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Motivation with illustration of applications (lecture I) 
Mathematical preliminaries with principal component 

analysis (PCA)? (lecture II)
Independent component analysis (ICA) for linear 

static problems: information-theoretic approaches
(lecture III)
ICA for linear static problems: algebraic approaches 

(lecture IV)
ICA for linear static problems with noise (lecture V)
Dependent component analysis (DCA) (lecture VI) 

Course outline
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Course outline
Underdetermined blind source separation (BSS) and 

sparse component analysis (SCA) (lecture VII/VIII)
Nonnegative matrix factorization (NMF) for 

determined and underdetermined BSS problems 
(lecture VIII/IX)
BSS from linear convolutive (dynamic) mixtures 

(lecture X/XI)
Nonlinear BSS (lecture XI/XII)
Tensor factorization (TF): BSS of multidimensional 

sources and feature extraction (lecture XIII/XIV)
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Seminar problems
1. Blind separation of two uniformly distributed signals with maximum likelihood 

(ML) and AMUSE/SOBI independent component analysis (ICA) algorithm.
Blind separation of two speech signals with ML and AMUSE/SOBI ICA 
algorithm.  Theory, MATLAB demonstration and comments of the 
results.     

2. Blind decomposition/segmentation of multispectral (RGB) image using ICA, 
dependent component analysis (DCA) and nonnegative matrix factorization 
(NMF) algorithms. Theory, MATLAB demonstration and comments of the 
results.     

3. Blind separation of acoustic (speech) signals from convolutive dynamic 
mixture. Theory, MATLAB demonstration and comments of the results.
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Seminar problems
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4. Blind separation of images of human faces using ICA and DCA algorithms 
(innovation transform and ICA, wavelet packets and ICA) Theory, MATLAB 
demonstration and comments of the results.     

5. Blind decomposition of multispectral (RGB) image using sparse component 
analysis (SCA): clustering + Lp norm ( 0<p≤1) minimization. Theory, 
MATLAB demonstration and comments of the results.     

6. Blind separation of four sinusoidal signals from two static mixtures (a 
computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in frequency (Fourier) domain. 
Theory, MATLAB demonstration and comments of the results. 
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Seminar problems
7. Blind separation of three acoustic signals from two static mixtures (a 

computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in time-frequency (short-time 
Fourier) domain. Theory, MATLAB demonstration and comments of the 
results. 

8. Blind extraction of five pure components from mass spectra of two static 
mixtures of chemical compounds using sparse component analysis (SCA): 
clustering a set of single component points + Lp norm ( 0<p≤1) minimization 
in m/z domain. Theory, MATLAB demonstration and comments of the 
results. 

9. Feature extraction from protein (mass) spectra by tensor factorization of 
disease and control samples in joint bases. Prediction of prostate/ovarian 
cancer. Theory, MATLAB demonstration and comments of the results. 
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Blind source separation

A theory for multichannel blind signal recovery requiring minimum of a 
priori information.

Problem:
X=AS X∈RNxT, A∈RNxM, S∈RMxT

Goal: find A and S based on X only.

Solution X=AT-1TS must be characterized with T= PΛ where P is 
permutation and Λ is diagonal matrix i.e.: Y ≅ PΛS

A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.
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• Number of mixtures N must be greater than or equal to M.

•source signals si(t) must be statistically independent.

•source signals sm(t), except one, must be non-Gaussian.

•mixing matrix A must be nonsingular.

Independent component analysis
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A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
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Nonnegative matrix factorization (NMF)
Many BSS problems arising in imaging, chemo- and/or bioinformatics are 
described by superposition of non-negative latent variables (sources):

where N represents number of sensors, M represents number of sources and T
represents number of samples. 

Thus, solution of related decomposition problem can be obtained by imposing 
non-negativity constraints on A and S, to narrow down number of possible 
decomposition of X. This leads to NMF algorithms. 

Due to non-negativity constraints some other constraints (statistical 
independence) can be relaxed/replaced in applications where they are not 
fulfilled. (Non-negative sources are partially dependent).

N×T N×M M×T
0+ 0+ 0+, and= ∈ ∈ ∈X AS X A S
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Nonnegative matrix factorization
Modern approaches to NMF problems have been initiated by Lee-Seung’
Nature paper, Ref. [1], where it is proposed to estimate A and S through 
alternative minimization procedure of the possibly two different cost functions: 

Set Randomly initialize: A(0), S(0),

For k=1,2,…, until convergence do

Step 1:

Step 2:

( ) ( )

( 1) ( )

0
arg min
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mt

k k

s
D+

≥
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0
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≥
= A A
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If both cost functions represent squared Euclidean distance (Froebenius norm) 
we obtain alternating least square (ALS) approach to NMF.
1. D D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401
(6755), 788-791 (1999). 
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Nonnegative matrix factorization
ALS-based NMF: 

( ) ( ) 2* *
2

,

1, arg min . . ,
2

D s t= = − ≥ ≥
A S

A S X AS X AS A 0 S 0

There are two problems with above factorization: 

1) Minimization of the square of Euclidean norm of approximation error E=X-AS
is from the maximum likelihood viewpoint justified only if error distribution is 
Gaussian:

( )
2

2
2

1, exp
22

p
σπσ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
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X AS
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2) In many instances non-negativity constraints imposed on A and S do not 
suffice to obtain solution that is unique up to standard BSS indeterminacies: 
permutation and scaling. 
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Nonnegative matrix factorization
In relation to original Lee-Seung NMF algorithm, [1], additional constraints are 
necessary to obtain factorization unique up to permutation and scaling. 
Generalization that involves constraints is given in [2]:

( ) 2

2

1 ( ) ( )
2

D J Jα α= − + +S S A AX AS X AS S A

where                        and                         are sparseness constraints that 
correspond with L1-norm of S and A respectively. αS and αA are regularization 
constants. Gradient components in matrix form are:

,
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2. A. Cichocki, R. Zdunek, and S. Amari, “Csiszár’s Divergences for Non-negative Matrix Factorization: Family of
New Algorithms,” LNCS 3889, 32-39 (2006).
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Maximum a posteriori probability BSS/NMF
Maximization of a-posterior probability (MAP) P(A,SlX) yields minimum L1-norm 
as the solution:

( ) ( ) ( ) ( )* *, max , max , ( ) . . ,P P P P s t
= =

= ∝ ≥ ≥
AS X AS X

A S A S X X A S A S A 0 S 0

Above formulation is equivalent to maximizing likelihood probability P(XІA,S)
and maximizing prior probabilities P(A) and P(S). Assuming normal distribution 
of approximation error E=X-AS yields: 

( )
( )

2* *
2

,

1, arg min ( ) ( ) . . , .
2

J J s tα α= − + + ≥ ≥S S A A
A S

A S X AS S A A 0 S 0
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Maximum a posteriori probability BSS/NMF

( )1( ) exp ... MP = − + +S s s

Above formulation is equivalent to maximizing likelihood probability P(XІA,S)
and maximizing prior probabilities P(A) and P(S). Assuming normal distribution 
of approximation error E=X-AS, non-informative prior on A: P(A)=const and 
Laplacian (sparse) prior on                                               yields 

( )
( )

2* *
2 1

,

1, arg min . . , .
2

s tα= − + ≥ ≥S
A S

A S X AS S A 0 S 0

It is possible to select other than Laplacian prior for P(S) that leads to 
sparseness constraint different than L1-norm of S:
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( )

2* *
2

,

1, arg min . . 0 1, , .
2 p

s t pα= − + < ≤ ≥ ≥S
A S

A S X AS S A 0 S 0



15/46

Faculty of Mathematics, University of Zagreb, Graduate course 2011/2012.
“Blind separation of signals and independent component analysis”

Nonnegative matrix factorization
Since NMF problem deals with non-negative variables the idea is to ensure 
non-negativity of A and S through learning automatically. That is achieved by 
multiplicative learning equations:

( , )
( , )
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where ⊗ denotes component (entry) wise multiplication,                 and             
denote respectively negative and positive part of the gradient 
. Likewise,                     and      are negative and 

positive part of the gradient   . 

When gradients converge to zero corrective terms converge to one. Since 
learning equations include multiplications and divisions of non-negative terms, 
non-negativity is ensured automatically.

( , )D−∇A A S
( , )D+∇A A S
( , )D∇A A S ( , )D−∇S A S ( , )D+∇S A S

( , )D∇S A S
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Nonnegative matrix factorization
Multiplicative learning rules for NMF based on regularized squared L2-norm of 
the approximation are obtained as: 

T

T
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where [x]+=max{ε,x} with small ε. For L1-norm based regularization, derivatives 
of sparseness constraints in above expressions are equal to 1, i.e.:
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Nonnegative matrix factorization
NMF through minimization of Froebenius norm is optimal when data are 
corrupted by additive Gaussian noise. Another cost function that is used most 
often for NMF is Kullback-Leibler divergence, also called I-divergence:

( ) [ ] [ ]ln nt
nt nt nt

nt nt

xD x x
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

∑X AS AS
AS

It can be shown that minimization of Kullback-Leibler divergence is equivalent 
to the maximization of the Poisson likelihood

( ) [ ] [ ]( ), exp
!
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2. A. Cichocki, R. Zdunek, and S. Amari, “Csiszár’s Divergences for Non-negative Matrix Factorization: Family of
New Algorithms,” LNCS 3889, 32-39 (2006).
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Nonnegative matrix factorization
Calculating gradients of I-divergence cost function w.r.t. anm and smt the 
following learning rules in MATLAB notation are obtained

( )( )( )
.[1 ].[ ]

( 1) ( ) T ( )k k k
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⎝ ⎠

A
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where ⊗ denotes component-wise multiplication, and ∅ denotes component-
wise division. Relaxation parameter ω∈(0,2] provides improvement of the 
convergence, while αS≥0 and αA≥0 are sparseness constraints that are typically 
confined in the interval [0.001, 0.005].
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Nonnegative matrix factorization
In order to obtain NMF algorithms optimal for different statistics of data and 
noise the α-divergence cost function can be used

( ) [ ] [ ]( )11 ( 1)
( 1) nt ntnt nt

nt
D x xαα α α

α α
−= − + −

− ∑X AS AS AS

I-divergence is obtained in the limit when α 1, and dual Kullback-Leibler
divergence when α 0. Using MATLAB notation the following update rules are 
obtained for α≠0,1.

[ ]( )( )
1/

T

. . .

.* * . / NT

αω αα
ε

+

+

⎛ ⎞← +⎜ ⎟
⎝ ⎠

S

S S A X AS 1

[ ]( )( )
1/

T

. . .

.* . / NT

αω αα
ε

+

+

⎛ ⎞← +⎜ ⎟
⎝ ⎠

A

A A X AS 1 S

( )* 1./ ( ,1)diag sum←A A A



20/46

Faculty of Mathematics, University of Zagreb, Graduate course 2011/2012.
“Blind separation of signals and independent component analysis”

Hierarchical  ALS NMF
Local or hierarchical ALS NMF algorithms were recently derived in [3-5]. They 
are biologically plausible and employ minimization of the global cost function to 
learn the mixing matrix and minimization of set of local cost functions to learn 
the sources. Global cost function can for example be squared Euclidean norm:

( ) 2

2

1 ( ) ( )
2

D J Jα α= − + +S S A AX AS X AS S A

Local cost functions can be also squared Euclidean norms
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3. A. Cichocki, R. Zdunek, S.I. Amari, Hierarchical ALS Algorithms for Nonnegative Matrix Factorization and 3D 
Tensor Factorization, LNCS 4666 (2007) 169-176

4. A. Cichocki, A-H. Phan, R. Zdunek, and L.-Q. Zhang, "Flexible component analysis for sparse, smooth, 
nonnegative coding or representation," LNCS 4984, 811-820 (2008).

5. A. Cichocki, R. Zdunek, S. Amari, Nonnegative Matrix and Tensor Factorization, IEEE Sig. Proc. Mag. 25
(2008) 142-145. 
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Hierarchical  ALS NMF
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Minimization of above cost functions in ALS manner with sparseness 
constraints imposed on A and/or S yields

where I1×T is an M×M identity matrix, 11×T and 1N×M are row vector and matrix 
with all entries equal to one and [ξ]+=max{ε,ξ} (e.g., ε=10-16). 

Regularization constant λ changes as a function of the iteration 
index as (with λ0 = 100 and τ = 0.02 in the experiments). ( )0 expk kλ λ τ= −
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Multilayer NMF
Great improvement in the performance of the NMF algorithms is obtained when 
they are applied in the multilayer mode [89,90], whereas sequential 
decomposition of the nonnegative matrices is performed as follows. 

In the first layer, the basic approximation decomposition is performed: 

In the second layer result from the first layer is used to build up new input data 
matrix for the second layer                        . This yields . 

After L layers data decomposes as follows 

(1) (1)
0
N T×
+≅ ∈X A S

(1)
0
M T×
+← ∈X S (1) (2) (2)

0
M T×
+≅ ∈X A S

(1) (2) ( ) ( )L L≅X A A A S

6. A.  Cichocki, and R. Zdunek, “Multilayer Nonnegative Matrix Factorization,” El. Letters 42, 947-948 (2006).
7. A.  Cichocki, R. Zdunek, A. H. Phan, S. Amari, Nonnegative Matrix and Tensor Factorizations-Applications to 
Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley, 2009.
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Multi-start initialization for NMF algorithms
Combined optimization of the cost function D(XΙΙAS) with respect to A and S
is nonconvex optimization problem. Hence, some strategy is necessary to 
decrease probability that optimization process will get stuck in some local 
minima. Such procedure is outlined with the following pseudo code: Select R-
number of restarts, Ki number of alternating steps, Kf number of final 
alternating steps.

for r =1,…,R do

Initialize randomly A(0) and S(0)

{A(r),S(r)} nmf_algorithm(X,A(0),S(0),Ki);

compute d=D(XΙΙA(r)S(r));

end

rmin=argmin1≤n≤Rdr;

{A,S} nmf_algorithm(X,A(rmin),S(rmin),Kf);
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L1/2 –sparsity constrained NMF
Very recently it has been proven in [8] L1/2-regularizer is the most sparse and 
robust among Lp regularizers when 1/2≤p<1, and when 0<p<1/2, the Lp
regularizers have similar properties as the L1/2 regularizer. In [9] L1/2-NMF 
algorithm has been derived for unmixing hyperspectral image. The algorithm 
is derived as solution of:

8. X. ZongBen, Z. Hai, W. Yao, C. XiangYu, L. Yong, L1-2 regularization, Science China, series F, 53 (2010) 1159-
1169.
9. Y. Qian, S. Jia, J. Zhou, A. Robles-Kelly, “Hyperspectral unmixing via L1/2 Sparsity-Constrained Nonegative 
Matrix Factorization,” IEEE Transactions on Geoscience abd Remote Sensing, vol. 49, No. 11, 4282-4297, 2011.

( )
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Multiplicative update rules are: 
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Non-negative matrix under-approximation (NMU)
A sequential approach to NMF has been recently proposed in [10] by 
estimating rank-1 one factors amsm one at a time. Each time amsm is 
estimated it is removed from X X-amsm. To prevent subtraction from being 
negative the under-approximation constraint is imposed on amsm: amsm≤X. 

Hence, the NMU algorithm is obtained as a solution of: 

( )
( )

2* *
2

,

1, arg min . . , , .
2

s t= − ≥ ≥ ≤
A S

A S X AS A 0 S 0 AS X

The underapproximation constraint ensures sparse (parts based) factorization 
of X. Since no explicit regularization is used there are no difficulties associated 
with selecting values of regularization constants. MATLAB code for NMU 
algorithm is available at: http://www.core.ucl.ac.be/~ngillis/papers/recursiveNMU.m

10. N. Gillis, and F. Glineur, "Using underapproximations for sparse nonnegative matrix factorization," Patt.
Recog., vol. 43, pp. 1676-1687, 2010.
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Unsupervised segmentation of multispectral images

SPOT- 4 bands, LANDSAT -7 bands, AVIRIS-224 bands (0.38µ-2.4µ);

Objects with very similar reflectance spectra are difficult to discriminate.
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Unsupervised segmentation of multispectral images
Hyperspectral/multispectral image and static linear mixture model. For image 
consisting of N bands and M materials linear data model is assumed: 

1

M
m mm=

= =∑X AS a s

[ ]...1 2 M ≡a a a A

X - measured data intensity matrix,

[ ]... T
1 2 M ≡s s s S

0
N T×
+∈X

0
M T×
+∈SS - unknown class matrix,

0
N M×
+∈AA – unknown spectral reflectance matrix.
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Unsupervised segmentation of multispectral images

Spectral similarity between the sources sm and sn implies that 
corresponding column vectors are close to collinear i.e. am≅can.

Contribution at certain pixel location t is: amsmt + ansnt ≅ cansmt + ansnt. 
This implies that sn and csm are indistinguishable i.e. they are 
statistically dependent. 

Thus, spectral similarity between the sources causes ill-conditioning 
problems of the basis matrix as well as statistical dependence among 
the sources. Both conditions imposed by ICA algorithm on SLMM 
are not satisfied. 
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.11

Original RGB image

11. I. Kopriva and A . Cichocki, “Sparse component analysis-based non-probabilistic blind decomposition of low-
dimensional multi-spectral images,” Journal of Chemometrics, vol. 23, Issue 11, pp. 590-597 (2009). 
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Unsupervised segmentation of multispectral images

Evidently degree of overlap between materials in spatial domain is very small 
i.e. sm(t)*sn(t)≈δnm.. Hence RGB image decomposition problem can be 
solved either with clustering and L1-norm minimization or with HALS NMF 
algorithm with sparseness constraints. 

For the L1-norm minimization estimate of the mixing (spectral reflectance 
matrix) A and number of materials M is necessary. For HALS NMF only 
estimate of M is necessary. Both tasks can be accomplished by data clustering
algorithm presented in ref.[12].

Because materials in principle do not overlap in spatial domain it applies    
||s(t) ||0≈1

12. F. M. Naini, G.H. Mohimani, M. Babaie-Zadeh, Ch. Jutten, "Estimating the mixing matrix in Sparse Component
Analysis (SCA) based on partial k-dimensional subspace clustering," Neurocomputing 71, 2330-2343 (2008).
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Unsupervised segmentation of multispectral images

Assuming unit L2-norm of am we can parameterize column vectors in 3D space 
by means of azimuth and elevation angles  

T[cos( )sin( ) sin( )sin( ) cos( )]m m m m m mϕ θ ϕ θ θ=a

Due to nonnegativity constraints both angles are confined in [0,π/2]. Now 
estimation of A and M is obtained by means of data clustering algorithm: 

•We remove all data points close to the origin for which applies:
where ε represents some predefined threshold.

{ }2 1
( )

T

t
t ε

=
≤x

•Normalize to unit L2-norm remaining data points x(t), i.e.,                      ,            ( ) ( ) ( ){ }2 1

T

t
t t t

=
→x x x
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Unsupervised segmentation of multispectral images

• Calculate function f(a): 

( ) ( )2

2
1

( ),
exp

2

T

t

d t
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⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑

x a
a

where       and               denotes inner product. Parameter σ
is called dispersion. If set to sufficiently small value, in our experiments this 
turned out to be σ≈0.05, the value of the function f(a) will approximately equal 
the number of data points close to a. Thus by varying mixing angles 0≤ϕ,θ≤π/2 
we effectively cluster data. 

( ) ( )2( ), 1 ( )d t t= − ⋅x a x a ( )( )t ⋅x a

• Number of peaks of the function f(a) corresponds with the estimated number 
of materials M. Locations of the peaks correspond with the estimates of the 
mixing angles                        , i.e., mixing vectors     .( ){ }

ˆ
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.

Clustering algorithm is used to estimate number of materials M.

Thee peaks suggest existence of three materials in the RGB image i.e. M=3.
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.

Spatial maps of the materials were extracted by NMF with 25 layers, linear 
programming, ICA and DCA methods.

Extracted spatial maps were rescaled to the interval [0,1] where 0 means full 
absence of the material and 1 means full presence of the material.

This enables visualization of the quality of decomposition process.  Zero 
probability (absence of the material) is visualized with dark blue color and 
probability one (full presence of the material) is visualized with dark red color.
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Unsupervised segmentation of RGB image with three 
materials: NMF with sparseness constrains, DCA, ICA.

a) DCA
b) ICA
c) NMF
d) Linear programming
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Unsupervised segmentation of multispectral images
Consider blind decomposition of the RGB image (N=3) composed of four 
materials (M=4), ref.[11]: 
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Unsupervised segmentation of multispectral images
For shown experimental RGB image clustering function is obtained as: 

Four peaks suggest existence of four materials in the RGB image i.e. M=4.
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Unsupervised segmentation of multispectral images
Spatial maps of the materials extracted by HALS NMF with 25 layers, linear 
programming and interior point method [13,14] are obtained as:

a) 25 layers HALS NMF; b) Interior point method, [74,90]; c) Linear programming.

13. S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, "An Interior-Point Method for Large-Scale  L1 -
Regularized Least Squares,"IEEE Journal of Selected Topics in Signal Processing 1, 606-617 (2007).
14. http://www.stanford.edu/~boyd/l1_ls/.
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Unsupervised segmentation of multispectral images

Because materials in the experimental RGB image are orthogonal (they do not 
overlap in spatial domain) we can evaluate performance of the employed blind 
image decomposition methods via the correlation matrix defined as G=SST. For 
perfect estimation the correlation matrix will be diagonal and performance is 
visualized as deviation from diagonal matrix. To quantify decomposition quality 
numerically we compute the correlation index in dB scale as

2
10

, 1
10log

M

ij
i j
j i

CR g
=

≠

= − ∑

where before calculating correlation matrix G rows of S are normalized to unit  
L2-norm. 
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Unsupervised segmentation of multispectral images
Correlation matrices

From left to right: 25 layers HALS NMF; Interior point method, [74,90]; c) Linear programming.

CR performance measure in dB
Multilayer HALS NMF Interior-point method Linear program

CR [dB] 13.67 9.97 7.77

CPU time [s]* 3097 7751 3265

*MATLAB environment on 2.4 GHz Intel Core 2 Quad Processor Q6600 desktop computer with 4GB RAM.
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Blind extraction of analytes (pure 
components) from mixtures of chemical 

compounds in mass spectrometry15

4115. I. Kopriva, I. Jerić (2009). Multi-component Analysis: Blind Extraction of Pure Components Mass Spectra 
using Sparse Component Analysis, Journal of Mass Spectrometry, vol. 44, issue 9, pp. 1378-1388 (IF: 2.94).



42/46

Faculty of Mathematics, University of Zagreb, Graduate course 2011/2012.
“Blind separation of signals and independent component analysis”

Chemical structure of five pure components.

42
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Mass spectra of five pure components.

43
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Mass spectra of two mixtures

44
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Dana clustering function in the mixing anagle domain. Five peaks indicate presence of five 
components in the mixtures spectra.

45
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46

Mass spectra of five pure components estimated by multilayer (100 layers) HALS NMF algorithm 
with 500 iterations per layer and regularization constant αS=0.5.

Normalized correlation coefficients with true pure components 1to 5: 0.9084, 0.7432, 0.7389, 
0.9372, 0.9698. 
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