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“Blind separation of signals and independent component analysis”

� Motivation with illustration of applications (lecture I) 

� Mathematical preliminaries with principal component 
analysis (PCA)? (lecture II)

� Independent component analysis (ICA) for linear 

Course outline
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� Independent component analysis (ICA) for linear 
static problems: information-theoretic approaches
(lecture III)

� ICA for linear static problems: algebraic approaches 
(lecture IV)

� ICA for linear static problems with noise (lecture V)

� Dependent component analysis (DCA) (lecture VI) 
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Course outline
� Underdetermined blind source separation (BSS) and 

sparse component analysis (SCA) (lecture VII/VIII)

� Nonnegative matrix factorization (NMF) for 
determined and underdetermined BSS problems 
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determined and underdetermined BSS problems 
(lecture VIII/IX)

� BSS from linear convolutive (dynamic) mixtures 
(lecture X/XI)

� Nonlinear BSS (lecture XI/XII)

� Tensor factorization (TF): BSS of multidimensional 
sources and feature extraction (lecture XIII/XIV)
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Seminar problems
1. Blind separation of two uniformly distributed signals with maximum likelihood 

(ML) and AMUSE/SOBI independent component analysis (ICA) algorithm.
Blind separation of two speech signals with ML and AMUSE/SOBI ICA 
algorithm.  Theory, MATLAB demonstration and comments of the 
results.     

2. Blind decomposition/segmentation of multispectral (RGB) image using ICA, 
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2. Blind decomposition/segmentation of multispectral (RGB) image using ICA, 
dependent component analysis (DCA) and nonnegative matrix factorization 
(NMF) algorithms. Theory, MATLAB demonstration and comments of the 
results.     

3. Blind separation of acoustic (speech) signals from convolutive dynamic 
mixture. Theory, MATLAB demonstration and comments of the results.
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Seminar problems

4. Blind separation of images of human faces using ICA and DCA algorithms 
(innovation transform and ICA, wavelet packets and ICA) Theory, MATLAB 
demonstration and comments of the results.     

5. Blind decomposition of multispectral (RGB) image using sparse component 
analysis (SCA): clustering + L norm ( 0<p≤1) minimization. Theory, 
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analysis (SCA): clustering + Lp norm ( 0<p≤1) minimization. Theory, 
MATLAB demonstration and comments of the results.     

6. Blind separation of four sinusoidal signals from two static mixtures (a 
computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in frequency (Fourier) domain. 
Theory, MATLAB demonstration and comments of the results. 



Faculty of Mathematics, University of Zagreb, Graduate course 2011-2012.

“Blind separation of signals and independent component analysis”

Seminar problems
7. Blind separation of three acoustic signals from two static mixtures (a 

computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in time-frequency (short-time 
Fourier) domain. Theory, MATLAB demonstration and comments of the 
results. 
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8. Blind extraction of five pure components from mass spectra of two static 
mixtures of chemical compounds using sparse component analysis (SCA): 
clustering a set of single component points + Lp norm ( 0<p≤1) minimization 
in m/z domain. Theory, MATLAB demonstration and comments of the 
results. 

9. Feature extraction from protein (mass) spectra by tensor factorization of 
disease and control samples in joint bases. Prediction of prostate/ovarian 
cancer. Theory, MATLAB demonstration and comments of the results. 
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Blind source separation

A theory for blind signal recovery from multichannel observation requiring 
minimum of a priori information.

Problem:
X=AS X∈RNxT, A∈RNxM, S∈RMxT
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X=AS X∈R , A∈R , S∈R

Goal: find A and S based on X only.

Solution X=AT-1TS must be characterized with T= PΛΛΛΛ where P is permutation 
and ΛΛΛΛ is diagonal matrix i.e.: Y ≅≅≅≅ PΛΛΛΛS

A. Cichocki, S. Amari, “Adaptive Blind Signal and Image Processing,” John Wiley, 2002.
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• Number of mixtures N must be greater than or equal to M.

•source signals si(t) must be statistically independent.

Independent component analysis (ICA)

( )p ( )
M

m mp s= ∏s

8/44

•source signals sm(t), except one, must be non-Gaussian.

•mixing matrix A must be nonsingular.

( )
1

p ( )m m
m

p s
=

= ∏s

{ } 1
( ) 0 2

M

n m m
C s n

=
≠ ∀ >

−≅ 1W A

A. Hyvarinen, J. Karhunen, E. Oja, “Independent Component Analysis,” John Wiley, 2001.
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ICA for convolutive mixtures
In many situations related to acoustics and data communications we are 
confronted with multiple signals received from a multipath mixture. Sometimes, 
this is known under the popular name of cocktail- party problem.

The instantaneous linear mixture model x=As is not valid anymore. Instead, the 
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The instantaneous linear mixture model x=As is not valid anymore. Instead, the 
convolutive model needs to be assumed:

Thus, convolutive mixture is described by a mixing matrix whose elements are 
the individual impulse responses (in time domain) or transfer functions (in 
frequency domain) between a source and a sensor.

1 0

( ) ( ) ( ) 1...
M L

i ij j
j l

n a l s n l i N
= =

= − =∑∑x
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When both mixing matrix and sources are unknown the problem is referred to 
as the multichannel blind deconvolution (MBD) problem1-5.

ICA for convolutive mixtures 

A Convolutive model for 2x2 system:
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1. A. Hyvarinen, J. Karhunen and E. Oja, Chapter 19 in Independent Component Analysis, J. Wiley, 2001.

2. A. Cichocki, S. Amari, Chapter 9 in Adaptive Blind Signal and Image Processing – Learning Algorithms and  Applications, J. 
Wiley, 2002.

3. M. Castella, A. Chevreuil, J.-C. Pesquet, Chapter 8 in Handbook of Blind Source Separation, Academic Press, P. Comon and 
Ch. Jutten editors, 2010.
4. R. H. Lambert and C.L. Nikias, Chapter 9 in Unsupervised Adaptive Filtering – Volume I Blind Source Separation,     S.Haykin, 
ed.,  J. Wiley, 2000.
5. S.C. Douglas and S. Haykin, Chapter 3 in Unsupervised Adaptive Filtering – Volume II Blind Deconvolution, S. Haykin, ed., J. 
Wiley, 2000.

2

1 0

( ) ( ) ( ) 1,2
L

i ij j
j l

x n a l s n l i
= =

= − =∑∑
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solves interchannel interference solves intersymbol interference

MultichannelBlind Deconvolution

Blind SourceSeparation Single ChannelBlind Deconvolution

=
+

����������� ���������������

ICA for convolutive mixtures 
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solves interchannel interference solves intersymbol interference
����������� ���������������

Single channel blind deconvolution problem is also referred to as blind 
equalization. The unknown source signal that is input to a single-input-single-
output (SISO) system is required to be i.i.d. non-Gaussian signal. In that case it 
can be recovered up to indeterminacies: scaling by a constant and delay by a 
constant i.e.  

ˆ( ) ( ) ,s n cs n c= − ∆ ∈ ∆ ∈ℂ ℕ
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ICA for convolutive mixtures 
Statistically independent but temporally dependent source signals (audio 
signals for example) can be recovered blindly only up to permutation and scalar 
filtering indeterminacies. That is in strong contrast to instantaneous mixtures 
that for the same scenario allow recovery of the sources up to the scaling by a 
constant indeterminacy. 
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The scalar filtering indeterminacy is a consequence of a structure of temporally 
dependent time series that can be modeled as a convolution of a filter hi with an 
i.i.d. driving sequence ε:  

Thus, complete deconvolution would destroy a “color” of the signals. Thus, 
spatial separation between the sources is enough. 

In multichannel data communication systems both separation and 
deconvolution are required. However, all the sources must be i.i.d. non-
Gaussian signals.

0

( ) ( ) ( )
P

i i
p

s n h p n pε
=

= −∑
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Blind multichannel inverse modeling, equalization and separation: the input 
signal is unknown and there is no reference or desired signal.

ICA for convolutive mixtures 
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In relation to instantaneous BSS problem, elements of the mixing matrix A in 
convolutive model are filters aij. They contain impulse responses between the jth

input and ith output. We shall assume the number of inputs and outputs to be 
the same and equal to N.
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Notation and Z-transform preliminaries. NxN mixing matrix is described as:

( ) ( )n
n ij

n

z z a z
∞

−

=−∞

 = =  ∑A A

( ) , 1... .na z a z i j N
∞

−= =∑

ICA for convolutive mixtures 
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,( ) , 1... .n
ij ij n

n

a z a z i j N−

=−∞

= =∑

It is assumed that each channel is stable i.e. 
, .ij nn

a
∞

=−∞
< ∞∑

A(z) is a polynomial matrix or Laurent-series matrix (a matrix whose elements 
are polynomials, power series or Laurent series).

An is coefficient of the matrix polynomial or matrix Laurent series (a polynomial 
or Laurent series whose coefficients are matrices).
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Convolutive model in z-transform domain yields:

( ) ( ) ( )z z z=x A s
where source, measured and recovered signals are described by two-sided z-
transform: 

( ) ns z s z
∞

−= ∑

ICA for convolutive mixtures 
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,( ) n
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The inverse system is described with: 
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Real channels are causal and have finite order L

0

( ) ( )
L

n
n ij

n

z z a z−

=

 = =  ∑A A

Channel order L has to be estimated and is related to the maximal delay τmax

ICA for convolutive mixtures 
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Channel order L has to be estimated and is related to the maximal delay τmax
that can occur in the multipath scenario:

max sL Fτ≥

where Fs represents sampling frequency. However, noncausal representation is 
necessary to model inverse of the non-minimum phase (NMP) channels:

( ) ( )
L

n
n ij

n L

z z w z−

=−

 = =  ∑W W
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Reconstructed signals are obtained as:

,
1

( ) ( ) 1...
N L

i ij l j
j l L

y t w x t l i N
= =−

= − =∑∑

Noncausal implementation of the inverse systems requires that measured 

ICA for convolutive mixtures 
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Noncausal implementation of the inverse systems requires that measured 
signals are known ahead in time. Because this can not be realized a delay 
line of L samples is introduced in order to realize noncausal implementation:

,
1

( ) ( ) 1...
N L

i ij l j
j l L

y t L w x t L l i N
= =−

− = − − =∑∑

This implies delay of L samples independently on whether adaptive or block-
adaptive implementations are used.



Faculty of Mathematics, University of Zagreb, Graduate course 2011-2012.

“Blind separation of signals and independent component analysis”

Why stable inverse of NMP system requires non-causal implementation?

Consider a first order transfer function:

1

1
( )

1ijw z
az−=

−

ICA for convolutive mixtures 
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1 az−

for some real a. wij(z) is consider to be inverse of the direct filter aij(z)=1-az-1. 
Region of convergence (ROC) is given with:

z a>

Let us assume that a<1 in which case poles of wij(z) lies inside the unit circle 
for z=exp(jω) and wij(z) can be represented by causal (one-sided) z-transform:

1
0

1
( )

1
n n
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w z a z
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Let us now assume that a>1 in which case poles of wij(z) lies outside the unit 
circle for z=exp(jω). In this case the ROC becomes 

z a<

A sequence with z-transform wij(z)=1/(1-az-1) and above ROC is given with: 

ICA for convolutive mixtures 
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A sequence with z-transform wij(z)=1/(1-az-1) and above ROC is given with: 

( ) ( 1)n
ijw n a u n= − − −

where u() represents step function. z-transform of wij(n) can now be written as:

1

( ) ( ) ( 1)n n n n n
ij ij

n n n

w z w n z a u n z a z
∞ ∞ −

− − −

=−∞ =−∞ =−∞

= = − − − = −∑ ∑ ∑

which represents stable (1/a)<1 but non-causal z-transform necessary to 
implement inverse of the NMP channel aij(z)=1-az-1.
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Single channel blind deconvolution.

( ) ( )
L

l
l L

y t w x t l
=−

= −∑

( ) ( )
L
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0
l

l=
∑

Assumptions:
A1) Source signal must be non-Gaussian. Due to the central limit theorem x(t) 
is very close to Gaussian process even if s(t) is non-Gaussian. Maximizing 
departure from Gaussianity does not make sense if source signal is Gaussian. 

A2) Source signal must be independent identically distributed (i.i.d.) process 
(temporally white):

[ ]( ) ( )

( ( ), ( )) ( ( )) ( ( )) 0
lE s t s t l

s t s t l p s t p s t l l

σδ− =
− = − ∨ >p

1 2( ) ( )s sp t p t=
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Single channel blind deconvolution problem as instantaneous ICA problem:

≅x Asɶɶ

[ ]( ) ( ) ( 1) ... ( 2 1)
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[ ]( ) ( ) ( 1) ... ( 1)
T
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ICA independence assumption implies:

[ ]( ) ( 1)... ( ) [ ( )] [ ( 1)]... [ ( )]

( ( ), ( 1),..., ( )) ( ( )) ( ( 1))... ( ( ))

E s t s t s t L E s t E s t E s t L

s t s t s t L p s t p s t p s t L

− − = − −
− − = − −p

that is equivalent to i.i.d. assumption.
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Why colored signals can not be completely deconvolved?

Z-transform of the white (i.i.d.) source signal:
2( ) s
sS z zσ −∆=

Z-transform of the colored source signal:

ICA for convolutive mixtures 
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Z-transform of the colored source signal:
2( ) ( ) s
sS z D z zσ −∆=

( ) p
pp

D z d z−=∑

Z-transform of the reconstructed signal:

( ) ( ) ( ) ( )Y z W z A z S z=
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ICA for convolutive mixtures 

Minimization of statistical independence between the sources (spatial 
separation) yields sources:

2ˆ ( ) ( ) ( ) ( ) ( ) 1,...,si

ii i i s i iS z P z S z P z D z z i Nσ −∆= = =

{ }N { }N
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That is because if :                    are independent so are                      . 

Thus, exploiting statistical independence assumption only, the non-i.i.d. (color) 
sources can be recovered up to the scalar filtering indeterminacy only.

To, possibly, remove Pi(z) further processing of                   is necessary. 

Since,                  are statistically independent the only redundancy that is left is 
temporal dependence within each               .

{ } 1
( )

N

i i
s n
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ˆ ( )
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Goal in single channel blind deconvolution:

( ) ( )Y z S z z−∆≅
Unsupervised learning criteria are based on the maximization of independence 
between samples of the sequence y(t):

1m−

− − + = −∏

ICA for convolutive mixtures 
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1

0

( ( ), ( 1),..., ( 1)) ( ( ))
m

y
i

f y t y t y t m f y t i
=

− − + = −∏
this will yield:

[ ] 2( ) ( ) y ijE y t i y t j σ δ− − =
which implies:

2( ) y

yY z zσ −∆=

which further implies that:  

i.e. colored signals can not be recovered in completely blind scenario.

2( ) ( ) 1,...,yi
i i yP z D z z i Nσ −∆→ =
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Multichannel blind deconvolution. The same assumptions extend to 
multichannel blind deconvolution (MBD=BSS+SBD):

A1) all source signals must be non-Gaussian.
A2) all source signals must be statistically independent and i.i.d. processes:

2σ δ δ − − =

ICA for convolutive mixtures 
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( ) ( ) ( )
2( ) ( )

( ) ( ) ( ) ( )

i j ij rq

i j i j

E s t r s t q

p s t r s t q p s t r p s t q r q

σ δ δ − − = 

− − = − − ∀ ≠

General solution of the blind source separation problem is given with:

( ) ( ) ( ) ( )z z z z= =G W A PΛD

Where P is general permutation matrix, ΛΛΛΛ is diagonal scaling matrix and 

{ }1
1( ) ... N

Nz diag d z d z−∆−∆=D
Objective of the BSS in the most general case is to recover possibly scaled, 
reordered and filtered estimates of the unknown source signals.
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• Multichannel blind separation and deconvolution in time domain 

(+) On-line formulation is realizable.

(-) Slow convergence. 

(-) Colored signals are whitened if feedforward architecture is used.

(-) Whitening can be avoided with feedback architecture but this prevents 
implementation of the non-causal inverse filters required to implement stable 

ICA for convolutive mixtures 
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implementation of the non-causal inverse filters required to implement stable 
inverse of the NMP mixing channels.

• Multichannel blind separation and deconvolution in frequency domain

(+) Convergence is faster due to the fact that frequency bins are orthogonal.

(+) Condition for non-causal implementation is satisfied naturally through block

filtering implementation.

(-) Only block-adaptive but not truly adaptive implementation can be achieved.

(-) Permutation on the frequency bin levels causes serious difficulties when signals 
have to be transformed back in time domain. 

(-) Computationally more complex to implement.
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Time domain approach with recurrent (feedback) architecture. 
(+) Whitening effect is eliminated due to the fact that signals yi(t) have to 
have temporal structure in order to cancel appropriate source signal sj(t) in 
the mixture xn(t).
(-) It is not possible to realize non-causal implementation necessary to 
invert non-minimum phase mixture channels.

ICA for convolutive mixtures 
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1 1 12 21
( ) ( ) ( ) ( )

L

l
y k x k w l y k l

=
= − −∑

2 2 21 11
( ) ( ) ( ) ( )

L

l
y k x k w l y k l

=
= − −∑
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Time domain approach with recurrent (feedback) architecture. 
Asymptotic solutions for unmixing filters.

1
12 12 22( ) ( ) ( )W z A z A z−=

ICA for convolutive mixtures 
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1
12 11 21( ) ( ) ( )W z A z A z−=

1
21 22 12( ) ( ) ( )W z A z A z−=

1
21 21 11( ) ( ) ( )W z A z A z−=

or
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Time domain approach with feedforward architecture. 
(+) Non-causal realization necessary to invert non-minimum phase mixtures 
is easily implemented by pure delay line.  
(-) Direct filters set to unity only partially eliminate the whitening effect. 

ICA for convolutive mixtures 
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1 1 12 2( ) ( ) ( ) ( )
L

l L
y k x k w l x k l

=−
= − −∑

2 2 21 1( ) ( ) ( ) ( )
L

l L
y k x k w l x k l

=−
= − −∑
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Time domain approach with feedforward architecture.  Asymptotic 
solutions for unmixing filters.

1
12 12 22( ) ( ) ( )W z A z A z−= −

ICA for convolutive mixtures 
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1
21 21 11( ) ( ) ( )W z A z A z−= −
12 12 22

or

1
12 11 21( ) ( ) ( )W z A z A z−= −

1
21 22 12( ) ( ) ( )W z A z A z−= −
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Contrast function for MBD problems are in a majority of cases derived or 
can be related to maximum-likelihood formulation of the MBD problem5,6.

{ }ˆ ˆ( ) ( ) log ( , ) log ( , )MLJ f f E f= =∫ x x xx
W x x W dx x W

that amounts to minimizing spatial and temporal independence. Noting that

ICA for convolutive mixtures 

31/446D.L. Donoho, “On minimum entropy deconvolution,” in D.F. Findley, ed., Applied Time Series 
Analysis II, Academic Press, pp.565-608, 1981.

that amounts to minimizing spatial and temporal independence. Noting that
ˆ ˆ( , ) ( , ) / ( ) ( )f f f f =  x x x xx W x W x x

likelihood contrast function can be written as

( )ˆ( ) ( )MLJ D f f H f= − −x x xW

where D() represents Kullback-Leibler distance.
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Learning rule for W is obtained as:

ˆ( )( )ML
D f fJ ∂∂∆ ∝ = −

∂ ∂
x xW

W
W W

ICA for convolutive mixtures 
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which means that maximization of likelihood is equivalent to minimization of 
distance between true unknown and model pdf’s for a set of measurement. 

When MBD learning rules are derived by maximizing likelihood function 
they will contain score functions as nonlinear functions:

( )1
( )

( )
i

i

s i
i i

s i i

df y
y

f y dy
ϕ = −
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As shown before parameterized form of the score functions can be derived 
from generalized Gaussian distribution: 

1
( ) ( ) i

i i i iy sign y y
αϕ −=

With the single parameter α (called Gaussian exponent) super-Gaussian 

ICA for convolutive mixtures 
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With the single parameter αi (called Gaussian exponent) super-Gaussian 
distributions (αi <2) and sub-Gaussian distributions (αi >2) could be modeled.

If MBD is applied in communication environment αi=3 is good choice 
yielding:

2
( ) ( )i i i iy sign y yϕ =

If MBD is applied on audio signals αi=1 is good choice yielding:

( ) ( )i i iy sign yϕ =
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On-line (time domain) Infomax or  maximum likelihood ICA algorithm 
for blind separation of convolved minimum phase mixtures with 
feedback architecture. Colored signals such as speech could be separated.

( ( ))
( , ) ( ) ( )

H
w t l y y t l

ϕ ϕ∂∆ ≅ = −y
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( ( ))
( , ) ( ) ( )

( )ij i i j
ij

H
w t l y y t l

w l

ϕ ϕ∂∆ ≅ = −
∂

y

( 1, ) ( , ) ( , )ij ij ijw t l w t l w t lµ+ = + ∆

11
( ) ( ) ( , ) ( )

N L
j ii i ij jlj

y t x t w t l y t l≠ ==
= − −∑ ∑

where i,j denote signal indices, t denotes iteration index, l denotes coefficient 
index and µ represents learning gain.
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Frequency domain approach to MBD.

[ ]IFFT=y Y
k k k=Y W X

( )( 1) ( ) ( )H
k k k k kl l l + = + − W W I Φ Y Y W

FFT[ ]=X x
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[ ]IFFT=y Y
Where k denotes frequency bin index and l denotes iteration index. Permutation 
indeterminacy is a serious problem if MBD is implemented completely in 
frequency domain . ( ) ( )

1 1 1 1 2 2 2 2k k k k k k k k= ≠ =W A P Λ W A P Λ

Components on the same positions at different frequency bins do not belong to 
the same signal. Nonlinear function in frequency domain can be used as [7]

7. H. Sawada, R. Mukai, S. Araki, S. Makino, “Polar Coordinate based Nonlinear Function for Frequency-
Domain Blind Source Separation,” IEICE Trans. Fundamentals, Vol. E86-A, No. 3, March 2003. 

( ) arg( )( ) tanh kj Y
k k kY Y eηΦ =



Faculty of Mathematics, University of Zagreb, Graduate course 2011-2012.

“Blind separation of signals and independent component analysis”

( ) [ ]FFT ( )ϕΦ =Y y

Mixed implementation in time and frequency domain. Trade-off solution is 
to execute filtering in frequency domain and perform statistical independence 
test (that causes permutation indeterminacy) in time domain8,9

FFT[ ]=X x

ICA for convolutive mixtures 
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8 I.Kopriva, H. Szu, A.Persin, Optics Comm., Vol. 203 (3-6) pp. 197-211, 2002.
9. A. D. Back, A.C. Tsoi, Proc. of the 1994 IEEE Workshop – Neural Networks for Signal Processing IV, p.565,  ed. J. 
Vlontzos, J.N. Hwang, E. Wilson,  

( ) [ ]FFT ( )i i iϕΦ =Y y

( )IFFTi i=y Y

( )( 1) ( ) ( )H
k k k k kl l lµ  + = + − W W I Φ Y Y W

k k k=Y W X

Where k denotes frequency bin index, l denotes iteration index, i denotes signal 
index and µ is small learning gain.
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Applications of convolutive ICA
Speech separation in reverberant acoustic environment. Two recorded 

signals were downloaded from Russel Lamberts’ home page: 

http://home.socal.rr.com/russdsp/ . 

Signals were sampled with 8kHz and contain male and female speakers 
talking simultaneously for 12 seconds. 
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“Blind separation of signals and independent component analysis”

Applications of convolutive ICA
Parameters of the separation process were filter length L, Gaussian exponent 

αI and learning gain µ.. At sampling frequency 8kHz and filter length L=1024 

a relative delay of 64ms could be approximated. With speed of sound in the 

air of 330 ms-1 this corresponds with path length difference of 21m. The 

following signals were recovered with L=1024 , αi =1.0 and µ=0.005.
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following signals were recovered with L=1024 , αi =1.0 and µ=0.005.
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“Blind separation of signals and independent component analysis”

Applications of convolutive ICA
Following signals were recovered with L=1024 , αi =3.0 and µ=0.005. Choice 

of αi =3.0  corresponds with sub-Gaussian distributions and is wrong for 

speech signals.
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Applications of convolutive ICA
Following signals were recovered with L=256, αi =1.0 and µ=0.0013. Choice 

of L=256 will model relative path difference up to 5m.
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If source signals are white (i.i.d.) feedforward architecture can be employed 
in time domain to realize on line non-causal implementation with natural 
gradient capable to approximate inverse of the NMP channels3,10. 

0
( ) ( ) ( )

L

pp
t t t p

=
= −∑y W x
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0
( ) ( ) ( )

L H
L pp

t t t p−=
= −∑u W y

( )( 1) ( ) ( ) ( ) ( ( )) ( ) 0,...,H
p p pt t t t t L t p p Lη ϕ+ = + − − − =W W W y u

And L is filter length, t is time index, p is index of the coefficient of the matrix 
polynomial and η is small learning gain.
10. S. Amari, S.C.Douglas, A. Cihocki and H.H. Yang, “Multichannel Blind Deconvolution and Equalization Using 
the Natural Gradient,” IEEE International Workshop on Wireless Communication, Paris 1997, pp. 101-104. 

where g() is functional inverse of ϕ such that:

( ( ))i i i ig y yϕ =
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Applications of convolutive ICA
Multichannel blind equalization of 3x3 systems with 3 i.i.d. source signals 
(QAM)10 with the NMP channels.
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Applications of convolutive ICA
Output constellations for blind equalizer are shown for all three restored 
sources for time intervals 1≤t≤500, 3501≤t≤4000 and 7001≤t≤7500.  
yi(t)≈si(t-4).
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Applications of convolutive ICA
Output constellations are shown multichannel LMS equalizer trained with 
di(t)=si(t-4). Constellations are shown on intervals 1≤t≤500, 3501≤t≤4000 
and 7001≤t≤7500. 
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