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Motivation with illustration of applications (lecture I) 
Mathematical preliminaries with principal component 

analysis (PCA)? (lecture II)
Independent component analysis (ICA) for linear 

static problems: information-theoretic approaches
(lecture III)
ICA for linear static problems: algebraic approaches 

(lecture IV)
ICA for linear static problems with noise (lecture V)
Dependent component analysis (DCA) (lecture VI) 

Course outline
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Course outline
Underdetermined blind source separation (BSS) and 

sparse component analysis (SCA) (lecture VII/VIII)
Nonnegative matrix factorization (NMF) for 

determined and underdetermined BSS problems 
(lecture VIII/IX)
BSS from linear convolutive (dynamic) mixtures 

(lecture X/XI)
Nonlinear BSS (lecture XI/XII)
Tensor factorization (TF): BSS of multidimensional 

sources and feature extraction (lecture XIII/XIV)
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Seminar problems
1. Blind separation of two uniformly distributed signals with maximum likelihood 

(ML) and AMUSE/SOBI independent component analysis (ICA) algorithm.
Blind separation of two speech signals with ML and AMUSE/SOBI ICA 
algorithm.  Theory, MATLAB demonstration and comments of the 
results.     

2. Blind decomposition/segmentation of multispectral (RGB) image using ICA, 
dependent component analysis (DCA) and nonnegative matrix factorization 
(NMF) algorithms. Theory, MATLAB demonstration and comments of the 
results.     

3. Blind separation of acoustic (speech) signals from convolutive dynamic 
mixture. Theory, MATLAB demonstration and comments of the results.
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Seminar problems
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4. Blind separation of images of human faces using ICA and DCA algorithms 
(innovation transform and ICA, wavelet packets and ICA) Theory, MATLAB 
demonstration and comments of the results.     

5. Blind decomposition of multispectral (RGB) image using sparse component 
analysis (SCA): clustering + Lp norm ( 0<p≤1) minimization. Theory, 
MATLAB demonstration and comments of the results.     

6. Blind separation of four sinusoidal signals from two static mixtures (a 
computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in frequency (Fourier) domain. 
Theory, MATLAB demonstration and comments of the results. 
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Seminar problems
7. Blind separation of three acoustic signals from two static mixtures (a 

computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in time-frequency (short-time 
Fourier) domain. Theory, MATLAB demonstration and comments of the 
results. 

8. Blind extraction of five pure components from mass spectra of two static 
mixtures of chemical compounds using sparse component analysis (SCA): 
clustering a set of single component points + Lp norm ( 0<p≤1) minimization 
in m/z domain. Theory, MATLAB demonstration and comments of the 
results. 

9. Feature extraction from protein (mass) spectra by tensor factorization of 
disease and control samples in joint bases. Prediction of prostate/ovarian 
cancer. Theory, MATLAB demonstration and comments of the results. 
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Blind source separation

A theory for multichannel blind signal recovery requiring minimum of a 
priori information.

Problem:
X=AS X∈RNxT, A∈RNxM, S∈RMxT

Goal: find A and S based on X only.

Solution X=AT-1TS must be characterized with T= PΛ where P is 
permutation and Λ is diagonal matrix i.e.: Y ≅ PΛS

A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.
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• Number of mixtures N must be greater than or equal to M.

•source signals si(t) must be statistically independent.

•source signals sm(t), except one, must be non-Gaussian.

•mixing matrix A must be nonsingular.

Independent component analysis
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A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
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Blind image separation – an example

s

x

T.-M. Huang, V. Kecman, I. Kopriva, "Kernel Based Algorithms for Mining Huge Data Sets: Supervised, Semi-supervised 
and Unsupervised Learning," Springer Series: Studies in Computational Intelligence, Vol. 17, XVI, ISBN: 3-540-31681-7, 2006.
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Blind image separation – an example

y - PCA

y - ICA (min I(y))

10
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• uBSS occurs when number of measurements N is less than number of 
sources M. Resulting system of linear equations 

x=As

is underdetermined. Without constraints on s unique solution does not exist 
even if A is known:

s=sp + sh = A†x + Vz    AVzh=0

where V spans null-space of A that is M-N dimensional.

• However, if s is sparse enough A can be identified and unique solution for s
can be obtained. This is known as sparse component analysis (SCA).
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Underdetermined BSS
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uBSS – Lp norm minimization: 0< p ≤1

13

SCA-based solution of the uBSS problem is obtained in two stages: 

1) estimate basis or mixing matrix A using data clustering, ref.[9,10].

2) estimating sources s solving underdetermined linear systems of        
equations x=As. Provided that s is sparse enough, solution is obtained  
at the minimum of Lp-norm, ref.[1,2,6,7,8,13,14]. 

• L1-norm is often used as a replacement for L0-quasi-norm since it is 
convex and, thus, provides unique solution. However, it is sensitive to 
presence of noise i.e. presence of errors in sparse approximation. L1-
norm based solution is not the sparsest one. 

13. R. Chartrand, Exact reconstructions of sparse signals via nonconvex minimization, IEEE Signal Process. Let., 
14 (2007), 707-710.
14. L. Foucart, Sparsest solution of underdetermined linear systems via lq minimization for 0<q≤1, Appl. Comp. 
Harmon. Anal.  26 (2009) 395-407.
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uBSS – Lp norm minimization: 0< p ≤1

•Unique SCA-based solution of the uBSS problem x=As is obtained if s has (M-
N+1)-zero components or if it is N-1 sparse.

•Signal is k-sparse if it has k non-zero components, i.e. k=⎜⎜s⎜⎜0.

•If uBSS problem is not sparse in original domain it is transformed in domain 
where enough level of sparseness can be achieved: T(x)=AT(s). 

•Time-frequency and time-scale (wavelet) bases are employed for this purpose 
most often.

14

15. R. Gribonval and M. Nielsen, "Sparse representations in unions of bases," IEEE Transactions on Information 
Theory 49, 3320-3325 (2003).
16. J. .A. Tropp, "Greed is good: Algorithmic results for sparse approximation," IEEE Transactions on 
Information Theory 50, 2231-2242 (2004).
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•In addition to sparseness requirement certain degree of incoherence of the 
basis or mixing matrix A is required as well, ref.[7,15,16]. Mutual coherence is 
defined as the largest absolute and normalized inner product between different 
columns in A, what reads as 

The mutual coherence provides a measure of the worst-case similarity between 
the basis vectors. It indicates how much two closely related vectors may 
confuse any pursuit algorithm (solver of the underdetermined linear system of 
equations). Perfect recovery condition for s relates sparseness requirement on 
s and coherence of A: 
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uBSS – Lp norm minimization: 0< p ≤1
It was found in ref. [17] that above criterion although true from the worse-case 
standpoint does not reflect accurately actual behavior of sparse representations 
and pursuit’s algorithms performance. Average measure of coherence is 
proposed in [17] coined t-averaged mutual coherence to better characterize 
behavior of sparse representations.

where G=ATA is Gramm matrix. It applies                     as well as  
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1617. M. Elad, "Optimized Projections for Compressed Sensing," IEEE Transactions on Signal Processing 55, 
5695-5702 (2007). 
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uBSS – Lp norm minimization: 0< p ≤1
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•In the context of blind source separation scenario properties of the mixing 
matrix A can not be predefined or selected i.e. they are problem dependent and 
given.Yet, A dictates necessary level of sparseness of s to, possibly, obtain 
unique solution of the uBSS problem: x=As. To obtain this solution it is 
necessary:

to estimate A as accurately as possible.

to find representation (transformation) T(x)=AT(s) where T(s) is as 
sparse as possible. 

to construct algorithms for solving underdetermined system of equations 
T(x)=AT(s) that are robust with respect to the presence of noise i.e. 
errors in sparse approximation of T(s): T(s) is approximately k-sparse
with k dominant and number of small coefficients. If possible 
performance of the algorithm should remain robust if k increases.
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uBSS – Lp norm minimization: 0< p ≤1
• Solving underdetermined system of linear equations x=As amounts to solving:

or for problems with noise or approximation error:
2
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18

Minimization of L0–norm of s is combinatorial problem that is NP-hard. 
For larger dimension M it becomes computationally infeasible. Moreover, 
minimization of L0–norm is very sensitive to noise i.e. presence of 
small coefficients.
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Replacement of L0-norm by L1-norm is done quite often. That is known as convex 
relaxation of the minimum L0-norm problem. This leads to linear programming, [1,5-7]:
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uBSS – L1 norm minimization

L1-regularized least square problem ref.[8,18,19]:

and L2-regularized linear problem [19,20]:
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18. S..J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale -Regularized Least 
Squares,"IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007), http://www.stanford.edu/~boyd/l1_ls/. 
19. E.. van den Berg, M.P. Friedlander, “Probing the Pareto Frontier for Basis Pursuit Solutions,” SIAM J. Sci. Comput. 31, 890-
912 (2008).
20. M.A.T. Figuiredo, R.D. Nowak, S.J. Wright, "Gradient Projection for Sparse Reconstruction: Application to Compressed 
Sensing and Other Inverse Problems," IEEE Journal on Selected Topics in Signal Processing 1, 586-597 (2007).
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Provided that prior on s(t) is Laplacian, maximum likelihood approach to 
maximization of posterior probability P(slx,A) yields minimum L1-norm as the 
solution: ( )
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uBSS – L1 norm minimization
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uBSS – L1 norm minimization
Sequence of MATLAB commands for solution of the problems x=As using 
command linprog:

% Linear progamming solution
% solves linear program min(x) f'*x s.t. Ax=b, lb<=x<=ub.
f = ones(M,1); 
lb = zeros(M,1);
ub = 1000*ones(M,1);

for m=1:T
x=X(:,m);
[sh,fval,exitflag,output]=linprog(f,[],[],A,x,lb,ub,[]);
SH(:,m)=sh;

end    

21

• What happens if P(s) is not Lalpacian? For distributions P(s) sparser than
Laplacian, minimum L1-norm approach will not yield the sparsest solution!!!!
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uBSS – Lp norm minimization: 0< p ≤1
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Minimizing Lp-norm, 0<p<1, of s yields better performance when solving 
underdetermined system x=As than when using L1-norm minimization.

1 /

1

pM
p

mp
s⎛ ⎞

= ⎜ ⎟∑sLp-norm of [s1 0.1] : 

This occurs despite the fact 
that minimization of Lp-norm, 
0<p<1 is non-convex problem. 
Yet, in practical setting (when 
noise or approximation errors 
are present) its local minimum 
can be smaller than global 
minimum of L1 i.e. min Lp-norm 
solution is sparser than min L1-
norm solution.

m =⎝ ⎠
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uBSS – Lp norm minimization: 0< p ≤1
The idea of ref. [21] was to replace L0-norm by continuous parametric 
approximation:

0
( )M Fσ≈ −s s

where:
( ) ( )m

m

F f sσ σ= ∑s

and:
2

2( ) e x p
2

m
m
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approximates indicator function of a set {0}.

2321. H. Mohimani, M. Babaie-Zadeh, C. Jutten, “A fast approach for overcomplete sparse 
decomposition based on smoothed L0 norm,” IEEE Trans. Signal Process. 57 (2009) 289-301.
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uBSS – Lp norm minimization: 0< p ≤1
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Smaller parameter σ brings us closer to L0(s), while larger σ yields smoother 
approximation that is easier to optimize. 

Minimizing approximation of L0(s) is equivalent to maximize Fσ(s). The idea is 
to maximize Fσ(s) for large σ and than use obtained solution as initial value 
for next maximization of Fσ(s) for smaller σ. 

After each iteration computed approximation of s is projected back onto the 
constraining set As=x:

( ) ( )1T T −
← − −s s A A A A s x

Matlab code for smooth L0 algorithm can be downloaded from:

http://ee.sharif.ir/~SLzero/
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uBSS – Lp norm minimization: 0< p ≤1

25
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uBSS – Lp norm minimization: 0< p ≤1
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22. R. Chartrand, Exact reconstructions of sparse signals via nonconvex minimization, IEEE Signal Process. Let., 14 (2007), 707-
710.
23. I. Daubechies, R. Devore, M. Fornassier,C. S. Gunturk “Iteratively reweigghted least squares minimization for sparse recovery,”
Communications on Pure and Applied Mathematics,vol. LXIII (2010) 1-38.
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Initialize: ε=1, s(0) = pinv(A)x, k=1.
do

repeat

until 
ε=ε/10

while ε>10-8
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Iteratively reweighted least square (IRLS) algorithm outline
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Iterative soft/hard thresholding
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L1-regularized least square problem: 

can be reformulated within analytic soft thresholding representation [24, 25]: 
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where λ=σ2 provided that error term (noise) has normal distribution.
Otherwise some kind of cross-validation (trial and error) needs to be applied. 

28
24. D. L. Donoho, Denoising by soft-thresholding, IEEE Trans. Information Theory, 41 (1995), 613-627.
25. I. Daubechies, M. Defrise,  D.M. Christine, An iterative thresholding algorithm for linear inverse problems with a sparsity 
constraint, Comm. Pure and Appl. Math., LVII (2004) 1413-1457.
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Iterative soft/hard thresholding
L0-regularized least square problem: 

2
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can be reformulated within analytic hard thresholding representation [26]: 
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where λ=σ2 provided that error term (noise) has normal distribution.
Otherwise some kind of cross-validation (trial and error) needs to be applied. 

2926. R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse Problems, 24 (2008) 1-14.
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Iterative soft/hard thresholding
Very recently it has been proven in [27] L1/2-regularizer is the most sparse 
and robust among Lp regularizers when 1/2≤p<1, and when 0<p<1/2, the Lp
regularizers have similar properties as the L1/2 regularizer. In [27] it is shown 
that solution of:
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can be converted to a series of convex weighted L1 regularized problems:
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3027. X. ZongBen, Z. Hai, W. Yao, C. XiangYu, L. Yong, L1-2 regularization, Science China, series F, 53 (2010) 1159-1169.
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Iterative soft/hard thresholding
It has been further derived in [28] a fast solver for L1/2-regularized problems 
based on thresholding representation theory. It is proven in [28] that an 
analytically expressive thresholding representation exists among all Lp-
regularizes 0<p<1 only for p=1/2.  
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28. Z. Xu, X. Chang, F. Xu, H. Zhang, L1-2 Regularization: A Thresholding Representation Theory and Fast Solver, accepted for IEEE
Tr. Neural Networks.
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Estimation of the mixing matrix: single component points 

Accuracy of the estimation of the mixing matrix A can be improved significantly 
when it is estimated on a set of single component points i.e. points where only
one component/source is active, ref. [11,12].

At such “t” points of single source activity the following relation holds:

where j denotes the source index that is active at point “t”, i.e. at these points 
the mixing vector aj is collinear with data vector xt . It is assumed that data 
vector and source components are complex. If not, Hilbert transform-based
analytical expansion can be used to obtain complex 
representation, ref. [29].

xt=ajsjt

32
29. I.Kopriva, I. Jerić, “Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass 
spectrometry: sparseness-based robust multicomponent analysis,“ Analytical Chemistry 82: 1911-1920 (2010).
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Estimation of the mixing matrix: single component points 
If single source points can not be find in original domain a linear transform 
such as wavelet transform, Fourier transform or Short-time Fourier 
transform can be used to obtain sparser representation:

T(x)t=aj T(sj)t

33

Since the mixing vector is real, the real and imaginary part of data vector xt
must point in the same direction when real and imaginary part of sjt have the 
same sign. Otherwise, they must point into opposite directions. Thus, such 
points can be identified using:

where R{xt} and I{xt} denote real and imaginary part of xt, and ∆θ denotes 
angular displacement from a direction of 0 or π radians.

{ } { }
{ } { } ( )

T

cost t

t t

R I
R I

θ≥ ∆
x x
x x
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Estimation of the mixing matrix: clustering 

Assuming unit L2-norm of am and N=2 we can parameterize column vectors in 
a plane by one angle  

T[cos( ) sin( )]m m mϕ ϕ=a

Assuming that s is 1-sparse in representation domain estimation of A and M is 
obtained by means of data clustering algorithm, [10]: 

We remove all data points close to the origin for which applies:
where ε represents some predefined threshold.

{ }2 1
( )

T

t
t ε

=
≤x

Normalize to unit L2-norm remaining data points x(t), i.e.,                                  ( ) ( ) ( ){ }2 1

T

t
t t t

=
→x x x
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Estimation of the mixing matrix: clustering 
Calculate function f(a): 

( ) ( )2

2
1

( ),
exp

2

T

t

d t
f

σ=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

x a
a

where                                      and              denotes inner product. Parameter σ
is called dispersion. If set to sufficiently small value, in our experiments this 
turned out to be σ≈0.05, the value of the function f(a) will approximately equal 
the number of data points close to a. Thus by varying mixing angle ϕ we 
effectively cluster data. 

( ) ( )2( ), 1 ( )d t t= − ⋅x a x a ( )( )t ⋅x a

• Number of peaks of the function f(a) corresponds with the estimated number 
of materials M. Locations of the peaks correspond with the estimates of the 
mixing angles               , i.e., mixing vectors            .( ){ }

ˆ

1
ˆ M

m m
ϕ

= { }
ˆ

1
ˆ M

m m=
a
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36

Estimation of the mixing matrix: clustering 
• hierarchical clustering by MATLAB function clusterdata.It is assumed that 
number of clusters (sources) is given (known). The method is deterministic and 
memory demanding.

•k-means clustering by MATLAB  function kmeans. It is assumed that a number 
of clusters M (corresponds with number of sources) is given. For each dana
point x(t) to assign to cluster m we need to assign a binary indicator variable 
rtm=1 and rtj=0 for j≠m. That is known as 1-of-M coding scheme. We also 
defined a prototype cluster centers: µm , m=1,…,M. The objective function 
known as a distortion measure is defined:

2

2
1 1

( )
T M

tm m
t m

J r t
= =

= −∑∑ x µ

For fixed rtm we can solve for µm from: 

1 arg min ( )

0
j j
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if m t
r

otherwise
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⎪⎩

x µ

1 1
0 ( )

T T

m tm tm
t tm

J r t r
= =

∂
= → =

∂ ∑ ∑µ x
µ

Since, k-means clustering is a first order method it is sensitive on initial choice 
of µm , m=1,…,M.
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Estimation of the mixing matrix: clustering 
• Mean shift clustering [30-32]. Let be a dataset to be clustered. A
kernel based density estimate at some point x0(t) is: 

( ){ } 0

0 1

TN

t
t

=
∈x

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )0

0

2
0 0 2

, 0 0 0 0 0 2
10

1 exp
T

j

t j
p t G t j where G t j

Tσ σ σ σ=

⎛ ⎞−
⎜ ⎟= − − = −
⎜ ⎟
⎝ ⎠

∑X

x x
x x x x x

The initial dataset X0 is transformed into series of steps. Let the Reny’s cross 
entropy between the current dataset X and initial dataset X0 be defined as:

( ) ( ) ( ) ( )( )
0

2
0 0 0

1 10

1, log ( , ) log
TT

i j
H p G i j

TT σ
= =

= − ≅ − −∑∑∫X X X X dX x x
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30. S.Rao, A. Medeiros Martins, J. C. Principe, “Mean shift: An information theoretic perspective,“ Pattern 
Recognition Letters 30: 222-230 (2009).
31. D. Comaniciu, P. Meer, “Mean Shift: A Robust Approach Toward Feature Space Analysis,” IEEE Trans. Patt. 
Anal. Machine Intell. 24: 603-619 (2002).
32. Y. Cheng, “Mean Shift, Mode Seeking, and Clusterin,” IEEE Trans. Patt. Anal. Machine Intell. 17: 790-799 
(1995).
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Estimation of the mixing matrix: clustering 
The purpose of transformation series is to move X0 into X such that all the 
samples converge toward modes of pX0. Hence original dataset X0 will be 
smoothed while cross entropy between X0 and X being minimal (X is 
determined completely by series of transformations and X0. Hence the current 
movement is obtained by maximizing argument of H(X,X0):

( ) ( ) ( )( )
0

0
1 10

1max
TT

i j
J G i j
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= −∑∑X
X x x
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Hence, maximization of J(X) is in the direction of the gradient of density pX0 i.e.
the current sample x(t) is moved toward mode of pX0. The algorithm is expected
to has sel-fstopping capability at the modes (the gradient is zero) and it will 
move samples where associated probability is low (the gradient is maximal) fast 
toward the modes of pX0. Hence, the mean shift algorithm that follows is 
gradient ascent algorithm with automatically adjustable step size, whereas the 
gradinet is actually never computed explicitly. 
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Estimation of the mixing matrix: clustering 
It follows from ∂J(X)/∂x(t)=0:
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that is the sample mean at x(t). The term                       is called the mean shift.( ) ( )( ) ( )( )k km t t−x x

It follows:
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Thus, the samples are moved in the direction of normalized density gradient 
with increasing density values (modes). Algorithm is stopped when:
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where for example tol=10-6. The number of modes toward algorithm converged 
determenis number of clusters (sources). Centers of the clusters represent the 
mixing vectors. 
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Blind separation of four sine signals from two mixtures

40

Four sinusoidal 
signals with 
frequencies 200Hz, 
400Hz, 800Hz and 
1600Hz.

TIME DOMAIN
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Blind separation of four sine signals from two mixtures

41

Four sinusoidal signals 
with frequencies 200Hz, 
400Hz, 800Hz and 
1600Hz.

FREQUENCY DOMAIN
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Blind separation of four sine signals from two mixtures
Two mixed signals

TIME DOMAIN 42FREQUENCY DOMAIN
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Blind separation of four sine signals from two mixtures
Clustering function

A=[63.440 26.570 14.040 71.570]

AH=[14.030 26.550 63.260 71.550]
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Blind separation of four sine signals from two mixtures
Linear programming based estimation of the sources based on estimated 
mixing matrix A

( ) ( )
( ) ( )

r r

i i

ω ω
ω ω

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

x sA 0
x s0 A

or:

( ) ( )ω ω=x As
sr(ω) and si(ω) are not necessarily nonnegative. Thus, constraint ( )ω ≥s 0
required by linear program is not satisfied. In such a case it is customary to
introduce dummy variables: u,v≥0, such that                          .( )ω = −s u v
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Blind separation of four sine signals from two mixtures

Introducing:

( )ω ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

u
z

v
⎡ ⎤= −⎣ ⎦A A A

yields:
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and s(t) as: 
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Blind separation of four sine signals from two mixtures

46Magnitudes of the estimated sources in FREQUENCY DOMAIN
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Blind separation of four sine signals from two mixtures

47Estimated sources in TIME DOMAIN
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Blind separation of three sounds from 
two mixtures

48
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Blind separation of three sounds from two mixtures
Three source signals are female and male voice and bird’s sound:

Time-frequency representationsTime domain waveforms

49
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Blind separation of three sounds from two mixtures

Two mixtures of sounds:

Time domain waveforms Time-frequency representations

50
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Blind separation of three sounds from two mixtures
Three extracted sounds combining clustering on a set of single source points 
and linear programming in time-frequency domain:

Time-frequency representationsTime domain waveforms
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Blind extraction of analytes (pure
components) from mixtures of chemical 
compounds in NMR spectroscopy and 

mass spectrometry

52

I. Kopriva, I. Jerić (2010). Blind separation of analytes in nuclear magnetic resonance spectroscopy and mass
spectrometry: sparseness-based robust multicomponent analysis, Analytical Chemistry 82:1911-1920 (IF: 5.71).
I. Kopriva, I. Jerić, V. Smrečki (2009). Extraction of multiple pure component 1H and 13C NMR spectra from 
two mixtures: novel solution obtained by sparse component analysis-based blind decomposition, Analytica 
Chimica Acta, vol. 653, pp. 143-153 (IF: 3.14).
I. Kopriva, I. Jerić (2009). Multi-component Analysis: Blind Extraction of Pure Components Mass Spectra 
using Sparse Component Analysis, Journal of Mass Spectrometry, vol. 44, issue 9, pp. 1378-1388 (IF: 2.94).
I. Kopriva, I. Jerić, A. Cichocki (2009). Blind Decomposition of Infrared Spectra Using Flexible Component 
Analysis," Chemometrics and Intelligent Laboratory Systems 97 (2009) 170-178 (IF: 1.94).
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Structure of four analytes (glycopeptides)

COSY NMR spectra of four analytes

53



Faculty of Mathematics, University of Zagreb, Graduate course 2011/2012.
“Blind separation of signals and independent component analysis”

COSY NMR spectra of three mixtures
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Clustering functions calculated on a set of 203 SAPs in
2D wavelet domain in 2D subspaces: X1X2 , X1X3 and
X2X3.
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Estimated COSY NMR spectra of analytes in
2D Fourier domain 56
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Chemical structure of five pure components.
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Mass spectra of five pure components.
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Mass spectra of two mixtures
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Dana clustering function in the mixing anagle domain. Five peaks indicate presence of five 
components in the mixtures spectra.
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Estimated mass spectra of five pure components.
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.

Original RGB image

63I. Kopriva and A . Cichocki, “Sparse component analysis-based non-probabilistic blind decomposition of low-dimensional multi-
spectral images,” Journal of Chemometrics, vol. 23, Issue 11, pp. 590-597 (2009). 
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Unsupervised segmentation of multispectral images

Evidently degree of overlap between materials in spatial domain is very small 
i.e. sm(t)*sn(t)≈δnm.. Hence RGB image decomposition problem can be 
solved either with clustering and L1-norm minimization or with HALS NMF 
algorithm with sparseness constraints. 

For the L1-norm minimization estimate of the mixing (spectral reflectance 
matrix) A and number of materials M is necessary. For HALS NMF only 
estimate of M is necessary. Both tasks can be accomplished by data clustering
algorithm presented in ref.[10].

Because materials in principle do not overlap in spatial domain it applies    
||s(t) ||0≈1
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Unsupervised segmentation of multispectral images

Assuming unit L2-norm of am we can parameterize column vectors in 3D space 
by means of azimuth and elevation angles  

T[cos( )sin( ) sin( )sin( ) cos( )]m m m m m mϕ θ ϕ θ θ=a

Due to nonnegativity constraints both angles are confined in [0,π/2]. Now 
estimation of A and M is obtained by means of data clustering algorithm: 

•We remove all data points close to the origin for which applies:
where ε represents some predefined threshold.

{ }2 1
( )

T

t
t ε

=
≤x

•Normalize to unit L2-norm remaining data points x(t), i.e.,                                  ( ) ( ) ( ){ }2 1

T

t
t t t

=
→x x x
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Unsupervised segmentation of multispectral images
• Calculate function f(a): 

( ) ( )2

2
1

( ),
exp

2

T

t

d t
f

σ=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

x a
a

where                               and             denotes inner product. Parameter σ is 
called dispersion. If set to sufficiently small value, in our experiments this turned 
out to be σ≈0.05, the value of the function f(a) will approximately equal the 
number of data points close to a. Thus by varying mixing angles 0≤ϕ,θ≤π/2 we 
effectively cluster data. 

( ) ( )2( ), 1 ( )d t t= − ⋅x a x a ( )( )t ⋅x a

• Number of peaks of the function f(a) corresponds with the estimated number 
of materials M. Locations of the peaks correspond with the estimates of the 
mixing angles                 , i.e., mixing vectors            .( ){ }
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.

Clustering algorithm is used to estimate number of materials M.

67Thee peaks suggest existence of three materials in the RGB image i.e. M=3.
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.

Spatial maps of the materials were extracted by NMF with 25 layers, linear 
programming, ICA and DCA methods.

Extracted spatial maps were rescaled to the interval [0,1] where 0 means full 
absence of the material and 1 means full presence of the material.

This enables visualization of the quality of decomposition process.  Zero 
probability (absence of the material) is visualized with dark blue color and 
probability one (full presence of the material) is visualized with dark red color.
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.

a) DCA
b) ICA
c) NMF
d) Linear programming

69
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Unsupervised segmentation of multispectral images
Consider blind decomposition of the RGB image (N=3) composed of four 
materials (M=4): 

70I. Kopriva and A . Cichocki, “Sparse component analysis-based non-probabilistic blind decomposition of low-dimensional multi-
spectral images,” Journal of Chemometrics, vol. 23, Issue 11, pp. 590-597 (2009). 
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Unsupervised segmentation of multispectral images
For shown experimental RGB image clustering function is obtained as: 

71Four peaks suggest existence of four materials in the RGB image i.e. M=4.
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Unsupervised segmentation of multispectral images
Spatial maps of the materials extracted by HALS NMF with 25 layers, linear 
programming and interior point method [18] are obtained as:

a) 25 layers HALS NMF; b) Interior point method, [74,90]; c) Linear programming.

72
18. S. J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale  L1 -
Regularized Least Squares,"IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007).
http://www.stanford.edu/~boyd/l1_ls/.
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Unsupervised segmentation of multispectral images

Because materials in the experimental RGB image are orthogonal (they do not 
overlap in spatial domain) we can evaluate performance of the employed blind 
image decomposition methods via the correlation matrix defined as G=SST. For 
perfect estimation the correlation matrix will be diagonal and performance is 
visualized as deviation from diagonal matrix. To quantify decomposition quality 
numerically we compute the correlation index in dB scale as

2
10

, 1
10log

M

ij
i j
j i

CR g
=

≠

= − ∑
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where before calculating correlation matrix G rows of S are normalized to unit  
L2-norm. 
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Unsupervised segmentation of multispectral images

From left to right: 25 layers HALS NMF; Interior point method, [18]; c) Linear programming.

Correlation matrices

Multilayer HALS NMF Interior-point method Linear program

CR [dB] 13.67 9.97 7.77

CPU time [s]* 3097 7751 3265

CR performance measure in dB

*MATLAB environment on 2.4 GHz Intel Core 2 Quad Processor Q6600 desktop computer with 4GB RAM.
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