it estimates one 

mixing vector at a time. There are no parameters required to be chosen a 

priori or to be tuned. The method works when data 

matrix is approximately separable, i.e. pure pixels

do not exist.The method identifies „M' columns of

data matrix whose convex hull has encompases the data. 

Mixing matrix must be full rank, i.e. number of components has to be less than

or equal to the number of mixtures.
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Mixing matrix estimation

G. H. Ritter, G. Urcid, "A lattice matrix method for hyperspectral image unmixing," Information Sciences, vol. 181, 

pp. 1787-1803,2011. 

MATLAB code: 

http://www.ehu.es/ccwintco/index.php/Endmember_Induction_Algorithms_(EIAs)_for_MATLAB_and_SCIL

AB

Autonomous endmember determination algorithm using lattice associate

memory (LAM) theory. 

Unlike may methods in hyperspectral image analysis it does not

assume/require existence of pure pixels. Instead, it searches for the least

contaminated pixels. 

Also, it does not require number of endmembers (sources) to be known in

advance.

http://www.ehu.es/ccwintco/index.php/Endmember_Induction_Algorithms_(EIAs)_for_MATLAB_and_SCILAB
http://www.ehu.es/ccwintco/index.php/Endmember_Induction_Algorithms_(EIAs)_for_MATLAB_and_SCILAB
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Nonnegative matrix 

factorization (NMF)
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Nonnegative matrix factorization 

Many BSS problems arising in imaging, chemo- and/or bioinformatics are 

described by superposition of non-negative latent variables (sources):

where N represents number of sensors, M represents number of sources and T

represents number of observations. 

Thus, solution of related decomposition problem can be obtained by imposing 

non-negativity constraints on A and S, to narrow down number of possible 

decomposition of X. This leads to NMF algorithms. 

Due to non-negativity constraints some other constraints (statistical 

independence) can be relaxed/replaced in applications where they are not 

fulfilled.

N×T N×M M×T

0+ 0+ 0+, andX AS X A S
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Nonnegative matrix factorization

a) D D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401

(6755), 788-791 (1999). 

Modern approaches to NMF problems have been initiated by Lee-Seung‟ 

Nature paper, ref. [a], where it is proposed to estimate A and S through 

alternative minimization procedure of the two possibly different cost functions: 

Set Randomly initialize: A(0), S(0),

For k=1,2,…, until convergence do

Step 1:

Step 2:

( )

( 1) ( )

0

arg min
k

mt

k k

s

Ds
S

S X A S

( )

( 1) ( 1)

0

arg min
k

nm

k k

a

DA
A

A X AS

If both cost functions represent squared Euclidean distance (Froebenius norm) 

we obtain alternating least square (ALS) approach to NMF.
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Nonnegative matrix factorization

2* *

,

1
, arg min . . ,

2 F
D s t

A S

A S X AS X AS A 0 S 0

ALS-based NMF: 

• Minimization of the square of Euclidean norm of approximation error E=X-

AS is, from the maximum likelihood viewpoint, justified only if error 

distribution is Gaussian:

2

2

2

1
, exp

22
p

X AS
X A S

• In many instances non-negativity constraints imposed on A and S do not 

suffice to obtain solution that is unique up to standard BSS indeterminacies: 

permutation and scaling. 
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Nonnegative matrix factorization

In relation to original Lee-Seung NMF algorithm additional constraints are 

necessary to obtain factorization unique up to permutation and scaling. 

Generalization that involves constraints is given in [a]:

where                        and                         are sparseness constraints that 

correspond with L1-norm of S and A respectively. S and A are regularization 

constants. Gradient components in matrix form are:

,
( ) mtm t

J sS S
,

( ) nmn m
J aA A

a) A.  Cichocki, R. Zdunek, and S. Amari, “Csiszár‟s Divergences for Non-negative Matrix Factorization: Family of

New Algorithms,” LNCS 3889, 32-39 (2006).

T T
, ( )

nm
nm nm

D J

a a

Α
A

A S A
XS ASS

T T
, ( )

mt
mt mt

D J

s s

S
S

A S S
A X A AS

21
( ) ( )

2 F
D J JS S A AX AS X AS S A
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Nonnegative matrix factorization

Since NMF problem deals with non-negative variables the idea is to 

automatically ensure non-negativity of A and S through learning. That can be

achieved by multiplicative learning equations:

( , )

( , )

D

D

A

A

A S
A A

A S

( , )

( , )

D

D

S

S

A S
S S

A S

where denotes entry-wise multiplication,                      and                    

denote respectively negative and positive part of the gradient  . 

Likewise,                     and                    are negative and positive part of the 

gradient                      . 

When gradients converge to zero corrective terms converge to one. Since 

learning equations include multiplications and divisions of non-negative terms, 

non-negativity is ensured automatically.

( , )DA A S ( , )DA A S
( , )D

A
A S

( , )DS A S

( , )DS A S

( , )D
S

A S
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Nonnegative matrix factorization

Multiplicative learning rules for NMF based on regularized squared L2-norm of 

the approximation are obtained as: 

T

T

( )

MT

JS
S

S
A X

S
S S

A AS 1

where [x]+=max{ ,x} with small . For L1-norm based regularization, derivatives 

of sparseness constraints in above expressions are equal to 1, i.e.:

T

T

( )

NM

JΑ
A

A
XS

A
A A

ASS 1

T

T

NM

NM

AXS 1
A A

ASS 1

T

T

MT

MT

SA X 1
S S

A AS 1
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Hierarchical  ALS NMF

Local or hierarchical ALS NMF algorithms were derived in [a, b, c]. They employ 

minimization of the global cost function to learn the mixing matrix and 

minimization of set of local cost functions to learn the sources. Global cost 

function can for example be squared Euclidean norm:

21
( )

2 F
D J

A A
X AS X AS A

Local cost functions can be also squared Euclidean norms

( )m

j jj m
X X a s

a) A. Cichocki, R. Zdunek, S.I. Amari, Hierarchical ALS Algorithms for Nonnegative Matrix Factorization and 3D 

Tensor Factorization, LNCS 4666 (2007) 169-176

b) A. Cichocki, A-H. Phan, R. Zdunek, and L.-Q. Zhang, "Flexible component analysis for sparse, smooth, 

nonnegative coding or representation," LNCS 4984, 811-820 (2008).

c) A.  Cichocki, R. Zdunek, S. Amari, Nonnegative Matrix and Tensor Factorization, IEEE Sig. Proc. Mag. 25

(2008) 142-145. 

2
( ) ( ) ( ) ( ) ( )1

( ) ( ) 1,...,
2

m m m m m

m m m m m mF
D J J m M

s S a a
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Hierarchical  ALS NMF
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where I1 T is an M M identity matrix, 11 T and 1N M are row vector and matrix 

with all entries equal to one and [ ]+=max{ , } (e.g., =10-16). 

Regularization constant changes as a function of the iteration 

index as (with 0 = 100 and = 0.02 in the experiments). 0 expk k

Minimization of above cost functions in ALS manner with L1-based sparseness 

constraints imposed on A and/or S yields
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Multilayer NMF

Additional improvement in the performance of the NMF algorithms is obtained 

when they are applied in the multilayer mode [a,b], whereas sequential 

decomposition of the nonnegative matrices is performed as follows. 

In the first layer, the basic approximation decomposition is performed: 

In the second layer result from the first layer is used to build up new input data 

matrix for the second layer                        . This yields                               . 

After L layers data decomposes as follows:                                            .

(1) (1)

0

N T
X A S

(1)

0

M T
X S (1) (2) (2)

0

M T
X A S

(1) (2) ( ) ( )L L
X A A A S

a) A.  Cichocki, and R. Zdunek, “Multilayer Nonnegative Matrix Factorization,” El. Letters 42, 947-948 (2006).

b) A.  Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations-Applications to 

Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley, 2009.
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Multi-start initialization for NMF algorithms

Combined optimization of the cost function D(XΙΙAS) with respect to A and S

is non-convex optimization problem. Hence, some strategy is necessary to 

decrease probability that optimization process will get stuck in some local 

minima. Such procedure is outlined with the following pseudo code: Select R-

number of restarts, Ki number of alternating steps, Kf number of final 

alternating steps.

for r =1,…,R do

Initialize randomly A(0) and S(0)

{A(r),S(r)}  nmf_algorithm(X,A(0),S(0),Ki);

compute d=D(XΙΙA(r)S(r));

end

rmin=argmin1 n Rdr;

{A,S} nmf_algorithm(X,A(rmin),S(rmin),Kf);
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Non-negative matrix under-approximation (NMU)

a) N. Gillis, and F. Glineur, "Using underapproximations for sparse nonnegative matrix factorization," Patt. Recog., 

vol. 43, pp. 1676-1687, 2010.

NMF algorithms outlined befor require a priori knowledge of sparseness

related regularization (trade off) constant.

A sequential approach to NMF has been recently proposed in [a] by

estimating rank-1 one factors amsm one at a time. Each time amsm is

estimated it is removed from X X-amsm. To prevent subtraction from being

negative the under-approximation constraint is imposed on amsm: amsm X.

Hence, the NMU algorithm is obtained as a solution of:

2* *

,

1
, arg min . . , , .

2 F
s t

A S

A S X AS A 0 S 0 AS X
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Non-negative matrix under-approximation (NMU)

Theorem 1 in [a] proves that number of nonzero entries in A and S is less than 

in  X. Thus, the underapproximation constraint ensures sparse (parts based) 

factorization of X. This, however, does not imply that A and S obtained by

enforcing underapproximation constrain yields the sparseset decomposition of 

X.

However, since no explicit regularization is used there are no difficulties 

associated with selecting values of regularization constants. 

MATLAB code for NMU algorithm is available at:

https://sites.google.com/site/nicolasgillis/code

a) N. Gillis, and F. Glineur, "Using underapproximations for sparse nonnegative matrix factorization," Patt. Recog., 

vol. 43, pp. 1676-1687, 2010.
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Multidimensional signals1,2,3

A number of data sets is not naturally represented in 2D space but in ND, N 3, 

space. Few examples include: multispectral/hyperspectral image, video signal, 

EEG data, fluorescence spectroscopy data, magnetic resonance image, etc.

1. A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonegative Matrix and Tensor Factorizations, John Wiley & Sons, 

2009.

2. E. Acar, and B. Yener, "Unsupervised Multiway Data Analysis: A Literature Survey," IEEE Trans. Knowl. Data 

Eng. 21, 6 (2009).

3. T.G. Kolda, and B.W. Bader, “Tensor Decompositions and Applications,” SIAM Review 51, 453 (2009).

Multispectral-hyperspectral image (3D tensor)

1 2 3

0

I I I
X
I3 spectral images of the size I1 I2 pixels

Multispectral magnetic resonance image (3D tensor)

I3=3 (PD,T1 and T2) images of the size I1 I2 pixels
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Multidimensional signals
Very often for the purpose of exploratory data analysis (that includes the BSS 

methods such as ICA, DCA, SCA or NMF) 3D data are mapped to 2D data.

That is known as matricization, unfolding or flattening. For example RGB image 

tensor (I3=3) is flattened along mode-3 (spectral mode)

or in MATLAB notation:

for i3=1:3

X3(i3,:) = reshape(X(i3,:,:),1,I1*I2)

end 

1 2 3 3 1 2

3

0 (3) 0

I I I I I I
X X

Meaningful solutions of the BSS (decomposition) problem are characterized by 

T=P . To obtain them matrix factorization methods such as NMF must impose 

sparseness constraints on S.
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Sparseness constrained unsupervised multichannel image 

decomposition

Original RGB image

I. Kopriva and A . Cichocki, “Sparse component analysis-based non-probabilistic blind decomposition of low-

dimensional multi-spectral images,”  Journal of Chemometrics, vol. 23, Issue 11, pp. 590-597 (2009). 

MATLAB code:  http://www.lair.irb.hr/ikopriva/prezentacije-i-izvjetaji.html
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Multichannel image and linearan mixing model

X=AS (1)

In imaging spectroscopy (multispectral/RGB image) rows of X are vectorized

channel images (eg. red, green or blue color), columns of A are spectral 

profiles of objects (tissues, organs) present in image X, and rows of S are  

distributions of intensities of objects (tissues, organs) present in image X.  

By an equivalent interpretation the model (1) is applicable to other types of co-

registered multichannel images such as: hyperspectral image, multiphase CT, 

multispectral magnetic resonance (MR), functional MR image, imaging mass 

spectrometry, multimodal image obtained by image fusion (PET/CT),…

(u)BSS problem relates to unsupervised decomposition of image X into 

anatomically meaningful components: distributions of intensities of objects 

present in the image X.

0 0 0, ,N T M T N MX S A
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Unsupervised decomposition of multispectral images

When degree of overlap between objects in spatial domain is very small 

i.e. sm(t)*sn(t) nm, it implies K=||s(t) ||0 1.

RGB image decomposition problem can be solved with some SCA algorithm, 

eg. clustering and L1-norm minimization or NMF algorithm with sparseness

constraint. 

Estimate of the mixing A and number of objects M is achieved by clustering. 
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Three peaks suggest existence of three materials in the RGB image i.e. M=3.

Clustering algorithm is used to estimate number of materials M.

Unsupervised decomposition of multispectral images
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Intensity distributions of the materials were extracted by NMF with 25 layers, 

SCA basedd on linear programming, ICA and DCA methods.

Extracted maps were rescaled to the interval [0,1] where 0 means full absence 

of the material and 1 means full presence of the material.

This enables visualization of the quality of decomposition process.  Zero 

probability (absence of the material) is visualized with dark blue color and 

probability one (full presence of the material) is visualized with dark red color.

Unsupervised decomposition of multispectral images
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a) DCA

b) ICA

c) NMF

d) SCA- linear programming

Unsupervised decomposition of multispectral images
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I. Kopriva and A . Cichocki, “Sparse component analysis-based non-probabilistic blind decomposition of low-

dimensional multi-spectral images,”  Journal of Chemometrics, vol. 23, Issue 11, pp. 590-597 (2009). 

MATLAB code:  http://www.lair.irb.hr/ikopriva/prezentacije-i-izvjetaji.html

Consider blind decomposition of the RGB image (N=3) composed of four 

materials (M=4): 

Unsupervised decomposition of multispectral images
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For shown experimental RGB image clustering function is obtained as: 

Four peaks suggest existence of four materials in the RGB image i.e. M=4.

Unsupervised decomposition of multispectral images
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Intensity maps of the materials extracted by HALS NMF with 25 layers, linear 

programming and interior point method, [a], are obtained as:

a) S. J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale  L1 -Regularized 

Least Squares,"IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007).

http://www.stanford.edu/~boyd/l1_ls/.

a) 25 layers HALS NMF; b) Interior point method; c) Linear programming.

Unsupervised decomposition of multispectral images
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Since materials in the experimental RGB image are orthogonal (they do not

overlap in spatial domain) we can evaluate performance of the employed blind

image decomposition methods via the correlation matrix defined as G=SST. For

perfect estimation the correlation matrix will be diagonal and performance is

visualized as deviation from diagonal matrix. To quantify decomposition quality

numerically we compute the correlation index in dB scale as

2

10

, 1

10log
M

ij

i j
j i

CR g

where before calculating correlation matrix G rows of S are normalized to unit

L2-norm.

Unsupervised decomposition of multispectral images
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From left to right: 25 layers HALS NMF; Interior point method; c) Linear programming.

Correlation matrices

Multilayer HALS NMF Interior-point method Linear program

CR [dB] 13.67 9.97 7.77

CPU time [s]* 3097 7751 3265

CR performance measure in dB

*MATLAB environment on 2.4 GHz Intel Core 2 Quad Processor Q6600 desktop computer with 4GB RAM.

Unsupervised decomposition of multispectral images
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Sparseness constrained NMF for 3D 

decomposition of multichannel medical 

images

I. Kopriva, A. Jukić, X. Chen, "Sparseness Constrained Nonnegative Matrix Factorization for 

Unsupervised 3D Segmentation of Multichannel Images: Demonstration on Multispectral 

Magnetic Resonance Image of the Brain," SPIE Medical Imaging Symposium, Orlando, FL, 

February 9-14, 2013, Proc. SPIE Vol. 8669, paper # 119.

MATLAB code: http://www.lair.irb.hr/ikopriva/prezentacije-i-izvjetaji.html
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4D tensor model of multi-channel multi-slice image 

For 3D decomposition multi-channel and multi-slice image is represented by 

multilinear mixture model: 

where                         stands for image tensor composed of I4 channel images, 

I3 slices, and I1 I2 pixel (voxel) elements per slice. 

Above model is known as Tucker4 model, [a], where                      stands for 

core tensor and                          stand for factor matrices.

Factor matrices associated with first three modes represent directional basis 

along these modes. They can be used to model source tensor:

1 2 3 4

0

I I I I
X

1 2 3 4

0

J J J J
G

4
( )

0
1

n nI Jn

n
A

a) Tucker, L. R., "Some mathematical notes on three-mode factor analysis," Psychometrika 31, 

279-311 (1966).
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4D tensor model of multi-channel multi-slice image 

contains 3D intensity distributions of J organs (tissues) present in 

the image. 

Matrix           stands for mixing matrix that in a case of multispectral magnetic 

resonance image contains in its columns spectral profiles of the tissues present 

in the image. The image tensor      can be unfoled along mode-4 yielding:

3D decomposition is performed applying sparseness constrained factorization 

of        , for example using the NMU algorithm. 

Afterwards,        is tensorized to get     .

1 2 3

0

I I I J
S

(4)
A

X

(4)X

(4)S S
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3D decomposition of brain tumor  

3D decomposition method is demonstrated on extraction of brain tumor from 

synthetic mMR image. The image is obtained from TumorSim database of the 

Utah Center for Neuroimage Analysis, [a].

In relation to standard mMR image comprised of T1, T2 and PD images, the 

PD image has been replaced by T1-weighted image obtained after 

administration gadolinium contrast agent.

3D decomposition method is applied to slices 50 to 70 of the TumoSimData_004 

dataset. Thus, I3=21 slices were segmented jointly. Each slice has 256 256 

pixels.

a) The TumorSim database of Utah Center for Neuroimage Analysis: http://www.nitrc.org/projects/tumorsim/.
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3D decomposition of brain tumor  

Every second slice from 52 to 70. T1 image (top left), T2 image (top right), T1_GAD image 

(bottom left), NMU extracted tumor (bottom right).
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3D decomposition of brain tumor  

Decomposition / segmentation results in term of Dice's coefficient for slices 50 to 70.

Slice number 50 51 52 53 54 55 56 57 58 59 60

3D 

Segmentation

0.7278 0.7679 0.8387 0.8669 0.8634 0.8512 0.8748 0.8875 0.8876 0.8938 0.7811 

T1_GAD image 0.1942 0.2280 0.2565 0.2836 0.2940 0.3193 0.3388 0.3626 0.3754 0.3583 0.3536

Slice number 61 62 63 64 65 66 67 68 69 70

3D 

Segmentation

0.7436    0.7587 0.7061 0.7699 0.7223 0.5672 0.5635 0.4799 0.4060 0.4113

T1_GAD image 0.3810 0.4137 0.4415 0.4343 0.4221 0.3619 0.3287 0.2851 0.2431 2158
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Sparseness constrained hyperspectral 

image decomposition

MATLAB code:  http://www.lair.irb.hr/ikopriva/prezentacije-i-izvjetaji.html
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SPOT- 4 bands, LANDSAT -7 bands, AVIRIS-224 bands (0.38 -2.4 );

Unsupervised decomposition of hyperspectral images
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1

J

j jj
X AS a s

...1 2 Ja a a A

A – unknown matrix of endmember 

spectral signatures,

X - measured data intensity matrix,

S - unknown abundances matrix,

Hyperspectral/multispectral image and static linear mixture model. For image 

consisting of I3 bands and J materials linear data model is assumed: 

...
T

1 2 Js s s S

3 1 2

0

I I I
X

1 2

0

J I I
S

3

0

I J
A

Unsupervised decomposition of hyperspectral images
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Very often in hyperspectral image analysis abundance sum-to-one constraint 

(ASC) is imposed on abundances coefficients at each pixel,

1 2( )

1

1
J

j i i

j

s

That leads to fully constrained least square (FCLS) problem/algorithm 

(assuming endmembers matrix is known), ref.a:

1

1
: arg min 1

2

J
T

j

j

P ss x As x As

a) D.C. Heinz, C. –I Chang, and M.L.G. Althouse, “Fully constrained least squares-based linear unmixing,” 

in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), 1999, vol. 1, pp. 1401-1403.

Unsupervised decomposition of hyperspectral images
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a) J.M. Bioucas-Dias, et. al., “Hyperspectral Unmxing Overview: Geometrical, Statistical, and Sparse Regression-

Based Approaches,” IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, ¸2012, vol. 5, 

pp. 354-379.

In practice ASC i rarely satisfied due to presence of noise and model 

mismatches (ref. a). Spareness and nonnegativity constraints yield better 

results. 

Spareness constraint implies 

that only few out of J objects

are present at each pixel.

Unsupervised decomposition of hyperspectral images
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AVIRIS Lunar Crater Vulcanic Field
(LCVF) in Norther Nye County,
Nevada (ref. a,b, c). There are five
signatures of interest, ref. a, b), in the
LCVF scene: cinders, rhyolite, playa
(dry lakebed), shade, vegetation. In
addition, ref c), there is single two-pixel
anomaly located at the top edge of the
lake. The image is composed of 158
spectral bands of the size 200x200
pixels.

a) J. C. Harsany, C. –I Chang, Hyperspectral image classification and dimensionality reduction: an orothogonal subspace approach.  

IEEE Transactions on Geoscience and Remote Sensing, Vol.32, no. 4, 779-785, 1994.

b) C. –I. Chang, D. C. Heinz, Constrained Subpixel Target Detection for Reomtely Sensed Imagery. IEEE Transactions on 

Geoscience and Remote Sensing, Vol.38, no. 3, 1144-1159, 2000.

c) C. –I. Chang, S. -S. Chiang, I. W. Ginsberg, Anomaly detection in hyperspectral imagery, SPIE Conference on Geo-Spatial Image

and Data Exploration II, Orlando, Florida, 20-24 April, 2001.

Unsupervised decomposition of hyperspectral images

True color image 

(40,30,10) 
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Unsupervised decomposition of hyperspectral images

AVIRIS LCVF image has been unmixed by four algorithms:

nonnegative matrix underapproximation (NMU) algorithm;

fast separable NMF algorithm (to identify endmember/mixing matrix) and fast iterative shrinkage
thresholding (Fast_IST) algorithm (to identify abundance coefficients) with =0.1 and 300
iterations;

fast separable NMF algorithm (to identify endmember/mixing matrix) and fast combinatorial
nonnegative least square algorithm (FCNNLS), ref. a;

fast separable NMF algorithm (to identify endmember/mixing matrix) and fully constrained least
square (FCLS) algorithm.

FCNNLS algorithm solves the abundance estimation problem by using nonnegaitivity constraints
only. That is justified by finding that for matrix A with row-span intersecting the positive orthant
(which is the case for endmemer spectral profiles) if the problem admits a suffciently sparse
solution it is necessary unique (ref. b).

a) M. H. van Benthem and M. R. Keenan, Fast algorithm for the solution of large-scale non-negativity constrained least aquares 

problem. J. of Chemometrics, Vol.18, pp. 441-450, 2004.

b) A. Bruckstein, M. Elad, and M. Zibulevsky. On the uniqueness of nonnegative sparse solutions to undedetermined systems of 

equations. IEEE Transactions on Information Theory, Vol.54, no. 11, 4813-4820, 2008.
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Unsupervised decomposition of hyperspectral images

All algorithms are implemeted in MATLAB environment under 64-bit Windows operating
system, processor Intel Core i7-2600s with a clock speed 3.4 GHz and RAM of size 24 GB.

Computation times in seconds are given bellow:

NMU: 28.24s;

FastSepNMF+IST: 114.8 s

FastSepNMF+FCNNLS: 0.14 s

FastSepNMF+FCLS: 16.42s
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CINDERS

Fast_Sep_NMF + IST NMU

Fast_Sep_NMF + FCNNLS Fast_Sep_NMF + FCLS

True color image 

(40,30,10) 
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RHYOLITE

NMUFast_Sep_NMF + IST

Fast_Sep_NMF + FCNNLS Fast_Sep_NMF + FCLS

True color image 

(40,30,10) 
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VEGETATION

NMUFast_Sep_NMF + IST

Fast_Sep_NMF + FCNNLS Fast_Sep_NMF + FCLS

True color image 

(40,30,10) 
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SHADE

NMUFast_Sep_NMF + IST

Fast_Sep_NMF + FCNNLS Fast_Sep_NMF + FCLS

True color image 

(40,30,10) 
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PLAYA (dry lakebed)

NMUFast_Sep_NMF + IST

Fast_Sep_NMF + FCNNLS Fast_Sep_NMF + FCLS

True color image 

(40,30,10) 
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ANOMALY

NMUFast_Sep_NMF + IST

Fast_Sep_NMF + FCNNLS Fast_Sep_NMF + FCLS

True color image 

(40,30,10) 
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THANK YOU !!!!!!!!


