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Motivation with illustration of applications (lecture I) 
Mathematical preliminaries with principal component 

analysis (PCA)? (lecture II)
Independent component analysis (ICA) for linear static

problems: information-theoretic approaches (lecture III)
ICA for linear static problems: algebraic approaches 

(lecture IV)
ICA for linear static problems with noise (lecture V)
Dependent component analysis (DCA) (lecture VI) 

Course outline
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Course outline
Underdetermined blind source separation (BSS) and 

sparse component analysis (SCA) (lecture VII/VIII)
Nonnegative matrix factorization (NMF) for determined 

and underdetermined BSS problems (lecture VIII/IX)
BSS from linear convolutive (dynamic) mixtures (lecture 

X/XI)
Nonlinear BSS (lecture XI/XII)
Tensor factorization (TF): BSS of multidimensional 

sources and feature extraction (lecture XIII/XIV)
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Homework problems
1. Understanding natural (relative) gradient. Convergence analysis 

(comparison) of algorithms in adaptive minimum mean square error
problem with matrix argument using Riemanian and Euclidean gradient. 
Theory, MATLAB demonstration and comments of the results. 

2. Principal component analysis (PCA) based separation of two Gaussian 
signals.PCA based separation of two uniformly distributed signals. 
Scatter plots of true sources, mixtures and estimated sources. PCA 
based separation of two images (histograms). Theory, MATLAB 
demonstration and comments of the results. 

3. Independent component analysis (ICA) based separation of two 
uniformly distributed signals (scatter plots of true sources, mixtures and 
estimated sources).ICA based separation of two images (histograms). 
Theory, MATLAB demonstration and comments of the results. 
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Seminar problems
1. Blind separation of two uniformly distributed signals with maximum 

likelihood (ML) and AMUSE/SOBI independent component analysis 
(ICA) algorithm.
Blind separation of two speech signals with ML and AMUSE/SOBI ICA 
algorithm. Theory, MATLAB demonstration and comments of the 
results.     

2. Blind decomposition/segmentation of multispectral (RGB) image using 
ICA, dependent component analysis (DCA) and nonnegative matrix 
factorization (NMF) algorithms. Theory, MATLAB demonstration and 
comments of the results.     

3. Blind separation of acoustic (speech) signals from convolutive dynamic 
mixture. Theory, MATLAB demonstration and comments of the 
results.
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Seminar problems
4. Blind separation of images of human faces using ICA and DCA 

algorithms (innovation transform and ICA, wavelet packets and ICA)
Theory, MATLAB demonstration and comments of the results.     

5. Blind decomposition of multispectral (RGB) image using sparse 
component analysis (SCA): clustering + Lp norm ( 0<p≤1) minimization . 
Theory, MATLAB demonstration and comments of the results.     

6. Blind separation of four sinusoidal signals from two static mixtures (a 
computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in frequency (Fourier) 
domain. Theory, MATLAB demonstration and comments of the 
results. 
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Seminar problems
7. Blind separation of three acoustic signals from two static mixtures (a 

computer generated example) using sparse component analysis (SCA): 
clustering + Lp norm ( 0<p≤1) minimization in time-frequency (short-time 
Fourier) domain. Theory, MATLAB demonstration and comments of 
the results. 

8. Blind extraction of five pure components from mass spectra of two 
static mixtures of chemical compounds using sparse component 
analysis (SCA): clustering a set of single component points + Lp norm ( 
0<p≤1) minimization in m/z domain. Theory, MATLAB demonstration 
and comments of the results. 

9. Feature extraction from protein (mass) spectra by tensor factorization of 
disease and control samples in joint bases. Prediction of 
prostate/ovarian cancer. Theory, MATLAB demonstration and 
comments of the results. 
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ICA for linear instantaneous models

Second order ICA methods (time-delayed correlations)
Tensorial ICA methods (Fourth order cumulants) 
Kernel ICA algorithm
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Second order statistics (SOS) based methods1

Problem. x=Ax, x∈Rn, s∈Rm , A∈Rn×m n>m.

Assumptions:
• A is a full column rank.

• Sources are spatially uncorrelated with different autocorrelation functions but temporally 
correlated (colored) zero mean signals: 

• Additive noise V if present is independent of source signals, it can be spatially correlated 
but it is assumed to be temporally uncorrelated (white):

1Blind Decorrelation and SOS for Robust Blind Identification,” Chapter 4 in: Adaptive Blind Signal and Image 
Processing by A. Chichocki and S.I. Amari, John Wiley, 2002.
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Eigenvalue decomposition (EVD) approach
When source signals have time structure i.e. their correlations and cross-correlations are nonzero
for different time lags: 
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it is possible to generate enough equations in order to solve the BSS problem without usage of 
the higher order statistics. If source signals have time structure (colored statistics) they are even 
allowed to be Gaussian. First, we want to whiten data with z=Qx:
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EVD approach

( ) Tτ = Λz z z zR V V

( )τzRWe want to diagonalize 
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If has distinctive eigenvalues then:

Two-steps procedure:

• Diagonalize                to get Q

• Diagonalize                to get 

(0)xR

( )τzR zV
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Generalized EVD approach
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Robust second order blind identification 
(SOBI)2

To obtained robust estimate of the mixing matrix using SOS it is wise to make sources 
uncorrelated for several (many) time lags. This leads to joint approximate diagonalization (JAD) 
problem. It is again assumed that data are whitened: z=Qx. 

We want to diagonalize the set of matrices 

( 1,..., )T
i i i L= =M UD U

Mi are data matrices (time delayed covariance matrices). Since data are prewhitened U is unitary 
matrix. Hence, perform JAD on a set of matrices:                to obtain U. Then from( ){ } 1

L
i i
τ

=zR

2A. Belouchrami, K.A. Meraim, J.F. Cardoso, and E. Moulines, “A blind source separation technique based on 
second order statistics,” IEEE Trans. on Signal Processing, 45(2), pp. 434-444, 1997.
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Robust SOBI
From:

( ) ( ) ( )T T T T
i i i iτ τ τ= = =z x sR QR Q QAR A Q UD U
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ICA by time-delayed correlations3,4

For whitened with z=Qx, it is possible to formulate symmetric one-lag covariance matrix as:

( )
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Because source signals are uncorrelated by assumption  one-time lag covariance matrix  
is diagonal. Hence, Vz is obtained by EVD of                 and it follows:

( )τsR
( )τzR

†ˆ= ⇒ =z zQA V A Q V
That is how SOS-based BSS problem is solved by AMUSE algorithm.

3 L. Molgedey  and H. G. Schuster, “Separation of mixture of independent signals using time delayed correlations,”
Physical Review Letters, vol. 72, pp. 3634-3636, 1994.
4 L. Tong, R.W. Liu, V.C. Soon, and Y. F. Huang, “Indeterminacy and identifiability of blind identification,” IEEE 
Trans. on Circuits and Systems, 38:499-509, 1991. 
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ICA by time-delayed correlations

Previous approach with symmetric one-lag covariance matrix can be extended by using multiple 
time lags. The ICA algorithm is formulated as joint diagonalization problem:

( )( ) off ( ) T

S

J
τ

τ
∈

= ∑ zU UR U

Representative algorithms are SOBI (second order blind identification)2 and TDSEP5.

2A. Belouchrami, K.A. Meraim, J.F. Cardoso, and E. Moulines, “A blind source separation technique based on 
second order statistics,” IEEE Trans. on Signal Processing, 45(2), pp. 434-444, 1997.
5 A. Ziehe, K.R. Muller, G. Nolte, B. M. Mackert, and G. Curio, “TDSEP-an efficient algorithm for blind separation 
using time structure,” Proc. ICANN’98, pp. 675-680, Skovde, Sweden, 1998. 
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Tensorial methods based ICA
• For i.i.d. random variables autocorrelation function is delta function. Thus, only one SOS (a 

zero lag covariance matrix) exists. 

• If random variables are non-Gaussian higher-order-statistics (HOS) exist. It is possible to 
define higher-order generalizations of the covariance matrix. The fourth-order (FO) 
generalization is known as quadricovariance. If x is n-dimensional random vector than its 
quadricovariance is fourth-dimensional array i.e. FO-tensor:                         . Its elements 
are FO-crosscumulants defined for zero mean variables as:

• Assuming that random variables are distributed symmetrically and that random vector is 
prewhitened z=Qx, diagonalization of       ensures statistical independence between           
up to the FO. 
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Joint Approximate Diagonalization of 
Eigen-matrices (JADE)6

6J. F. Cardoso and A. Souloumiac, “Blind beamforming for non-Gaussian signals,” IEE-Proc. – F, vol. 140, 
pp. 1362-1370, 1993.

• Instead of diagonalizing FO-quadriconaviance tensor that demands estimation of the n4 FO 
cross-cumulants a method proposed in ref.6 solves the problem by JAD of n FO-cross-
cumulant matrices. Algorithm is known as JADE (Joint Approximate Diagonalization of
Eigen-matrices) and can be downloaded from: 
http://www.tsi.enst.fr/~cardoso/Algo/Jade/jade.m

• Let us start with the linear memoryless model x=As, x∈Rn, s∈Rm , A∈Rn×m n>m. Let us 
also assume that x is prewhitened:                                   . Then:
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JADE
• Q follows from eigendecompositon of Rx(0), but U has to be estimated from FO statistics. 

Then,                 i.e.                             . †ˆ =A Q U ˆ( ) ( )t t=s UQx

• Let us define n×n “cumulant matrix” Cz(M):

[ ] ( )
, 1

( ) ( ) , , , 1 ,
n

i j k l klij
k l

cum z z z z m i j n
=

= ≤ ≤∑z zC M C M

• Goal: M should be eigen-matrix of Cz(M): Cz(M)=λM. Using multilinearity property of 
cumulants as operators as well as the assumption that sources             are statistically 
independent we obtain:
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JADE
• It follows that any cumulant matrix Cz(M) is diagonalized by U, provided that sources have 

distinct kurtoses cp i.e. U contains eigenvectors of Cz(M).

• How to choose M? How many cumulant maticies to use? 

• If we choose                        then:T
p q=M u u

1
( )

0

n
T T T T

p q p p p q p p p
p

T
p p p

c

c p q

p q

=

= = =

⎧ =⎪=⎨
≠⎪⎩

∑zC M u u u u u u u u

u u

• Hence, we choose:                     .T
p p=M u u
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JADE
Step 1. Estimate                                                        .

Compute whitening matrix Q from EVD of Rx(0):                       .

1

1

(0) ( ) ( ) ( ) ( )
T

T T
T

t

E t t t t
=

⎡ ⎤= ⎣ ⎦ ∑xR x x x x
1/ 2 T−= x xQ Λ V

Step 2. Form set of FO cumulants of z:                                              . 

Form  n “cumulant matrices”

( ), , ,i j k lcum z z z z=zc

( )
, 1

( ) , , ,
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p p i j k l p pij kl

k l
cum z z z z
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⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦∑zC u u u u

To compute                               we need initial value for U that is assumed to be obtained from 

JAD of                               ?  

( )T
p p⎡ ⎤⎣ ⎦zC u u

( )T
p p⎡ ⎤⎣ ⎦zC u u
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JADE
Initial estimate of U can be obtained by EVD of:

[ ]
{ } 1

.

( )
n

i i

T T T
n

This is obtained because z
areuncorrelated and zero mean

E

=
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Step 3. Estimate U as a solution of JAD of                                         . ˆ ˆ( ) 1,...,T
p p p n=zC u u

This amounts to minimize sum of squares of off-diagonal terms:                                               
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JADE
It can be shown (after complex algebraic manipulations) that the final outcome of the JADE 
algorithm is:

2

, , ,

( ) ( , , , )
n

i j k l
i j k l iikl

J cum y y y y
≠

= ∑U

where:

( ) ( ) ( )t t t= =y Uz UQx
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Kernel ICA algorithm7

7F. R. Bach and M. I. Jordan “Kernel Independent Component Analysis,” Journal of Machine Learning Research 3, 
pp.1-48, 2002.

Kernel ICA algorithm is obtained by minimizing canonical correlations in the reproducing kernel 
Hilbert space (RKHS). There the kernel trick is used to avoid explicit mappings from data to 
image space. Thus, kernel functions are evaluated in the input data space. This leads to the 
KCCA algorithm. 

Second contrast function used in RKHS is approximation of mutual information based on 
relationship between mutual information and canonical correlation for Gaussian variable. This 
leads to KGV algorithm.

For two random variables x1 and x2 we want to maximize correlation defined on a function space
between  f1(x1) and  f2(x2) where f1 and f2 range over F:

ρF is called F-correlation. When x1 and x2 are independent ρF is zero. The converse is also true if 
function space is rich enough.

:F →

( )
1 2

1 1 2 2,
max ( ), ( )F f f F

corr f x f xρ
∈

=
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Kernel ICA algorithm
Thus, we want to minimize nonlinear correlation between x1 and x2 looking for optimal functions 
f1 and f2. Concept of RKHS makes this idea computationally tractable. 

Let F  is space of functions, called  feature space , be RKHS on         . Let K(x,y) be associated 
kernel function that induces F (proper choice is Gaussian kernel). Let Φ(x)=K(.,x) be a feature 
map, where K(.,x) is function in F for each x. The reproducing property implies:

It follows

( ) ( ), , ,f x x f f F x= Φ ∀ ∈ ∀ ∈

( ) ( )1 1 2 2 1 1 2 2( ), ( ) ( ), , ( ),corr f x f x corr x f x f= Φ Φ

[ ] [ ] [ ]1 1 2 2 1 1 2 2 1 1 2 2( ( ), ( )) ( ) ( ) ( ) ( )corr f x f x E f x f x E f x E f x= =

[ ] [ ]1 1 2 2 1 2 1 2( ) ( ) i j i j
i j i j

i j i j

E f x E f x E a x E b x a b E x x
⎡ ⎤⎡ ⎤ ⎡ ⎤= =⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

∑ ∑ ∑∑
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Kernel ICA algorithm
Hence F-correlation is maximal possible correlation between one dimensional linear projections 
of Φ(x1) and Φ(x2) . That is definition of the first canonical correlation between Φ(x1) and Φ(x2). 

It follows that ICA-contrast function can be constructed by computing canonical correlation in 
function space F. That is important because canonical correlation analysis (CCA) is reduced to 
generalized eigen-value problem.

Use of RKHS enables not to work with functions f ∈F explicitly but implicitly through the use 
of kernel function K(.,x) such that:                        Gram matrix Kij(xi,xj) is positive definite. 

For K there is associate feature map                             such that

Kernel trick enables calculations in the input data space     without activating feature 
map Φ that for some kernels (Gaussian) is infinite.

p
ix∀ ∈

:X FΦ

( , ) ( ), ( ) : kernel trickK x y x y= Φ Φ

pX ⊂
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Kernel ICA algorithm
If we now assume that function space F is RKHS associated with  
then the reproducing property   for   yields:

For translation invariant kernels (example: Gaussian kernel): K(x,y)=k(x-y) where k is function 
(that must be real and positive). The function space F induced by kernel    

k(x-y) has infinite dimension and is composed of functions           such that:

Where            is Fourier transform of f and ν(ω) is Fourier transform of k(x-y). For Gaussian 
kernel in p-dimensional space:

{ }: (., ) :K K x x X∈
( ) (., ),f x K x f= ( ) (., )x K xΦ =

( ), ( ) (., ), (., ) ( , )x y K x K y K x yΦ Φ = =

: pk
2ˆ ( )

( )p

f
d

ω
ω

ν ω
< ∞∫

( )2 pf L∈

ˆ ( )f ω

2
2

1( , ) ( ) exp
2

K x y G x y x yσ σ
⎛ ⎞= − = − −⎜ ⎟
⎝ ⎠
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Kernel ICA algorithm
The Fourier transform of Gσ is

In this case F is a space of smooth functions whose Fourier transform that decays rapidly. 

Thus, since the kernel function induces functional space, minimization of canonical correlations 
w.r.t. functions across F is replaced by minimization of kernelized canonical correlations 
w.r.t. to samples across X. Kernel trick enables numerical solution of the CCA problem in RKHS 
induced by the kernel. 

Thus, minimizing canonical correlations in kernel induced function space F is equivalent to 
minimizing nonlinear correlations between random variables that are induced by the optimal 
nonlinear functions. This will minimize statistical independence between the random variables 
in the input data space X. 

( )
2/ 2 22( ) 2 exp

2
p σν ω πσ ω

⎛ ⎞
= −⎜ ⎟
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Kernel ICA algorithm
Minimization of canonical correlations in RKHS implies:

In practice we need to work with empirical linear projections of feature maps on a 
finite set of samples: .  

( ) ( )
( )

( ) ( )

1 2 1 2

1 2

1 1 2 2 1 1 1 2 2 2, ,

1 1 1 2 2 2
1/ 2 1/ 2,
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∈ ∈
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Φ Φ

Φ Φ
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Kernel ICA algorithm
If S1 and S2 are linear spaces spanned by images of data points we can express f1 and f2 as:

1 1 1 1 1
1

2 2 2 2 2
1

( )

( )

N
k k

k

N
k k

k

f x f

f x f

α

α

⊥

=

⊥

=

= Φ +

= Φ +

∑

∑
where     and are orthognal to S1 and S2 and represent approximation errors. 1f

⊥
2f
⊥
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Kernel ICA algorithm
Now, empirical covariance of the linear projections in feature space can be estimated as:

K1 and K2 are Gram matrices associated with data sets
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Kernel ICA algorithm
Empirical variance are obtained as:

Putting everything together yields:
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Kernel ICA algorithm
This is transformed into following generalized eigen-value problem:

Above problem is generalized to more than two variables which leads to KCCA algorithm. 

MATLAB code for KCCA and KGV can be downloaded from: 
http://www.cs.berkeley.edu/~fbach/kernel-ica/
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Comparison between basic ICA methods
In Ref. [24] representative ICA algorithms were 
compared for different distributions. Performance 
measure was Amari’s error which measures distance 
between Q=WA and P where P is general 
permutation matrix :
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This measure is always between 0 and N-1.
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Comparison between basic ICA methods7
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