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Motivation with illustration of applications (lecture I) 
Mathematical preliminaries with principal component 

analysis (PCA)? (lecture II)
Independent component analysis (ICA) for linear 

static problems: information-theoretic approaches
(lecture III)
ICA for linear static problems: algebraic approaches 

(lecture IV)
ICA for linear static problems with noise (lecture V)
Dependent component analysis (DCA) (lecture VI) 

Course outline
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Course outline
Underdetermined blind source separation (BSS) and 

sparse component analysis (SCA) (lecture VII/VIII)
Nonnegative matrix factorization (NMF) for 

determined and underdetermined BSS problems 
(lecture VIII/IX)
BSS from linear convolutive (dynamic) mixtures 

(lecture X/XI)
Nonlinear BSS (lecture XI/XII)
Tensor factorization (TF): BSS of multidimensional 

sources and feature extraction (lecture XIII/XIV)
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Seminar problems
1. Blind separation of two uniformly distributed signals with maximum likelihood 

(ML) and AMUSE/SOBI independent component analysis (ICA) algorithm.
Blind separation of two speech signals with ML and AMUSE/SOBI ICA 
algorithm.  Theory, MATLAB demonstration and comments of the 
results.     

2. Blind decomposition/segmentation of multispectral (RGB) image using ICA, 
dependent component analysis (DCA) and nonnegative matrix factorization 
(NMF) algorithms. Theory, MATLAB demonstration and comments of the 
results.     

3. Blind separation of acoustic (speech) signals from convolutive dynamic 
mixture. Theory, MATLAB demonstration and comments of the results.
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Seminar problems
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4. Blind separation of images of human faces using ICA and DCA algorithms 
(innovation transform and ICA, wavelet packets and ICA) Theory, MATLAB 
demonstration and comments of the results.     

5. Blind decomposition of multispectral (RGB) image using sparse component 
analysis (SCA): clustering + Lp norm ( 0<p≤1) minimization. Theory, 
MATLAB demonstration and comments of the results.     

6. Blind separation of four sinusoidal signals from two static mixtures (a 
computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in frequency (Fourier) domain. 
Theory, MATLAB demonstration and comments of the results. 
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Seminar problems
7. Blind separation of three acoustic signals from two static mixtures (a 

computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in time-frequency (short-time 
Fourier) domain. Theory, MATLAB demonstration and comments of the 
results. 

8. Blind extraction of five pure components from mass spectra of two static 
mixtures of chemical compounds using sparse component analysis (SCA): 
clustering a set of single component points + Lp norm ( 0<p≤1) minimization 
in m/z domain. Theory, MATLAB demonstration and comments of the 
results. 

9. Feature extraction from protein (mass) spectra by tensor factorization of 
disease and control samples in joint bases. Prediction of prostate/ovarian 
cancer. Theory, MATLAB demonstration and comments of the results. 
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A theory for multichannel blind signal recovery requiring minimum of a 
priori information.

Problem:

X=AS  X∈RNxT, A∈RNxM, S∈RMxT N-number of sensors; 
M- unknown number of sources
T-number of samples

Goal: find S, A and number of sources M based on X only.

Meaningful solutions are characterized by scaling and permutation 
indeterminacies:

Y≅S=WX → Y ≅WAS=PΛS
A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.

Blind Source Separation
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Blind Source Separation
X=AS and X=(AT)(T-1S) are equivalent for any square invertible matrix T.
There are infinitely many pairs (A,S) satisfying linear mixture model 
X=AS.

Constraints must be imposed on A and/or S in order to obtain solution of 
the BSS problem that is characterized with T=PΛ.

ICA solves BSS problem imposing statistical independence and non-
Gaussianity constraints on source signals sm, m=1,…,M.

DCA improves accuracy of the ICA when sources sm, m=1,…,M, are not 
statistically independent.

NMF solves BSS problem imposing sparseness, smoothness or some 
other constraints on source signals sm, m=1,…,M.
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Tensor factorization1,2,3

A number of data sets is not naturally represented in 2D space but in 3D (ND, 
N>3 space). Few examples include: multispectral/hyperspectral image, video 
signal, EEG data, fluorescence spectroscopy data, magnetic resonance image, 
etc.

1. A. Cichocki, R. Zdunek, A.H. Phan, S. Amari, Nonegative Matrix and Tensor Factorizations, John Wiley & Sons, 
2009.
2. E. Acar, and B. Yener, "Unsupervised Multiway Data Analysis: A Literature Survey," IEEE Trans. Knowl. Data 
Eng. 21, 6 (2009).
3. T.G. Kolda, and B.W. Bader, “Tensor Decompositions and Applications,” SIAM Review 51, 453 (2009).

Multispectral-hyperspectral image cube (3D tensor)
1 2 3

0
I I I× ×
+∈X \

I3 spectral images of the size I1×I2 pixels

Magnetic resonance image cube (3D tensor)

I3=3 (PD,T1 and T2) images of the size I1×I2 pixels
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Tensor factorization1
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Tensor factorization1
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Tensor factorization
Very often for the purpose of exploratory data analysis, that includes the BSS 
methods such as ICA, DCA, SCA or NMF, 3D data are mapped to 2D data that 
is known as matricization, unfolding or flattening.

1 2 3 3 1 2
3

0 (3) 0
I I I I I I× × ×
+ +∈ → ∈X X\ \

1 2 3 2 1 3
2

0 (2) 0
I I I I I I× × ×
+ +∈ → ∈X X\ \

1 2 3 1 2 3
1

0 (1) 0
I I I I I I× × ×
+ +∈ → ∈X X\ \

Problems:
• local structure of 3D data is not used
• matrix factorization assumed by linear mixing model X=AS suffers from 
indeterminacies because ATT-1S=X for any invertible T, i.e. infinitely many 
(A,S) pairs can give rise to X.

• Meaningful solutions of the BSS problems are characterized by T=PΛ. To 
obtain them matrix factorization methods such as ICA and/or NMF must 
respectively impose statistical independence and sparseness constraints on S.
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Tensor factorization1
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Tensor factorization1
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Tensor products
Among several types of tensor products we are interested in n-mode product.

The n-mode product of a tensor      and a matrix A is written as                .

Let      be of size I1 × I2 × I3 and let A be of size J1 × J2.

The n-mode product multiplies vectors in mode n of      with row vectors in A. 
Therefore, n-mode multiplication requires that In=J2. 

The result of the              is a tensor with the same order (number of modes) as    
but with the size In replaced by J1.

For example, classical matrix product AB can be seen as a special case of n-
mode product:

T
2 1= × = ×AB A B B A

X n×X A

X

X

n×X A
X
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Tensor models
Two most widely used tensor models are TuckerN modela and Canonic 
Polyadic Decomposition (CPD)/PARAlel FACtor (PARAFAC) analysis 
/CANonical DECOMPosition (CANDECOMP) model, [4-6]. The Tucker3 model 
for 3D tensor is defined as: 

31 2

1 2 3 1 2 3

1 2 3

31 2

1 2 3 1 2 3

1 2 3

(1) (2) (3) (1) (2) (3)
1 2 3

1 1 1

(1) (2) (3)

1 1 1

JJ J

j j j j j j
j j j

JJ J

pqr j j j pj qj rj
j j j

g

x g a a a

= = =

= = =

≈ × × × =

≈

∑∑∑

∑∑∑

X G A A A a a aD D

where                     is core tensor and                      are factors. 1 2 3
0
J J J× ×
+∈G \ { }3( )

0 1
n nI Jn

n

×
+ =

∈A \

4. L. R. Tucker, "Some mathematical notes on three-mode factor analysis," Psychometrika 31, 279 (1966).
5. J. D. Carrol, and J. J. Chang, "Analysis of individual differences in multidimensional scaling via N-way 
generalization of Eckart-Young decomposition," Psychometrika 35, 283 (1970).
6. R. A. Harshman, "Foundations of the PARAFAC procedure: models and conditions for an exploratory 
multi-mode factor analysis," UCLA Working Papers in Phonetics 16, 1 (1970).
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Tensor models

Tucker model has good generalization capability due to the fact that the core
tensor allows interaction between a factor with any factor in other modes. 
However, uniqueness of the factorization up to permutation and scaling is 
not guaranteed. That is because:

( ) ( ) ( )1 1 1

(1) (2) (3)
1 2 3

(1) (2) (3) (1) (1) (2) (2) (3) (3)
1 2 3 1 2 3

− − −

≈ × × ×

= × × × × × ×

X G A A A

G T T T A T A T A T

where    . Hence, some constraints are necessary to be imposed on 
array factors and/or core tensor in order to ensure uniqueness of the factorization

{ }( ) n nJ Jn ×∈T \
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The CPD tensor model
The CPD/PARAFAC model is a special case of the Tucker model when core 
tensor is superdiagonal i.e.           . 

Thus, factors in different mode can only interact factorwise. However, this 
restriction enables uniqueness of tensor factorization based the PARAFAC 
model within the permutation and scaling indeterminacies of the factors under 
very mild conditions, [4,5], without need to impose any special constraints on 
them such as sparseness or statistical independence.

=G I
31 2

1 2 3

1 2 3

31 2

1 2 3

1 2 3

(1) (2) (3) (1) (2) (3)
1 2 3

1 1 1

(1) (2) (3)

1 1 1

JJ J

j j j
j j j

JJ J

pqr pj qj rj
j j j

x a a a

= = =

= = =

≈ × × × =

≈

∑∑∑

∑∑∑

X I A A A a a aD D
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The CPD tensor model

Assuming that J1=J2=J3=J uniqueness condition is reduced to:

where         is Kruskal’s rank of factor A(n), [7]. The result is generalized in [8] for 
the CPD/PARAFAC model of the Nth order tensor:

(1) ( 2) (3) 2 2k k k J+ + ≥ +
A A A

( )nk
A

( )

1

2 ( 1)n

N

n

k J N
=

≥ + −∑ A

7. J. B. Kruskal, "Three-way arrays: Rank and uniqueness of trilinear decompositions," Linear Algebra Appl. 18, 
95 (1977).
8. N. D. Sidiropoulos, and R. Bro, "On the uniqueness of multilinear decomposition of N-way arrays," J. of 
Chemometrics 14, 229 (2000).
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The CPD tensor model
For a matrix                    standard rank rA:=rank(A)=r if A contains collection of r
linearly independent columns (rows), and this fails for r+1 columns (rows). 

kA (the Kruskal's rank of A)=r if every r columns are linearly independent, and 
this fails for at least one set of r+1 columns:

kA≤rA≤min(I,J) ∀ A.

I J×∈A \

Condition that ensures uniqueness of the CPD/PARAFAC decomposition with 
probability one for 3-way tensor is, [9]:

J≤I3 and J(J-1)≤I1(I1-1) I2(I2-1)/2  

9. L. De Lathauwer, “A link between the canonical decomposition in multilinear algebra and simultaneous matrix
diagonalization,” SIAM Journal on Matrix Analysis and Applications 28, 642 (2006).



21/72

Faculty of Mathematics, University of Zagreb, Graduate course 2011-2012.
“Blind separation of signals and independent component analysis”

Tensor based vs. matrix based mixture models
•2D linear mixtures model for 2D source signals:

23 1 2 3 1
(3) (3) 0 0 0, J I II I I I J ×× ×

+ + += ∈ ∈ ∈X AS X A S\ \ \

In a case of MSI (or MRI) I1 and I2 represent image dimensions and I3
represents number of spectral bands. In a case of video I3 represents number 
of frames. J represents the unknown number of sources.

•3D linear mixtures model with 2D sources signals:
(1) (2) (3)

1 2 3≈ × × ×X G A A A

{ }1 2 3 1 2 3
3( )

0 0 0 1
, , n nI I I J J J I Jn

n

× × × × ×
+ + + =

∈ ∈ ∈X G A\ \ \
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Dimensionality analysis yields, [10,11]:

( ) 1 2 3

(3)

†(1) (2) (3)
1 2 3 0

I I J× ×
+

≈

≈ × × = × ∈

A A

S G A A X A S \

10. I. Kopriva, A. Cichocki, "Blind Multi-spectral Image Decomposition by 3D Nonnegative Tensor Factorization,"
Optics Letters vol. 34, No. 14, pp 2210-2212, 2009.

11. I. Kopriva, "3D Tensor Factorization Approach to Single-frame Model-free Blind Image Deconvolution," 
Optics Letters, Vol. 34, No.14, pp. 2210-2212, 2009.

where '†' denotes Moore-Penrose pseudo-inverse and it is assumed J3≤I3.

Thus, fro MSI/MRI decomposition tensor factorization yields tensor of 
spatial distributions of materials/tissue substances present in the 
MSI/MRI.

T(3) (2) (1)
(3) (3) ⎡ ⎤≈ ⊗⎣ ⎦X A G A A

3-mode unfolding of       yields:X
Tensor based vs. matrix based mixture models
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The CPD tensor model
Despite limited accuracy in modeling complex relations among data the CPD is 
useful in many instances due to mild uniqueness conditions. Assuming J-
component model (array factors have the same number of columns) Nth order 
tensor can also be written as linear combination of J rank-1 terms: 

(1) (2) ( )

1
...

J
N

j j j
j=

≈∑X a a aD D D

Important property of CPD is that it can be written in a slice-wise fashion as: 

( )3 3 3

(1) (3) ( ) (3) ( ) (3) ( ) (2)
3 1 1 2 2:,:, ...., ... , ... ,..., ...

T

N N N

N N N
N i i i i i J i Ji i diag a a a a a a≈ ⋅X A A

that in a case of N=3 reduces to: 

( )3 3 3

(1) (3) (3) (3) (2)
3 1 2:,:, , ,...,

T

i i i Ji diag a a a≈ ⋅X A A

Hence in a case of 3D tensor the CPD is nothing but simultaneous
diagonalization of matrix slices. 
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The CPD tensor model
In the context of BSS the CPD allows, in principle, only for an approximation of 
the data. 

Decomposition if fitted to the given data tensor       , very often in the least 
square sense. The “workhorse” approach is alternating least square (ALS) 
procedure:

1.

X

To estimate the factor A(n) data tensor        is unfoled in mode n:X
( )

( )

T( ) ( 1) ( 1) (1)... ...

n
n n

N n n
n

−

+ −
−

≈

⎡ ⎤= ⊗ ⊗ ⊗ ⊗ ⊗⎣ ⎦

X A Z

Z A A A A
2. the problem becomes least square NMF problem:

( )
( )

( )

2( ) ( ) ( )
( ) ( ) ( )2,

1ˆ ˆ, arg min . . ,
2n

n

n n n
n n ns t

−

− − −= − ≥ ≥
A Z

A Z X A Z A 0 Z 0
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The CPD tensor model
ALS method is easy and it often works well. However, it can be very slow, 
especially when the problem is ill conditioned. Moreover, convergence of the 
ALS method to the global minimum is not guaranteed. Also, for symmetric 
tensor the ALS procedure breaks symmetry. Convergence properties of the 
ALS method can be improved by the “enhanced line search” method, [12]. 

Although, CPD is often unique as such, it makes sense to impose orthogonality 
constraints on factor matrices if they are known to apply. That may improve 
convergence, increase the accuracy and even enable uniqueness for higher 
values of J (number of components). 

The cost function associated with the J-rank approximation of the higher-order 
tensor does not always has a minimum but only infimum. Then, decrease of the 
cost function essentially makes some terms go to infinity. 

12. M. Rajih, P. Comon, R. Harshman, “Enhanced line search: A novel method to accelerate PARAFAC,"
SIAM J. Matrix Anal. Appl.,  vol. 30, no. 3, pp. 1148-1171, Sept. 2008.
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The CPD tensor model
These diverging terms almost completely cancel each other and the overall 
sum yields better and better approximation of the data tensor. However, the 
result (factors) is poor. 

This problem indicates that CPD is not exact. In the BSS scenario, this 
indicates that the noise (error) level is too high, that underlying components can 
not be represented by rank-1 tensor, etc. 

Sometimes, divergence can be prevented by imposing additional constraints 
(nonnegativity, orthogonality) on the factor matrices. However, if it is impossible 
to impose meaningful constraints then the CPD is not the right model to the 
data      .X
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The CPD tensor model
The CPD can be used to solve several algebraic ICA/BSS problems.

Let us have X=AS, 

Non-gaussian i.i.d. sources. The n-th order cumulant of X is defined as:

i.e. the CPD does apply. The cross-terms in the above expression vanished 
due to statistical independence of the sources. By re-writing above expression 
in a slice-wise fashion we obtain:

i.e. mixing matrix A is obtained as CPD of symmetric cumulant tensor : 

1 1 2, ,I J I J J I× × ×∈ ∈ ∈X A S\ \ \

( ) ( )

1

... 3
j

J
n n

s j j j
j

C C n
=

= ≥∑X a a aD D D

( )1 3 2 3 3

( )
3 1 1 2 2:,:, ...., ... , ... ,..., ...

T

n n J n

n n n n
n s i i s i i s i J i JC i i diag C a a C a a C a a≈ ⋅X A A

( )nCX
(1)ˆ =A A
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The CPD tensor model
Individually correlated in time and mutually uncorrelated sources. The 
covariance matrices for different time lags τi are defined as:

where possibly τ1=0. CS(τi ) are diagonal due to uncorrelatedness between the 
sources. Lets us stuck CX(τ1), CX(τ2),…, CX(τI3) in a tensor 

Simultaneous matrix diagonalization of CX(τi) is equivalent to computation of 
CPD of:

in which                                                        .

3( ) ( ) ( ) ( ) 1,...,T T
i i iC E t t C i Iτ τ τ⎡ ⎤= + = =⎣ ⎦X SX X A A

1 1 3( ) I I IC × ×∈X τ \

1
( )

J

j j j
j

C
=

=∑X τ a a a�D D

( )( )3 3 3 31 , 1i j i jj
a C i I j Jτ= ≤ ≤ ≤ ≤S�
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The CPD tensor model

By re-writing                in a slice-wise fashion we obtain:( )CX τ

( ) ( )3 3 33 1 2:,:, , ,...,
T

i i i JC i diag a a a≈ ⋅ ⋅X τ A A� � �

i.e. mixing matrix A is obtained as CPD of tensor     :                  .( )CX τ

Individually non-stationary and mutually uncorrelated sources. The 
covariance matrix   at time t for zero mean mixture signals 
is defined by:

(1)ˆ =A A

( ) 1 1I IC t ×∈X
� \

( )( ) 1 2
1 2

1 2 1( ) ( ) 1 ,i ii i
C t E x t x t i i I⎡ ⎤= ∀ ≤ ≤⎣ ⎦X
� � �
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The CPD tensor model

We can write                as                                  .( )C tX
� ( ) ( ) TC t C t=X SA A� �

Since source signals are uncorrelated                is diagonal.  We can stack 
covariance matrices                for t=t1, t2,…,tI3  in a tensor

. This tensor admits CPD:

in which                                                        . Again, we can re-write

in a slice-wise fashion: 

( )C tS
�

( )C tX
�

( ) 1 1 3I I IC × ×∈X t� \

( )
1

J

j j j
j

C
=

=∑X t a a a� �D D

( )( )3 3 3 31 , 1i j i jj
a C t i I j J= ≤ ≤ ≤ ≤S

��
( )CX t�

( ) ( )3 3 33 1 2:,:, , ,...,
T

i i i JC i diag a a a≈ ⋅ ⋅X t A A� � �

Hence, the mixing matrix A is obtained as CPD of tensor     :                  . ( )CX t� (1)ˆ =A A
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The CPD tensor model

CPD to prewhitened data X. Let us assume that data X are pre-whitened by 
Z=ETX, where E is matrix of eigenvectors obtained by eigenvalue 
decomposition of data covariance matrix E[XXT]. Then, the n-th order cumulant 
of Z is:                                  .

( )
( )

1

... 3j

j

nJ
sn

j j jn
j s

C
C n

σ=

= ≥∑Z e e eD D D

.This is fully symmetric orthogonality-constrained CPD of a fully symmetric n-th
order cumulant tensor.
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The TuckerN tensor model
Tucker model has good generalization capability due to the fact that the core
tensor allows interaction between a factor with any factor in other modes. 
However, uniqueness of the factorization up to permutation and scaling is 
not guaranteed. That is because:

( ) ( ) ( )1 1 1

(1) (2) (3)
1 2 3

(1) (2) (3) (1) (1) (2) (2) (3) (3)
1 2 3 1 2 3

− − −

≈ × × ×

= × × × × × ×

X G A A A

G T T T A T A T A T

where    . Hence, some constraints are necessary to be imposed on 
array factors and/or core tensor in order to ensure uniqueness of the factorization

{ }( ) n nJ Jn ×∈T \
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Multilinear SVD
The multilinear SVD, [13], implements orthogonality constrained factorization of 
the Tucker model of the Nth-order tensor. For this purpose tensor is unfolded in 
each  mode n =1,…,N: 

T( ) ( ) ( 1) ( 1) (1)
( ) ( ) ... ...n N n n
n n

+ −⎡ ⎤= ⊗ ⊗ ⊗ ⊗ ⊗⎣ ⎦X A G A A A A

SVD of X(n) is performed and A(n) is estimated from the left singular vectors of
X(n). The core tensor is estimated from:

(1) (2) ( )
1 2 3

ˆ ˆ ˆ ˆ...
T T TN

N= × × × ×G X A A A

That is known as HOSVD algorithm, [13]. Orthogonality constraints ensure 
virtually unique tensor decomposition. However, meaningfulness of these 
constraints is application dependent.

13, L. De Lathauwer, B. De Moor, and J. Vandewalle, J., "A multilinear singular value decomposition,“
SIAM J. Matrix Anal. and Appl., vol. 21, pp. 1253-1278, 2000.
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The Higher-order Orthogonal Iteration (HOOI) algorithm
Orthogonality-constrained tensor factorization of using TuckerN tensor model 
can be also obtained by means of HOOI algorithm, [14]. The ALS instead of 
SVD is used to estimate array factors. Due to orthogonality constraints the 
squared Euclidean distance based cost function becomes:

{ }
{ } { }( ) ( )

1 1

2 2 2( )
2 221 , ,

1ˆ ˆ ˆ, min min :
2N Nn n

n n

N
n

n
= =

=
= − = −

G A G A
G A X X X G
c fd gd ge h

Hence, it suffice to perform:

{ }
{ } { }( ) ( )

1 1

22( ) (1)T (2)T ( )T
1 2 N2 21

ˆ max max ....
N Nn n
n n

N
n N

n
= =

=
= = × × ×

A A
A G X A A A

(1)T (2)T ( )T
1 1 2 N

ˆ ˆ ˆ ˆ.... N= × × ×G X A A A
The core tensor is estimated as:

14. L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1,R2,…,RN) approximation of 
Higher-order tensors,” SIAM Journal on Matrix Analysis and Applications 21, 1324 (2000).
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The Higher-order Orthogonal Iteration (HOOI) algorithm

Maximization is performed in alternating least square (ALS) manner. Matlab 
code is available (tucker_als function) at: 
http://csmr.ca.sandia.gov/~tkolda/TensorToolbox. 

The ALS procedure (Euclidean distance based cost function) does not 
guarantee convergence toward global minimum. To improve convergence 
properties of the HOOI algorithm it is wise to use the HOSVD based estimation 
of the initial values of the array factors instead of purely random initialization.

http://csmr.ca.sandia.gov/~tkolda/TensorToolbox
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Tensor factorization
Cost functions. Euclidean distance (leas square error) between tensor and its 
model is a standard choice of cost function, [14]:

( ) 1 2 3 1 2 3 , , , ,1 2 3 1 2 3
1 2 3

(1 )
, , , ,

, ,

1ˆ ˆ ˆ(1 )
1 i i i i i ii i i i i i

i i i

D x x x xα α
α α α

α α
−⎡ ⎤ = + − −⎣ ⎦ − ∑X X

2

2

1ˆ ˆ
2FD ⎡ ⎤ = −⎣ ⎦X X X X

15. A. H. Phan, and A. Cichocki, "Fast and Efficient Algorithms for Nonnegative Tucker Decomposition," Lect. 
Notes Comput. Sci., vol. 5264, pp.772-782, 2008.
16. A. Cichocki, A.H. Phan, "Fast Local Algorithms for Large Scale Nonnegative Matrix and Tensor 
Factorizations," IEICE Transaction on Fundamentals, E92-A(3), 708-721 .

α-divergence based cost function is adaptable to data and noise statistics, 
[15,16]: 
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Tensor factorization
Update rules for α-NTF algorithm:

( ) T T T

T T T

1.. (1) (2) (3)
1 2 3

(1) (2) (3)
1 2 3

ˆ/
α α⎧ ⎫× × ×⎪ ⎪← ⊗ ⎨ ⎬

× × ×⎪ ⎪⎩ ⎭

X X A A A
G G

Ε A A A

( ) T

T

1.. ( )

( )( ) ( )
T ( )

ˆ/ n

nn n
n

α α⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎣ ⎦← ⊗ ⎨ ⎬
⎪ ⎪
⎩ ⎭

A

A

X X G
A A

11 G

where     is a tensor whose every element is one, ⊗ denotes element-wise 
multiplication and / denotes element-wise division. 1 denotes a vector whose 
every element is one.

E



38/72

Faculty of Mathematics, University of Zagreb, Graduate course 2011-2012.
“Blind separation of signals and independent component analysis”

Tensor factorization

( ) ( )T T. .( ) ( ) T
( )

( )

ˆ ˆ/ /n m
m n n

n n

α α

≠
⎡ ⎤ ⎡ ⎤= ×⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦AX X G X X A G

where G(n) represents n-mode flattened version of the core tensor. 

. 
T TT ( ) T ( )

( )

n m
m n n≠⎡ ⎤= ×⎣ ⎦A1 G G 1 A

where                       denotes m-mode products between core tensor and 
matrices 1TA(m) for all m=1, ..., 3 and m≠n.

T ( )m
m n≠×G 1 A
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Unsupervised Segmentation of 
Multispectral Images17

17. I. Kopriva, A. Cichocki, "Blind Multi-spectral Image Decomposition by 3D Nonnegative Tensor 
Factorization," Optics Letters vol. 34, No. 14, pp 2210-2212, 2009.
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Unsupervised segmentation of multispectral images

SPOT- 4 bands, LANDSAT -7 bands, AVIRIS-224 bands (0.38µ-2.4µ);
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Unsupervised segmentation of multispectral images
Hyperspectral/multispectral image and static linear mixture model. For image 
consisting of I3 bands and J materials linear data model is assumed: 

1

J
j jj=

= = ∑X AS a s

[ ]...1 2 J ≡a a a A

[ ]... T
1 2 J ≡s s s S

X - measured data intensity matrix: 3 1 2
0
I I I×
+∈X \

1 2
0
J I I×
+∈S \S - unknown class matrix:

3
0
I J×
+∈A \A – unknown spectral reflectance matrix:
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Unsupervised segmentation of multispectral images
True hyperspectral/multispectral image is a 3D tensor. Hence, blind image 
decomposition can be performed through 3D NTF, [17]:

( ) 1 2

(3)

†(3)
3 0

I I J× ×
+

≈

≈ × ∈

A A

S X A S \

RGB fluorescent image (I3=3) of the skin tumor is used to exemplify the 
concept. 3D α-NTF algorithm is compared against second order NMF 
algorithm, [18], and dependent component analysis algorithm, [19].

Note, that 3D α-NTF is based on Tucker3 model with non-negativity 
constraints only!!!.

18. R. Zdunek, and A. Cichocki, "Nonnegative matrix factorization with constrained second-order optimization," 
Sig. Proc. 87, 1904 (2007).
19. I. Kopriva, A. Peršin, "Unsupervised decomposition of low-intensity low-dimensional multi-spectral fluorescent 
images for tumour demarcation, Medical Image Analysis 13, 507-518, 2009.
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Unsupervised segmentation of multispectral images

(a) Experimental high-intensity 
fluorescent RGB image of the skin 
tumour (basal cell carcinoma). (b) to 
(d): Spatial maps of the objects 
extracted from RGB image shown in 
Figure 1a by means of α-NTF 
algorithm with α=0.1. Extracted 
maps of the objects were rescaled 
to the interval [0, 1] and shown it in 
pseudo colour scale, wherein dark 
blue colour represents 0, i.e. the 
absence of the object, and dark red 
colour represents 1, i.e. the 
presence of the object. 

3D α-NTF yields result that is meaningful.
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Unsupervised segmentation of multispectral images
Experimental fluorescent MSI RGB image 
of skin tumor: a) high-intensity version; b)
low-intensity version. Spatial maps of the 
tumor extracted from Figure 1b by means 
of: c) α-NTF algorithm with α=0.1; d) SO 
NMF algorithm; e) DCA algorithm; f)
evolution curve calculated by level set 
method on gray scale version of Figure 1b 
after 1000 iterations. Dark red color 
indicates that tumor is present with 
probability 1, while dark blue color 
indicates that tumor is present with 
probability 0.
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Unsupervised segmentation of multispectral images

ROC curves calculated for spatial maps of the tumor shown in Figures 1c to 1e:  red squares -
α-NTF algorithm based on Tucker3 model with α=0.1; blue stars - DCA algorithm; green 
triangles - SO NMF algorithm.
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Model-free Space-Variant Blind 
Image Deconvolution20

20. I. Kopriva, "Tensor factorization for model-free space-variant blind deconvolution of the single- and multi-
frame multi-spectral image," Optics Express, Vol. 18, No.17, pp. 17819-17833, 2010.
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• Blind image deconvolution (BID) relates to estimation of the original image 
from degraded observed image only assuming convolution 

observation model:  
1 2

0
I I×
+∈G \1 2

0
I I×
+∈F \

1 2 1 2 1 2( , ) ( , , , ) ( , )
M M

s M t M
i i s t i i i s i t

=− =−

= − −∑ ∑G H F

i.e. it is assumed that convolution kernel H, which models degradation, is 
unknown.

• H(s,t,i1,i2) denotes space variant degradation which is better related to 
physical reality but it is used less often in BID algorithms (due to the 
mathematical difficulties) than space invariant degradation H(s,t).
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Original image Blurred with circular kernel R=3, SNR=40dB;

Non-blind RL algorithm (deconvlucy) 

An example

PSF 
misspecified

True PSF 
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• Many BID algorithms assume that source of degradation is known and 
H can be represented by appropriate parametric model. 

•For an example 2D Gaussian with unknown variance and size of 
support is used to model turbulence blur. Circular kernel with unknown 
radius is used to model de-focus blur. A line with an unknown length is 
used to model blur cause by vibrations or relative motion between image 
and object planes. 

•Then, the BID problem becomes parametric estimation problem that can 
be solved by expectation-maximization method. An example is blind 
Richardson-Lucy algorithm that is implemented in MATLAB function
deconvblind.

•Herein, the model-free BID method for possibly space-variant
degradation will be presented. This will be achieved by converting BID 
problem into BSS problem and solved by the higher order orthogonal 
iteration (HOOI) tensor factorization algorithm. 
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Model-free blind image deconvolution

• In recent work, [20-23], it has been demonstrated the possibility to formulate 
single frame blind image deconvolution as a multichannel BSS problem 
solved by NMF23, DCA22 and very recently by TF20,21 algorithms.

•Benefit: no a priori knowledge about model (origin) of the degradation kernel 
is required.

1 2 1 2( , ) ( , ) ( , )
M M

s M t M
i i s t i s i t

=− =−

= − −∑ ∑G H F

21. I. Kopriva, "3D Tensor Factorization Approach to Single-frame Model-free Blind Image Deconvolution," 
Optics Letters, Vol. 34, No.14, pp. 2210-2212, 2009.
22. I. Kopriva, "Approach to Blind Image Deconvolution by Multiscale Subband Decomposition and 
Independent Component Analysis," Journal Optical Society of America A, Vol. 24, No.4, pp. 973-983, 2007.
23. I. Kopriva, "Single Frame Multichannel Blind Deconvolution by Non-negative Matrix Factorization with 
Sparseness Constraint," Optics Letters, Vol. 30, No. 23, pp. 3135-3137, 2005.
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Model-free blind image deconvolution
Model-free BID is achieved by converting the BID problem into the BSS 

problem. This is achieved by using implicit Taylor series expansion of the F(i1-
s,i2-t)  around the origin (i1,i2) and (when necessary) using 2D Gabor filter bank 
to generate multi-channel representation. 

To make the presentation easier to follow this will be demonstrated on a case 
of space-invariant deconvolution of blurred single-frame gray scale image.

The more complex scenarios that will be demonstrated herein include: single-
frame gray scale image blurred by a space-variant blur, single-frame multi-
spectral image blurred by space-variant and space-invariant blurs, and multi-
frame multi-spectral image blurred by space-variant and space-invariant blurs.   



52/72

Faculty of Mathematics, University of Zagreb, Graduate course 2011-2012.
“Blind separation of signals and independent component analysis”

Model-free blind image deconvolution
The  single-frame model-free multi-channel deconvolution was first proposed by 
Umeyama, [24].The key insight is the Taylor series expansion of F(i1-s,i2-t)
around F(i1,i2).

1 21 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ...i ii s i t i i s i i t i i− − = + + +F F F F
Then the degraded image is obtained as

1 21 2 1 1 2 2 1 2 3 1 2( , ) ( , ) ( , ) ( , ) ...i ii i a i i a i i a i i= + + +G F F F
where

1 ( , )K K

s K t K
a s t

=− =−
=∑ ∑ H 2 ( , )K K

s K t K
a s s t

=− =−
=∑ ∑ H 3 ( , )K K

s K t K
a t s t

=− =−
=∑ ∑ H

The PSF coefficients are absorbed into mixing coefficients. No a priori 
knowledge about the nature of the blurring process or size of the blurring 
kernel is required. 
24. S. Umeyama, Scripta Technica, Electron Comm Jpn, Pt 3, 84(12), 1-9 (2001).
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Model-free blind image deconvolution
A multi-channel representation is obtained by applying a bank of 2-D Gabor

filters to degraded image G(i1,i2). A single-frame multi-channel image model 
G(i1,i2,i3) is obtained as :
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2

3 3 3
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Above model suggests that tensor    composed of original image and its spatial 
derivatives can be estimated from                  where      is obtained by the 
HOOI-based decomposition of      .

(3)Â
G

( )†
(3)ˆ≅ ×3F G A

F

Sources represent original image F and its spatial derivatives. These sources 
are neiter statistically independent nor sparse. Hence ICA and NMF based 
decomposition of related multi-channel image are expected to be less accurate 
in performing BID.
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Model-free blind image deconvolution
Tensor representation is easily extendable to multi-spectral single-frame 

image. Multi-channel image model G(i1,i2,i3 ,i4) is then obtained as:
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Tensor composed of original multi-spectral image and its spatial derivatives can 
be estimated from            where    is obtained by the HOOI-based 
decomposition of        .
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4
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Model-free blind image deconvolution
A Gabor filter bank of 7x7 filters with two spatial frequencies and four
orientations.
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Single-frame multi-channel blind image deconvolution

Defocused image Three 3D TF deconvolutions21 DCA deconvolution22

21. I. Kopriva, "3D Tensor Factorization Approach to Single-frame Model-free Blind Image Deconvolution," 
Optics Letters, Vol. 34, No.14, pp. 2210-2212, 2009.
22. I. Kopriva, "Approach to Blind Image Deconvolution by Multiscale Subband Decomposition and Independent 
Component Analysis," Journal Optical Society of America A, Vol. 24, No.4, pp. 973-983, 2007.
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Space-variant blind deconvolution of de-focused single-frame 
gray scale image

Gray scale version of de-focused image is divided into 64 blocks of size
48x64 pixels. PSF is assumed to be constant within each block. Each block is 
filtered by a bank of 2D Gabor filters. 4D image tensor if characterized with: 
I1=48, I2=64, I3=64 and I4=17. 

Sixty four 3D TFOne 4D TFDefocused image



58/72

Faculty of Mathematics, University of Zagreb, Graduate course 2011-2012.
“Blind separation of signals and independent component analysis”

Space-invariant blind deconvolution of de-focused single-frame
multi-spectral image

RGB de-focused image is of the size 384x512 pixels. PSF is assumed to be constant 
within the image. Each spectral image is filtered by a bank of 2D Gabor filters. 4D image 
tensor if characterized with: I1=384, I2=512, I3=3 and I4=17. 

Defocused image One 4D TF Three 3D TF

Blind R-L. R=2 pixels (left), 
3 pixels (right).
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Space-variant blind deconvolution of de-focused single-frame 
multi-spectral image

RGB de-focused image is divided into 64 blocks of the size 48x64 pixels. PSF is 
assumed to be constant within the block. Each spectral image of each block is filtered by
a bank of 2D Gabor filters. 5D image tensor is characterized with: I1=48, I2=64, I3=64, 
I4=3 and I5=17. 

One 5D TFDefocused image Sixty four 4D TF
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Space-invariant blind deconvolution of a multi-frame multi-spectral image 
blurred by atmospheric turbulence

Multi-frame image of the Washington monument has been used. Four frames were chosen 
randomly. PSF is assumed to be constant within the image. Each spectral image of each frame is 
filtered by a bank of 2D Gabor filters. 5D image tensor is characterized with: I1=160, I2=80, I3=3, 
I4=4 and I5=17. 

a) Four blurred frames;  b) average of the four frames and edges extracted by Canny’s method

a) Time evolution of the source frame extracted by 5D TF;  b) average of the four source frame
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Space-invariant blind deconvolution of a multi-frame gray scale image 
blurred by atmospheric turbulence

4D image tensor is characterized with: I1=160, I2=80, I3=4 and I4=17. 

a) Time evolution of the source frame extracted by 4D TF;  b) average of the four source frame

Blind R-L with 2D Gaussian PSF model. Kernel width 18 pixels. a) σ2=1.3 pixels; b) σ2=1.9 pixels
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Space-(in)variant blind deconvolution of a single-frame multi-spectral 
image blurred by a grating

RGB image is blurred by a grating (photon sieve). The true image is composed of a palette of 
color pens, and a painting on the white board. Since there is no "real life" physical analogy to this 
grating-caused blur, it is virtually impossible to select a specialized method to perform blind
deconvolution of this grating-blurred image. For space-variant deconvolution image is divided into 6 
blocks of size 150x117 pixels. Each spectral image of each block is filtered by a bank of 2D Gabor 
filters. 5D image tensor is characterized with: I1=150, I2=117, I3=6, I4=3 and I5=17. Space-invariant
problem is reduced to 4D TF characterized with: I1=301, I2=351, I3=3, and I4=17.

From left to right: blurred image; 5D TF space-variant BID; 4D TF space-invariant BID; Blind R-L  with circular PSF, R=2 pixels   
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Conclusion and open issues

•The HOOI-based tensor factorization approach has been proposed for the 
space-(in)variant model-free blind deconvolution of a single- and multi-frame 
multi-spectral image. This is achieved by converting blind deconvolution into 
blind source separation using implicit Taylor expansion of the original image in 
the convolution image-forming equation. 

• Two major contributions of the proposed approach to blind image
deconvolution are: (i) as opposed to matrix factorization methods the HOOI-
based factorization of the tensor of the blurred image is virtually unique with no 
hard constraints imposed on source images; (ii) neither model nor size of the 
support of the point spread function is required to be a priori known or 
estimated. 
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Conclusion and open issues
•Use of the implicit Taylor expansion implies certain level of smoothness of the 
original image. This might limit the performance of the proposed approach to 
blind image deconvolution when the blurring process is strong or the original 
image contains sharp boundaries. 

•Nevertheless, the proposed method is expected to be useful in scenarios when 
a priori information required by physically constrained iterative blind
deconvolution methods are difficult or impossible to obtained.

•The two fundamental issues considered to be important exploring in the future 
work are: optimal selection of the size of the image blocks and neutralization of 
block-wise induced artifacts associated with space-variant deconvolution; 
looking for possible replacement of 2D Gabor filter bank approach to single-
channel blind source separation.  
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FEATURE EXTRACTION FOR 
CANCER PREDICTION BY TENSOR 
DECOMPOSITION OF 1D PROTEIN 

EXPRESSION LEVELS23

23. I. Kopriva, A. Jukić, A. Cichocki (2011). Feature extraction for cancer prediction by tensor decomposition of 1D 
protein expression levels, accepted for 2nd IASTED Computational Bioscience Conference, G. Montana (ed.),  pp. 
277-283, Cambridge, UK, July 11-13.
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Tensor factorization for feature extraction
•Feature extraction and selection are essential problems in the analysis of 
datasets with large number of variables. Typical areas where considered 
problems arise include text mining, combinatorial chemistry, proteomics, 
genomics, computational biology, etc. 

•Extraction of suitable features is considered to have a major effect on 
classification/prediction performance. It is of paramount importance in problems 
characterized by small number of samples and large number of features 
(variables). Such situations are common in contemporary proteomics and 
genomics, where each sample (mass spectra in proteomics and gene
expression levels in genomics) represents patient (healthy or disease) 
characterized by up to tens of thousands of variables (m/z ratios in proteomics 
and genes in genomics).

• The class prediction problem is too ill-posed and feature (dimensionality) 
reduction is necessary to prevent classifier to be tuned on training data and 
perform poorly on unseen (test) data (overfitting).   
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Tensor factorization for feature extraction
• Tensor factorization approach using the HOOI algorithm has been applied in 
[23] to reduce dimensionality (extract features) of the low resolution surface-
enhanced laser desorption ionization time-of-flight (SELDI-TOF) mass spectra 
of a blood serum representing control group (healthy patients) and case group 
(patients with ovarian and prostate cancers:  [24]).

• Used datasets are well known and were used previously by other researches 
to test accuracy of classifiers and feature extraction methods in cancer 
prediction. 

• Prostate cancer dataset comprises 69 disease and 63 control samples. 
Ovarian cancer dataset comprises 100 disease and 100 control samples. In 
both datasets sample is represented by 15154 features representing intensity 
level for m/z ratios.

24. Center for Cancer Research, National Cancer Institute Program in Clinical Proteomics. 
Available: http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp

http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp
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Tensor factorization for feature extraction
• Each sample is a vector                                        . For feature 
extraction it is transformed in a matrix 

1 2( ) 1,...,I Ik k K∈ ∀ =x R
1 2( ) 1,...,I Ik k K×∈ ∀ =X R

Example of transformation of vector to matrix
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Tensor factorization for feature extraction
• Each sample matrix is represented by a trilinear Tucker2 model:

( ) (1) ( ) (2) ( ) (1) (2)
1 2 1,...,k k T k k K≈ = × × ∀ =X A F A F A A

where the core tensor (matrix) is sample dependent and basis matrices 
(factors) are sample invariant (fixed). We can concatenate sample matrices in a 
3D tensor                         that is described by the following Tucker2 model:1 2I I K× ×∈X R

(1) (2)
1 2≈ × ×X F A A

i.e. the core tensor         is composed of K feature matrices, where 
the kth frontal slice matches F(k). After HOOI decomposition of tensor      to its 
Tucker2 model, [25], we obtain orthogonal factor matrices A(1) and A(2). 

J J K× ×∈F R
X

25. C. A. Andersson and R. Bro, The N-way Toolbox for MATLAB, Chemometrics & Intelligent Laboratory 
Systems, 52 (1), 2000, 1-4. http://www.models.life.ku.dk/source/nwaytoolbox/
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Tensor factorization for feature extraction
Approximation of the core tensor is obtained from:

(1)T (2)T
1 2

ˆ = × ×F X A A

{ }2( )

1
ˆ K

k J

k=
∈f \Extracted features for each of the K training data samples are 

obtained by vectorization of the frontal slices . That yields set 

containing extracted features paired with 

class labels (ck=1 for disease, -1 for healthy) for K training samples. 

Features for unseen (test) samples are obtained as:

( )ˆ ˆ k
k =F F

( ) ( ){ }(1) ( )
1

ˆ ˆ, , , ,K
KS c c= f f…

(1)T (2)T
1 2

ˆ
test test= × ×F X A A
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Prostate cancer. Sensitivity and 
specificity in % (means +/-
standard deviations). 200 random 
partitions.
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Ovarian cancer. Sensitivity and 
specificity in % (means +/- standard 
deviations). 200 random partitions.
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